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Abstract

The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of
neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor
heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already
contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient
samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires
analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that
identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic
mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at
disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify
the spatial origins of cells resisting therapy.
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Introduction

Cancer is a disease largely driven by accumulated somatic

mutations. Many of these are clonal mutations and occur in the

founding cell to initiate disease. These become uniformly present

in the tumor by propagating to that cell’s progeny during clonal

expansion. Others are subclonal events, which occur in an existing

neoplastic cell and are then passed on only to the subpopulation of

cells derived from it. The result of this accumulation of mutations

is that tumors are composed of a heterogeneous mixture of cells.

These subpopulations compete and evolve [1–3], and the

mutations ‘‘captured’’ [4] in subsets of cells during this evolution

serve as a genetic signature of the resulting (sub)clones.

Recently, high resolution glimpses of this clonal heterogeneity

have been provided by next-generation sequencing [4–14], SNP

array [6,10,13,15], and array comparative genomic hybridization

[16,17] platforms. Single-cell sequencing [16,18–20] may eventu-

ally address this heterogeneity directly without the confounding

effects of mixing cell types, but technical challenges, such as allele

dropout [21], remain. There are also pragmatic concerns about

the large number of cells that must be sequenced to establish the

heterogeneity of a given sample. The emerging picture from these

studies, across a diversity of solid [6,8,9,11,13,16] and hemato-

logical [4,5,7,10,12,14,15,17,22] disorders, is that tumors are both

spatially [9,13,16] and temporally [4–17] heterogeneous and are

frequently comprised of a single founding clone and several

subclones.

Increasing evidence suggests that intra-tumor heterogeneity and

clonal architecture have clinical implications [3,23,24] and

contribute to therapy resistance [25]. Several studies have linked

the presence of subclones to poor clinical outcome, as in chronic

lymphocytic leukemia (CLL) [10], or to increased risk of

progression to malignancy, as in Barrett’s esophagus [26] and

multiple myeloma (MM) [17]. Subclonal mutations can drive

resistance as well, as shown in EGFR-mutant non-small cell lung

cancers [27,28]. Studies in chronic myeloid leukemia have also

demonstrated that drug-resistant subclones may harbor aggressive

mutations that are restrained by more fit, but indolent clones [2,3].

In these cases, therapeutic application of imatinib leads to

competitive release of BCR-ABL mutant subclones, which renders

the therapy ineffective [3,29]. Thus, designing effective second line

therapies requires a deep understanding of both a cancer’s
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underlying mutations and how it’s clonal structure evolves in

response to treatment.

Existing methods [6,10,11,22,30–32] have been useful for

inferring clonal architecture and its consequences, e.g., that

putative driver mutations in SF3B1 and TP53 in CLL [10] and in

PIK3CA and PTEN in triple-negative breast cancer [11] may

arise during late-emerging, subclonal diversification [6] rather

than as founding lesions. Recent results suggest that accurately

describing the subclonal composition and evolution of tumors

requires sampling cancer cells across multiple time points or

spatially-distinct regions [3,23,25]. Current studies of distant

metastases and of spatial heterogeneity are collecting as many as

six to twenty samples [9,13,16,18]. The scale of these ambitious

studies will challenge existing methods. For example, histogram-

based approaches to representing clonal markers [10,31] are

attractive in avoiding model assumptions in low dimensions (i.e.,

with few samples), but with many samples will suffer from

exponential computational complexity. Several approaches

[6,10,11,22,30,31] leverage Markov chain Monte Carlo (MCMC)

techniques, but these, too, are computationally demanding and

rely on assumptions about chain convergence.

Most existing methods [6,10,22,31] inferring clonality from

copy number alterations (CNAs) avoid additional computational

overhead by making the simplifying assumption that the tumor

sample is ‘‘monogenomic’’ [31] and does not harbor subclonal

copy-number events. Contrary to their assumptions, these

methods have detected such subclonal events in CLL [10], though

without being able to correct for them. Similar subclonal events

have been detected in MM (Ref. [33] and B.S.W., R.V., and

M.H.T, data not shown). These methods introduce uncertainty,

through the probabilistic inference of allele-specific copy numbers,

and error, by ignoring subclonal CNAs. A recent approach [32]

does generalize to subclonal CNAs, but also suffers from

computational inefficiencies when extended beyond the simple

case of clonal CNAs. A method which could avoid the uncertainty

of deconvolving subclonal CNAs and operated with significantly

lower computational demands would benefit studies aiming to

understand the evolution of cancer.

To address these needs, we introduce SciClone, a method for

estimating the number and content of subclones across one or

many samples. It focuses primarily on variants in copy-number

neutral, loss of heterozygosity (LOH)-free portions of the genome,

which allows for the highest-confidence quantification of variant

allele frequencies (VAF) and inference of clonality. As with other

tools [6,11,22,30], regions of CNA and LOH are provided as

inputs after having been inferred from whole-exome sequencing

(WES, e.g., via ASCAT [22,34], cn.MOPS [35–37], or VarScan 2

[38]), whole-genome sequencing (WGS, e.g., via HMMcopy/

APOLLOH [11,39] or VarScan 2 [38]), or SNP arrays (e.g., via

ASCAT [6,22,34]). SNVs of sufficient depth are provided by WES

or first discovered by WGS and subsequently deeply sequenced in

a targeted fashion. The approach is not limited to SNVs, but is

amenable to any event that can be described as a frequency. In

particular, we demonstrate the integration of copy number events

and discuss how copy-altered VAFs could be accommodated.

Computational efficiency is achieved by clustering the VAFs

using a variational Bayesian mixture model [40] (VBMM), which

differs substantially from the Dirichlet process models previously

used to infer subclones [6,10,11,22,30,31]. VBMMs similarly

automatically infer the number of clusters and provide a

probabilistic interpretation of clustering, but their deterministic

nature allows them to scale to high dimension, where they enjoy

efficiency advantages [40] over stochastic MCMC techniques

employed by existing clonality detection methods [6,10,11,

22,30,31]. Further, the variational Bayesian approach provides a

computational termination condition more straightforward than

monitoring techniques [41] required of MCMC. Though VBMMs

are heuristic, and their approximations occasionally result in sub-

optimal solutions [42], we demonstrate their effectiveness here

through simulation and application to several real tumor data sets.

In particular, SciClone advances our preliminary [14] variational

Bayesian beta mixture modeling approach for clustering VAFs in a

single sample by: (1) applying the standard technique of factorizing

the density over samples [43,44] to extend applicability to an

arbitrary number of samples, (2) replacing our previous ad hoc
notion of cluster overlap with a quantitative measure [45,46], (3)

leveraging the probabilistic nature of VBMMs to quantify a

variant’s likelihood of belonging to a cluster via a p-value, and (4)

offering alternative binomial and Gaussian mixture models.

We demonstrate SciClone by inferring low-frequency subclones

from a single MM sample and by quantitatively assessing the

clonality of driver mutations in (potentially noisy) WES-derived

data. We extend this approach to accommodate multiple samples

and apply it to track clonal evolution of an acute myeloid leukemia

(AML) tumor to relapse in response to therapy. As a further

example of SciClone’s scalability and utility in correlating

mutations across samples, we examