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Culture is an outcome of both the acquisition of knowledge about behaviour
through social transmission, and its subsequent production by individuals.
Acquisition and production are often discussed or modelled inter-
changeably, yet to date no study has explored the consequences of their
interaction for cultural diffusions. We present a generative model that inte-
grates the two, and ask how variation in production rules might influence
diffusion dynamics. Agents make behavioural choices that change as they
learn from their productions. Their repertoires may also change, and the
acquisition of behaviour is conditioned on its frequency. We analyse the dif-
fusion of a novel behaviour through social networks, yielding generalizable
predictions of how individual-level behavioural production rules influence
population-level diffusion dynamics. We then investigate how linking acqui-
sition and production might affect the performance of two commonly used
inferential models for social learning; network-based diffusion analysis, and
experience-weighted attraction models. We find that the influence that
production rules have on diffusion dynamics has consequences for how
inferential methods are applied to empirical data. Our model illuminates
the differences between social learning and social influence, demonstrates
the overlooked role of reinforcement learning in cultural diffusions, and
allows for clearer discussions about social learning strategies.
1. Introduction
Cultural evolution, or the changes over time in distributions of the types, forms
or functions of socially learned traits, provides a secondary inheritance system
that potentially enables rapid adaptive plasticity [1–4]. Social learning, the pro-
cess that underlies cultural evolution, has a well-accepted definition of learning
that occurs through observations of the behaviour, or interactions with the pro-
ducts of behaviour, of others [5]. It is perhaps well accepted owing to its
ambiguity, as it encompasses many different phenomena. In particular, social
learning may refer to (1) the learning of a novel skill from conspecifics, such
as a cockatoo learning to open bins from associates [6], or (2) the influence
that social information exerts upon behavioural choice, such as when a stickle-
back fish chooses feeders surrounded by more conspecifics [7]. In the first case,
learning describes an event of acquisition of knowledge about a new behaviour
as a result of social transmission [8]. In the second case, learning describes the
changes in weights given to known behaviours when producing a behaviour,
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owing to social influence (i.e. response facilitation or conta-
gion [9,10]). This ambiguity is further complicated by the
circular relationship between these two phenomena. Pro-
duction of a behaviour requires acquisition of knowledge of
that behaviour, and acquisition requires observable pro-
ductions. This relationship is captured in the definition of
social transmission: when a behaviour is produced by an
individual, it exerts a positive causal influence on the rate
at which that individual’s associates acquire the same behav-
iour [8]. The conceptual distinction of origin (acquisition) and
maintenance (production) of behaviour was previously high-
lighted by Galef [11] in the debate over why social learning is
adaptive. Galef identified one critical cognitive factor that
influences production directly: reinforcement learning,
which he hypothesized influenced the maintenance or aban-
donment of cultural traits [11]. However, little is understood
about how cultural dynamics are influenced by variation in
such learning rules.

The breadth of the term ‘social learning’, and the circular
relationship between acquisition and production, can also
lead to ambiguity over the precise target of causal factors
that influence cultural evolution. Generally, acquisition
depends on cognitive [12–14], social [8,15,16] and environ-
mental factors [17,18]. These factors include how
individuals bias attention during learning [14], association
patterns and network structure [8,19], and resource avail-
ability or habitat fragmentation [20]. These factors can also
influence realized production behaviour [18,21], but not
necessarily in the same way as acquisition. For example, there
may be imprecision over the target of social learning biases
or strategies—do they act upon the process of acquisition or
production, or both? This has led to potential for miscommu-
nication, for example in the long-standing debates over
definitions of conformity [22]. Here, we aim to clarify the
relationship between acquisition and production. We develop
a simulation framework that treats these concepts separately,
but permits their interaction via a process of social trans-
mission [8]. Our mathematical model builds upon Galef’s
verbal model, provides new predictions for how changes to
learning rules of production influence diffusion dynamics,
and offers clarity in discussions of the targets of social
learning biases, strategies or constraints.

Acquisition and production have been modelled separ-
ately as approaches to two central goals of empirical
studies of animal culture. One goal has been to identify
when social transmission is responsible for the diffusion, or
spread, of a behaviour through a population, as opposed to
asocial innovation. A primary determinant of social trans-
mission is the opportunity for naive individuals to learn
from others, represented by their social association. This cor-
relation between association and social transmission is at the
core of network-based diffusion analysis (NBDA) [8,16,23],
which has been used to identify social learning (sensu social
transmission) in birds [6,24–26], fish [27,28], cetaceans [29–31]
and primates [32–35]. Another goal is the identification of
social influence, or how individuals integrate social infor-
mation during decision-making between behaviours [12,36].
This has been studied using experience-weighted attraction
(EWA) models—an extended reinforcement learning model
[37] originally developed to understand how behavioural
choices change over time in economic games [12,38,39].
Owing to their flexibility, EWA models are a popular
method to identify social learning (sensu social influence on
production). EWA has been used to study social learning
strategies, theoretically [40,41] and in humans [12,42–44]
and non-human animals [4,45–47].

As with any model-based inferential framework, both
NBDA and EWA have shortcomings. NBDA assumes that
the order of acquisition is correlated to network structure in
cases of social transmission. However, acquisition of knowl-
edge is not directly observable without behavioural output.
Thus, NBDA assumes that the order of first observed
production of a behaviour is equivalent to the order of acqui-
sition. Divergences between acquisition of knowledge and
first-productions might spell trouble for this assumption.
Secondly, NBDA analyses do not usually account for
behavioural frequency information (although recommended
[16,48], see [24,49,50]). Regarding EWA, its formalization
requires the definition of a set repertoire of behaviours that
an individual may produce. To date, implementations have
not accounted for differences in repertoire size over time or
between individuals, and thus are restricted to situations
where there are no innovations or diffusion, as individuals
must have homogeneous repertoires. In summary, the
dynamics of cultural evolution are not fully captured by a
model of acquisition that does not account for production,
nor by a model of production with no change in repertoire.
We must simultaneously account for potential acquisition of
novel behaviour, and the complex decision-making that
contributes to the maintenance of behaviour in order to
describe dynamics of cultural change with some generality.
Yet, beyond specialized models of language evolution
[51–53], no general, species-agnostic model of cultural evol-
ution exists in which both acquisition and production
are connected.

Here, we develop a simulation model that unites both
processes by adapting the dynamics of NBDA and EWA
frameworks. First, we explore how changes to production
rules might affect the diffusion of a novel behaviour through
networks of agents. We uncover new relationships between
production and diffusion dynamics, and find that certain pro-
duction rules result in more or less divergent orders between
acquisition and first-production events. However, inferential
NBDA models are blind to such divergences, and EWA
models are blind to any heterogeneity in repertoire. To
understand the consequences of this for the practical appli-
cation of inferential methods, we then apply inferential
models of NBDA and EWA to data generated by our
model. We generate agents’ acquisition and production
times, and behavioural output under known underlying
mechanisms, e.g. social transmission or asocial innovation,
and feed these data into inferential NBDA and EWA
models. We find that linking production and acquisition
limits the inferential power of these two popular methods.
Finally, we discuss how our framework helps clarify broader
discussions of social learning biases and strategies.
2. Methods
Our model simulated both the diffusion of a novel behaviour
through a population, and the agents’ decisions of which beha-
viours to produce throughout the diffusion. Throughout the
paper, we use ‘diffusion’ to refer to the spread of knowledge of
the novel behaviour through a population. ‘Acquisition’ is
when an agent learned that it may produce the novel behaviour.
‘First-production’ is when an agent first performed it.
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Acquisition and production were implemented as two sub-
models that are mathematically consistent with prior appli-
cations of inferential NBDA [16] and EWA [12] frameworks,
respectively. Some conventional notation has been altered be
more accessible. Inferential NBDA statistically tests for acqui-
sition of behaviour via social transmission against a null
hypothesis of asocial innovation. It estimates the plausibility of
social transmission by accounting for association with knowl-
edgeable individuals, and orders or times of acquisition by
naive individuals. Inferential EWA is a dynamic learning
model that uses time-series behavioural data to estimate how
individuals balance social and personal information, as well as
recent and past information, in decision-making. While there
are many ways to formulate either model of acquisition or pro-
duction, we have chosen to follow these specific frameworks to
robustly evaluate how linking acquisition and production
might affect the inferential value of either model.

Importantly, we transformed these inferential models into a
generative model. We used their assumed dynamics to produce
probabilities of acquisition or production of a novel behav-
iour—generating data using known parameters, rather than
inferring parameters from observed data. We connected the
two sub-models, allowing them to influence one another.
The sub-model of acquisition determined agents’ repertoires,
i.e. behaviours able to be produced, while the sub-model of pro-
duction determined which behaviour was chosen for production
from their repertoires in each timestep, providing behavioural
frequency information. Those frequencies then influenced the
acquisition probability of a novel behaviour by naive agents in
the following timestep. Thus, our model’s output was the cul-
tural dynamic generated by linked processes of acquisition and
production, conditioned on specific parameter values of either
sub-model. We also explored the dynamics of the sub-models
of acquisition and production in isolation (detailed in electronic
supplementary material, S1, figure S1).

We assumed a population of constant size N = 24. Agents
were situated within a social association network that con-
strained observation and acquisition opportunities to connected
nodes. We used a random regular network architecture, with
fixed degree (k = 6) associates for each agent (electronic sup-
plementary material, figure S2). Random regular architecture
was chosen because degree was important to standardize
between agents—it directly affected the dynamics of acquisition
(detailed in equation (2.2)). Edge weights were set to 1 to elimin-
ate stochastic variation arising from differences in association.
We explored other network architectures (electronic supple-
mentary material, text S2), but the primary focus of this paper
was to understand how learning rules governing behavioural
production, rather than social structure, influenced diffusion
dynamics. Population size was not varied, but we expect that
larger populations would lead to longer diffusions. However, it
would not impact the results as only degree influences either
sub-model.

At the beginning of a simulation, all agents initially had a
repertoire of one behaviour, ’a’, interpreted as an established tra-
dition that had already diffused through the population. To
remove stochasticity from differences in innovation timing, one
randomly selected ‘seed’ agent also had knowledge of a novel
behaviour ’b’. Both behaviours obtained an equal reward (ra =
rb = 1) when performed. Each timestep, agents had the opportu-
nity to expand their repertoire by acquiring behaviour b, if it had
been produced by at least one of their associates (see §2a).
Additionally, agents chose one behaviour from their repertoire
to produce. Their choice was influenced by past personal experi-
ences of rewards, as well as social information from their
neighbours (see §2b). Here reinforcement learning played an
important role: when an agent acquired knowledge of behaviour
b, its expected value was initially 0, as agents had never
personally experienced reward from the behaviour, and we
assumed that agents did not attend to socially observed rewards.
The value of the behaviour was learned only through individual
experience of producing the behaviour (see equation (2.4)). This
cycle of potential acquisition and production repeated until the
novel behaviour b had been acquired and produced at least
once by each agent.

(a) Sub-model of behavioural acquisition
Each timestep, agents had the opportunity to acquire knowledge
of novel behaviour b through social transmission. The prob-
ability of acquisition depended on an agent’s associates and
their behavioural productions, a rate of social transmission,
and a rate of asocial innovation. We estimated the probability
of acquisition of behaviour b for each naive individual i, i.e. indi-
viduals that only possessed behaviour a, at each timestep t by
calculating

Pðindividual i acquires bjtÞ ¼ 1� expð�lbðTiðtÞ þ AÞÞ: ð2:1Þ

The baseline learning rate (λb) represented how easily the
novel behaviour was learned, either socially or asocially. A rep-
resented the presence of asocial innovation, and could take a
value of 0 or 1. The transmission function Ti(t) recorded the rela-
tive usage of behaviour b of all knowledgeable associates of
agent i over a memory window of m timesteps. The transmission
function Ti(t) was defined by

TiðtÞ ¼ Tðai, wbðtÞÞ ¼ s
XN
j¼1

ai,jwb,jðtÞ, ð2:2Þ

whereby the sum was taken over agent i’s associates as ai,j = 1 if i
and j were connected in the association network and ai,j = 0
otherwise. wb,j(t) defined the transmission weight of agent j
representing the proportion of time this agent produced
behaviour b within the last m timesteps

wb,jðtÞ ¼
Pt

r¼t�m nb,jðrÞ
m

: ð2:3Þ

We set nb,j(r) = 1 if agent j produced b at timestep r; otherwise
nb,j(r) = 0. Lastly, the sum was multiplied by s, the rate of social
transmission. Higher values of s resulted in increased probability
of transmission per knowledgeable associate, relative to the
asocial innovation.

In summary, the transmission weight function was the nexus
of our sub-models of acquisition and production, as illustrated
by figure 1. It allowed behavioural frequencies, derived from
the production sub-model detailed in the following section,
to influence transmission probabilities calculated from the
acquisition sub-model.

(b) Sub-model of behavioural production
Each timestep, each agent i produced a behaviour k from its
repertoire Zi (consisting of either {a} only or {a, b}) with prob-
ability Pi,k(t) as follows. Agents updated their expected values
given their personal experience of producing a behaviour at
t− 1 (equation (2.4)), which influenced the probability of produ-
cing either behaviour given personal information only (equation
(2.5)). However, agents also considered social influence in their
choice using a record of the observed productions of their associ-
ates (equation (2.6)). Changes in personal and social information
potentially led to a changed production probability at time t
(equation (2.7)), in a dynamic consistent with decision-biasing
reinforcement learning [36]. Four parameters governed how
these values changed with experience: recent experience bias
(ρ), a risk-appetite bias (α), a social information bias (σ) and
frequency-dependent production bias (f ).
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Figure 1. Model schematic. Each timestep, naive agents had the opportunity to acquire knowledge about novel behaviour b from their associates. Acquisition was
conditioned on association and the frequencies that associates produced b, as well as a rate of social transmission, as defined by the transmission function Ti. If an
agent acquired b, it could then produce b using the sub-model of production. Production probabilities changed over time, depending on personal experience and
social information. Behavioural frequency information from the production sub-model then informed acquisition probabilities in the following timestep. (Online
version in colour.)
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First, agent i calculated the expected value (Ei,k(t)) for any
behaviour k in its repertoire using the value function [37]

Ei,kðtÞ ¼ rrkðt� 1Þ þ ð1� rÞEi,kðt� 1Þ: ð2:4Þ

The term rk(t− 1) described the reward obtained from behaviour
k in the last timestep: if behaviour k has been produced rk(t− 1) =
1, otherwise rk(t− 1) = 0. This assumption allowed for infor-
mation loss over time. In the first timestep, agents were
initialized with Ei,a(1) = 1. Once an agent acquired the novel
behaviour, Ei,b(t) = 0. For behaviour k, maxðEi,kÞ ¼ rk, 8i, mean-
ing expected values could never exceed the true reward. The
parameter ρ determined the importance of the most recently
received reward vis-à-vis previously experienced rewards.

In the second step, agent i converted its expected value from
the behaviours in its repertoire Zi into a probability using a soft-
max rule

Ii,kðtÞ ¼ expða�1Ei,kðtÞÞP
k[Zi

expða�1Ei,kðtÞÞ : ð2:5Þ

The parameter α controlled the sensitivity towards differ-
ences between expected values: low values resulted in an
almost deterministic choice of the highest expected value behav-
iour (risk-aversion), whereas high values led to choices almost
independent from expected values. Equation (2.5) assigned prob-
abilities to behaviours even when their expected value was 0,
providing the possibility of production without prior experience.

Next, agent i evaluated its social information by counting
how many times its associates had produced any of the beha-
viours in its repertoire within the memory window composed
of the last m timesteps. This sliding window m allowed agents
to forget social information over time, similar in function to
how agents were allowed to forget personal information when
non-chosen behaviours were updated with rk = 0 in equation
(2.4) above. The number of observations was then modulated
by the frequency-dependent production bias parameter f,
which determined the strength of frequency-dependent influence
on the agent

Si,kðtÞ ¼
PN

j¼1 ai,j
Pt

r¼t�m nk,jðrÞ
� � f

P
k[Zi

PN
j¼1 ai,j

Pt
r¼t�m nk,jðrÞ

� � f : ð2:6Þ

Agents only observed behaviours that were in their own
repertoire. If an agent did not know how to produce a behaviour,
its observation could not influence that agent’s choice in that
timestep. However, this information did influence the potential
acquisition of this behaviour as described in §2a.

Lastly, agent i combined its personally experienced rewards
and socially observed behaviours to generate probabilities of
producing the behaviours in its repertoire

Pi,kðtÞ ¼ ð1� sÞIi,kðtÞ þ sSi,kðtÞ, ð2:7Þ
where σ described the preference for individual and social infor-
mation. Values of σ close to 0 would almost neglect social
information while values close to 1 would almost neglect indi-
vidual information.
(c) Conditions
In order to understand how production rules influenced diffu-
sion dynamics, we explored diffusions across populations
under a variety of parameter settings, summarized in table 1.
Each combination of these parameters formed one constellation.
For each constellation, we ran 100 simulations.



Table 1. Summary of tested parameters for the production sub-model. Mathematical symbol, name, values tested and short description of these values.

name symbol values description of effect

social information bias σ
[

0:25
0:05
0:75

8<
:

9=
;

mostly personal information influences agents

personal and social information equally influence agents

mostly social information influences agents

freq. dependent production bias f
[

0:33
1
3

8<
:

9=
;

agents disproportionately weigh the minority behaviour

agents linearly weigh observed behaviours

agents disproportionately weigh the majority behaviour

memory window m
[

10
20
30

8<
:

9=
;

agents remember m timesteps of observed behaviours

recent experience bias ρ
[

0:01
0:10
0:99

8<
:

9=
;

agents learn slowly, preferring prior experience

agents learn quickly, preferring recent experience

risk-appetite α
[

0:5
1
2

8<
:

9=
;

agents are risk-adverse, seeking higher expected values

agents are risk-neutral, weighing expected values proportionally

agents are risk-tolerant, indifferent to expected values
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In §3a, we used the following parameter constellation as
reference:

s ¼ 0:5, f ¼ 1, m ¼ 10, r ¼ 0:1 and a ¼ 1: ð2:8Þ

We focused on results from the combinations of constella-
tions described by table 1, using a sensitivity analysis to
explore the effect of each parameter while holding all others at
reference. Intermediary and extended values of these parameters
were also evaluated (e.g. σ∈ {0.125, 0.375, 0.625, 0.875}),
although they showed no unexpected patterns and were thus
excluded from the paper for concision. The effect of ρ on the evol-
ution of expected values in equation (2.4) is nonlinear (i.e. the
difference in effect between ρ = 0.013 and ρ = 0.014 is magnified
compared with the difference in effect between ρ = 0.79 and
ρ = 0.80); thus we tested three different orders of magnitude,
rather than differences in linear magnitude. We also varied par-
ameters related to the acquisition sub-model (see electronic
supplementary material, text S2 for network structure, λb, s
and A values), but have excluded these from the main text, as
the effect of network structure and social transmission on diffu-
sion is a well-explored subject [19,54,55]. The baseline learning
rate was set to λb = 0.05, the social transmission rate was set to
s = 5. In order to isolate the effect of variation in production
rules on diffusion via social transmission, and eliminate any vari-
ation due to random innovation events, the asocial innovation
parameter was set to A = 0 for §3a. However, it is unrealistic to
expect that no independent innovation occurs in natural diffu-
sions. Thus, A = 1 in simulations used to test the performance
of inferential models (see §2e).

(d) Measurements
To describe the dynamics of the diffusion of variant b through
the population, we calculated three quantities: tempo, divergence
and delay. To quantify diffusion tempo, we recorded the time-
steps at which each agent acquired the novel behaviour and
first produced the novel behaviour. We also recorded behaviour-
al frequencies every timestep. From these data, we derived time-
to-diffusion (TTD), i.e. the time until the whole population had
acquired behaviour b, intervals between each acquisition event,
time-to-first-production (TTFP), i.e. the time until the whole
population had produced behaviour b at least once, vectors of
order of acquisition (oa), order of first-production (op), time of
acquisition (ta) and time of first-production (tp). Vectors oa and
op contained the position of each agent in the acquisition
sequence and first-production sequence, respectively. Vectors

ta and tp contained the time of acquisition and time of first-
production by each agent, respectively.

To quantify divergence in the orders of acquisition and
first-production, we calculated the mean Manhattan distance

dorder ¼ 1
N � 1

XN
i¼1

joaðiÞ � opðiÞj ð2:9Þ

representing the mean difference between acquisition and
first-production position in the population (excluding the first-
production of the seed agent, i.e. the agent at position 1; thus
N− 1, as oa(1) − op(1) = 0 per definition). Additionally, we
calculated the proportion of the population that obtained pro-
duction positions that differed from their acquisition positions.

To quantify the delay between the acquisition and first-
production timing, we used vectors ta and tp and calculated
the mean difference between the times of acquisition and first-
production

dtime ¼ 1
N

XN
i¼1

jtaðiÞ � tpðiÞj: ð2:10Þ

For each measurement, we report means and 92% percentile
intervals in brackets.

(e) Testing performance of NBDA and EWA on
generated data

Lastly, we explored how NBDA and EWAmight perform on data
generated by our model. NBDA assumes that the order of first-
production is equivalent to that of acquisition. Yet, when acqui-
sition was conditioned on production by other individuals (as in
our model) these orders could diverge. To test how this might
affect the inference of the underlying generative process (i.e.
social transmission or asocial innovation), we first created ‘ideal’
data generated using the pure NBDA dynamic with which we
expected NBDA to provide strong support for the correct genera-
tive process. We then created two datasets of more realistic data
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that violated NBDA’s assumption that orders of acquisition and
first-production were identical. To create ideal data, we recorded
time-of-acquisition data, generated by either asocial innovation
only (A = 1, s = 0), or social transmission (A = 1, s = 5) where the
transmission weight was wj,b(t) = 1 if associate j was knowledge-
able, otherwise 0, removing the influence of production on
transmission. To create realistic data, we recorded time-of-first-
production data, generated by either social transmission using
transmission weights as we have defined them (equation (2.3)),
or asocial innovation only. For each of these four scenarios, we
simulated 10 diffusions at each parameter constellation (table 1).

We then ran inferential TADAc NBDA models [16] on each
simulation’s data. For simulations with social transmission, the
seed agent was included as a demonstrator. For realistic data,
we included a transmission weight in the inferential models,
defined as a production rate of the novel behaviour for each
agent (total productions of b divided by timesteps knowledge-
able). Using recommended inferential steps, we ran both a
social and asocial TADAc models to determine support for
social transmission [8]. We compared corrected Akaike infor-
mation criterion (AICc) scores between the two models to
determine relative support for social or asocial innovation [8].
Support for social transmission was defined as ΔAICc > 0,
where ΔAICc =AICcasocial −AICcsocial. We reported the median
of all ΔAICcs per condition to get an idea of what the average
support for the generative process might be.

We used a similar strategy to evaluate the performance of
EWA analyses. We estimated only recent experience bias (ρ)
and social information bias (σ) under three scenarios: (1) homo-
geneous repertoires and no diffusion, (2) heterogeneous
repertoires with only social transmission (A = 0, s = 5) and (3) het-
erogeneous repertoires with only asocial innovation (A = 1, s = 0).
Scenario 1 was a proof of concept with ideal data generated by
using the pure EWA dynamic, and the EWA model was expected
to recover accurate estimates. Scenarios 2 and 3 explored how
EWA performed on data collected from populations with hetero-
geneous repertoires, when behaviours were actively diffusing or
being innovated. For each scenario, we performed 10 simulations
for each combination of ρ and σ values ({0.25, 0.5, 0.75} for both).
All other parameters were set to reference.

For scenario 1, we recorded behavioural productions for 300
timesteps to provide sufficient power. In scenarios 2 and 3, each
simulation ran for twice as long as its TTD (social transmission:
range 65−199; asocial innovation: range 89−235 timesteps), thus
recording equal numbers of observations during diffusion, and
after all agents acquired knowledge of the novel behaviour. We
then fitted inferential models to the production data from each
simulation from these three scenarios using Hamiltonian
Markov chain Monte Carlo (MCMC). Models were run using
five chains, 4000 iterations, with 1000 warm-up iterations, with
all estimates based on over 4000 effective samples from the pos-
terior (range: 4952–10916). All models were fitted using R v. 4.0.2
[56] with Stan v. 2.27 [57] via Rstan v. 2.21.2 [58]. Good model
convergence was confirmed from evaluating rank histograms
and ensuring parameters had Gelman–Rubin’s statistic
R̂ � 1:01 (range: 0.999–1.002) [59,60]. Additionally, we plotted
priors against the posteriors to assess how well the models ident-
ified parameters. For each parameter, we report mean and 92%
highest posterior density interval (HPDI), or the narrowest
interval containing 92% of posterior samples.
3. Results
Simulations with linked acquisition and production sub-
models generated the dynamics depicted in figure 2a. At
the reference parameter constellation (equation (2.8), hence-
forth reference), knowledge of the novel behaviour diffused
to all individuals in 54.22 [37.96, 76.28] timesteps (mean
TTD [92% PI]). The first-production curve lagged behind
the knowledge acquisition curve, with all agents producing
the novel behaviour at least once in 61.11 [44.96, 85.04] time-
steps (mean TTFP). Agents retained a higher expected value
for the established behaviour and still preferred its usage
by the time full diffusion was reached. However, the beha-
viours trended towards an equilibrium production ratio of
1 : 1, as both yielded equivalent rewards.

Importantly, production did not simply lag behind
knowledge acquisition—we observed divergences in the
ordering of these events throughout the simulations when
comparing the order of acquisition with the order of first-
production (figure 2b). Beyond the ‘seed’ agent, we found
large variation in these orders, with only 24.75% of agents
producing the behaviour in the same order as acquiring
knowledge of it (i.e. light diagonal pattern in figure 2b),
and a divergence score of dorder = 1.95 [1.13, 2.71]. This can
be interpreted as: after agent i acquired knowledge of the
novel behaviour, approximately 2 more agents acquired
knowledge of it before agent i first produced it. Simulations
obtained a mean delay score of dtime = 5.33 [3.46, 7.13], repre-
senting the amount of time that passed between an agent
acquiring a behaviour and producing it. We found that differ-
ent production parameter settings could lead to substantial
divergence between orders of acquisition and production.
In such cases, the observed order of first-productions did
not necessarily reflect the order of acquisition, and thus the
underlying network structure. When measuring the R2

value of both orders, we found that under the reference con-
stellation, R2 = 0.846, while under the constellation that
produced the most divergence, R2 = 0.678 (figure 2b,c). Diver-
gent orders could cause errors in NBDA inference, which we
return to in §3b.

(a) Production rules influenced tempo, divergence and
delay

Our model yielded valuable insights into how rules that
govern production choices influence diffusion dynamics.
A sensitivity analysis showed that changes to almost any
production parameter influenced diffusion dynamics, as
measured by tempo, divergence and delay (further explora-
tion of transmission parameters in electronic supplementary
material, text S2 and table S1). Below we describe how vary-
ing the way agents made decisions influenced diffusion
dynamics, detailed by parameter in table 2.

We first explored the effect of parameters that influenced
how social information was used in production decisions.
Aweak social information bias (σ) resulted in a faster diffusion
tempowith less divergence and delay comparedwith reference
(equation (2.8)). Conversely, a strong σ slowed diffusion (figure
3; see electronic supplementary material, figure S3 for all par-
ameters) and increased divergence and delay. This effect was
explained by the large increases in delay between acquisition
and production (dtime in table 2). When σ was strong, longer
delays were obtained early in the diffusion, and when σ was
weak, the delay remained consistent throughout the diffusion
(electronic supplementary material, figure S4A). Agents with
a weak σ were less influenced by the behaviour of associates,
elevating the probability of producing the novel behaviour
upon acquisition and consequently hastening its diffusion (elec-
tronic supplementary material, figure S5A).
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Figure 2. Acquisition and production dynamics throughout diffusion. Data presented from 100 simulations. (a) Average knowledge acquisition curve of novel behaviour
(black), first-production curve of the novel behaviour (grey), and behavioural frequency data of the established behaviour (light green) and the novel behaviour (dark green)
at reference setting. (b) Density plot comparing the order in which the novel behaviour entered an agent’s repertoire (x-axis) and the order in which that agent first produced
the novel behaviour (y-axis) at reference setting. Each count is one agent from one simulation. Measuring the order of first-production usually did not reflect the order of
acquisition, and only about 25% of all agents produced the novel behaviour in the same order that they acquired it. (c) Density plot for the parameter setting that obtained
the most divergence (83.2% divergent agents; σ = 0.25, f = 3, ρ = 0.99, a = 0.5, m = 10). (Online version in colour.)

Table 2. Summary of results. Mean, standard error and 92% percentile interval (PI) for time-to-diffusion, time-to-first-production, divergence of orders of
acquisition and first-production, and time delay between acquisition and first-production. The reference constellation of parameter values is given first, and rows
are arranged by model parameters in the order presented in the main text.

TTD TTFP divergence (dorder) delay (dtime)

value mean ± s.e. PI mean ± s.e. PI % divergent mean ± s.e. PI mean ± s.e. PI

reference constellation: σ = 0.5, f = 1, m = 10, ρ = 0.1, α = 1

54.22 ± 1.15 [37.96,76.28] 61.11 ± 1.16 [44.96,85.04] 75.25 1.95 ± 0.05 [1.13,2.71] 5.33 ± 0.11 [3.46,7.13]

social information bias (σ)

weak 41.18 ± 0.7 [30.96,55] 47.27 ± 0.75 [36.96,62.08] 71.17 1.82 ± 0.05 [0.78,2.78] 3.62 ± 0.07 [2.58,5.09]

medium reference

strong 82.86 ± 2.2 [56,124.2] 92.49 ± 2.18 [63,139.16] 77.33 2.17 ± 0.06 [1.39,3.39] 9.09 ± 0.19 [6.4,12.47]

conformity bias (χ)

anti-conformist bias 46 ± 1.01 [31,65] 50.39 ± 1.1 [33,71.08] 68.25 1.56 ± 0.05 [0.78,2.43] 3.56 ± 0.07 [2.5,5.08]

linear bias reference

conformist bias 59.83 ± 1.48 [39.92,92.04] 72.24 ± 1.65 [48,107.08] 75.83 2.17 ± 0.06 [1.13,3.57] 6.43 ± 0.14 [4.28,8.88]

memory (m)

10 reference

20 68.93 ± 1.44 [44,95.16] 76.45 ± 1.52 [50.92,107] 69.92 1.65 ± 0.05 [0.87,2.61] 5.57 ± 0.12 [3.62,7.52]

30 83 ± 1.52 [61.96,108.24] 90.91 ± 1.62 [68,121.04] 68.50 1.47 ± 0.04 [0.78,2.35] 5.97 ± 0.12 [4.11,8.3]

recent experience bias (ρ)

weak 56.63 ± 1.1 [40.96,75.04] 63.15 ± 1.11 [47,81.08] 72.92 1.9 ± 0.06 [1.12,2.96] 5.38 ± 0.12 [3.7,7.54]

medium reference

strong 50.26 ± 1.13 [34.96,69.12] 56.72 ± 1.16 [37.96,78] 76.29 2.09 ± 0.05 [1.38,3.13] 5.14 ± 0.11 [3.54,7.17]

risk-appetite (α)

risk-tolerant 43.25 ± 0.89 [30.96,62.04] 47.84 ± 0.91 [35,68.04] 70.96 1.71 ± 0.05 [0.95,2.54] 3.56 ± 0.07 [2.46,4.88]

risk-neutral reference

risk-averse 99.48 ± 3.05 [57,164.04] 112.26 ± 3.07 [69.96,177] 79.29 2.41 ± 0.07 [1.3,3.57] 11.62 ± 0.22 [7.74,15.17]
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We then explored the frequency-dependent production
bias. Compared with reference, production conformity (f =
3) increased mean tempo, divergence and delay, while anti-
conformity resulted in the opposite effects (table 2; electronic
supplementary material, figure S3). Conformity consistently
increased delay relative to intervals between acquisition
events throughout diffusion (electronic supplementary
material, figure S4B). Conformity amplified the social influ-
ence of naive associates, causing agents to prefer the
established behaviour longer after acquisition (electronic
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supplementary material, figure S5B). This delayed the learn-
ing of the expected value of the novel behaviour, lowered
production rates, and thus lowered the probability of further
transmission.

Finally, relevant for both production and acquisition sub-
models was the memory window (m). Increasing agents’
memory slowed diffusion, yet resulted in less overall diver-
gence (table 2; electronic supplementary material, figure S3B).
This was because larger memory slightly increased delays,
yet generated more consistent delay intervals throughout
diffusion, while increasing intervals between acquisition
events (electronic supplementary material, figure S4C). With a
large memory, there was greater cultural inertia, as any single
observation of the novel behaviour meant less to an agent,
as it was outweighed by memories of many observations of
the established behaviour (electronic supplementary material,
figure S5C).

Next, we considered parameters relevant for personal
experience. A strong bias towards recent experience (ρ)
resulted in a faster tempo than reference, and reduced diver-
gence and delay (table 2; electronic supplementary material,
figure S3C). Larger ρ values hastened learning of the value
of the novel behaviour, once acquired (electronic supplemen-
tary material, figure S5D). This made the novel behaviour
more competitive against the established behaviour, as
agents would be as likely to produce one as the other once
their expected values were similar.
Finally, risk-averse agents (α = 0.5) greatly slowed tempo,
increased divergence, and nearly doubled delay (table 2;
electronic supplementary material, figure S3D), while risk-
tolerant agents (α = 2) showed the reverse effects. In
populations of risk-averse agents, delay decreased as the
diffusion progressed as the productions of the novel behav-
iour by a growing number of knowledgeable agents offset
the effect of risk-aversion (electronic supplementary material,
figure S4E). Risk-averse agents, more sensitive to differences
in value, preferred the established behaviour for longer
periods after acquisition. Past experience had built up the
expected value of the established behaviour, which exceeded
that of the novel behaviour (electronic supplementary
material, figure S5E). This decreased the competitiveness of
the novel behaviour against the established behaviour.

In summary, changes in production rules that slowed
diffusion (e.g. strong social information bias, conformity,
risk-aversion) generally did so by decreasing the likelihood
of production of the novel behaviour by newly knowledgeable
agents. Any decrease in the likelihood of productionwasmag-
nified by a feedback loop of reinforcement learning: lack of
personal experience led to lower expectations of the novel
behaviour, which encouraged the continued production of
the established behaviour. Production rules that hastened
diffusion (e.g. anti-conformity, strong bias towards recent
experience and risk-tolerance) did so by increasing the relative
competitiveness of the novel behaviour, once acquired.
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(b) The performance of inferential models when
acquisition and production were linked

Continuous time-of-acquisition diffusion NBDA analyses of
‘ideal’ time-of-acquisition data yielded support for social
transmission over asocial innovation as the acquisition mech-
anism for all social transmission simulations (median support
ΔAICc: 20.5, figure 4a).

Under asocial innovation only, we found that support
was ambivalent between asocial and social models
(median ΔAICc: −2.38). The inferential models estimated the
rate of social transmission close to that which had generated
the data (electronic supplementary material, figures S6A,B).
There was a trade-off between estimates for social trans-
mission rate (̂s) and base transmission rate (l̂0), as
simulation variance led to differences in how strictly the be-
haviour followed the network. In summary, these results
mirrored previous results regarding the inferential properties
of NBDA applied to acquisition data.

We then tested TADAc on more realistic first-production
data, generated through linking the sub-models described
in §2a and §2b. Generally, TADAc had more difficulty
inferring the true acquisition mechanism. Out of 2430 simu-
lations where social transmission was the true acquisition
mechanism, the models estimated 102 false negatives (sup-
port for asocial innovation), and the distribution of support
shifted towards asocial support (median ΔAICc: 8.65, figure
4a). The strongest drivers of false negatives were production
conformity, present in 86% of all false negatives, followed
by a strong social information bias and risk aversion, both
present in 61% (electronic supplementary material, table
S2). Out of 2430 simulations of asocial innovation, the
models estimated 1318 false positives supporting social trans-
mission instead, and the mean support shifted above 0
(median ΔAICc: 0.41). Strong social information bias and
risk-aversion all increased the prevalence of false positives
(electronic supplementary material, table S2). False support,
positive or negative, was correlated with increased delays
between acquisition and production, as well as more diver-
gence between the order of acquisition and the order of
first-production (figure 4b).

‘Ideal’ data, where all agents had the same repertoire over
time, yielded point estimates of all parameters that were close
to the true values used to generate the data. We then inferred
parameter values from simulations where the novel behav-
iour diffused via social transmission, and again where the
novel behaviour was asocially innovated. Summary statistics
of parameter posteriors from all three conditions are summar-
ized in electronic supplementary material, table S3, and
visualized per condition in electronic supplementary
material, figure S7. In simulations of heterogeneous reper-
toires with social transmission or asocial innovation, social
information bias (ŝ) was overestimated, with the true value
not contained in the 92% HPDI for 179 of 180 simulations
(electronic supplementary material, table S4). Recent experi-
ence bias (r̂) was overestimated and the true value was not
contained in the 92% HPDI in most cases (105/180 estimates).
These results show that heterogeneous knowledge states
during diffusions negatively affect the ability of EWA to
infer learning parameters. In particular, the overestimation
of ŝ was an artefact of agents appearing to be influenced
by social information, simply because their knowledge state
was constrained to the established behaviour.
4. Discussion
Understanding the relationship between psychological learn-
ing rules and population-level patterns is a long-standing
research topic in cultural evolution [14,41,61,62]. We contrib-
ute to this understanding by underlining the difference
between learning rules that influence production contra acqui-
sition. In doing so, we have uncovered new predictions for
how changes to learning rules affect cultural diffusion
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dynamics by altering the relative competitiveness of novel
behaviours. Our work highlights how learning during behav-
ioural maintenance, a type of internal cultural selection,
[11,63,64], should be considered another dimension that oper-
ates alongside external selection between individuals via
transmission biases [65–67] and transformation of behaviour
via cognitive biases [68,69]. Not only does our model help
to clarify discussions of strategies and biases, it has
consequences for current practices in the field.

The case study of selective attrition in passerine birdsong
illustrates why differentiating between acquisition and pro-
duction matters [70–74]. Juvenile birds acquire song
components from adult conspecifics, with an age-dependent
transmission bias. However, as an adult, males preferentially
produce the most frequently heard components, akin to a pro-
duction conformity bias. This selective attribution then has
consequences for repertoire size and composition (species
with a fixed acquisition period [70–72]; open-ended learners
[73,74]). Social learning strategies that occur either during
acquisition or during production have often been treated as
interchangeable [12–14]; our model facilitates clear identifi-
cation of where strategies or biases occur. For example,
conformity could be a transmission bias, such as when naive
great tits disproportionately acquire the majority-produced
solution to a foraging puzzle [24], or production bias, such
as when chimpanzees switch preference to match the group
[75]. Our model allows for the explicit definition of combi-
nations of biases acting on either process. Prior models have
focused on the evolution of transmission biases [61,76–79],
for example, finding that conformist transmission should
generally out-compete payoff-biased transmission [79]. We
suggest that predictions might change if models allow for sep-
arate acquisition and production biases, as this creates dual
optimization problems of repertoire and decision-making.

Our model assumed that in order to produce a behaviour,
an individual must know that it can produce that behaviour,
although it is not always easy to draw a line between acqui-
sition and production. For example, many traits, including
birdsong, are acquired through repeated observation and
practice. However, our sub-model of acquisition was ambiva-
lent towards the precise mechanism of how individuals
acquire this knowledge [8], and could represent indirect
social learning (e.g. enhancement) or more direct social learn-
ing (e.g. observational conditioning) [5]. Our model could
therefore be interpreted as accounting for acquisition via
practice, assuming that practice productions did not influence
associates or the expected values of the practising agent. Our
model could be further extended by implementing more
complicated acquisition mechanisms (e.g. complex contagion
[80]) or a function to define how rewards dynamically change
with experience.

Our findings also have consequences for the way we ana-
lyse real-world data. We found that NBDA inference was less
accurate in populations that were risk-averse, or highly sensi-
tive to social information owing to increased divergence
between orders of acquisition and production. Therefore,
NBDA is perhaps best suited to larger, highly modular associ-
ation networks, as longer intervals between acquisition events
between clusters of nodes would help minimize divergence.
While we did not conduct a thorough exploration of network
features, the results from manipulating network architecture
presented in electronic supplementary material, text S2 support
our expectation that networks with particularly high local
clustering and longer path lengths, characteristic of modular
networks, can reduce the divergence between acquisition and
production. In particular, ring lattice networks resulted in
longer diffusions in which acquisition and production were
less divergent. The influence of network size would further
depend on how connectivity scales alongside size. All of these
features merit future exploration.

We also demonstrated that social information bias in
EWA measures only social influence, and cannot distinguish
between social or asocial acquisition of novel behaviour.
Since the label of ’social learning’ has been given to both
social transmission and social influence, this could lead
those less familiar with EWA to misinterpret this parameter
as evidence for social transmission. EWA might be of greater
use when one can be relatively certain of homogeneous
knowledge states. This includes the use of (1) experimental
designs in which all choices are presented in a decision
environment, (2) closed, rather than open-ended, tasks that
constrain knowledge states and are less susceptible to mor-
phological constraints, or (3) smaller social groups, where
association is homogeneous and diffusion might occur
rapidly relative to production rate. Finally, a recent study
showed that a value-shaping reinforcement learning model
more accurately reflected social information use in humans,
compared with decision-biasing (as in EWA) [36]. This
suggests a possibility for future improvement of the inferen-
tial EWA framework. Our study did not directly compare
EWA with a value-shaping sub-model of production. How-
ever, as long as there is a mechanism that creates variation
in the expected value of novel behaviour, we should still
find an effect of production rules on diffusion dynamics.

In summary, we have shown how individual production
decisions influence cultural diffusion dynamics at the
population level. We rendered a clear distinction between
acquisition and expression of behaviour, and thus social
learning and social influence. We argue this distinction
improves definitions of social learning biases, and highlights
the important role of reinforcement learning in explaining
patterns of cultural change. Finally, our work encourages
further development of methods to account for divergences
between acquisition and production, which may be much
more commonplace than previously acknowledged.
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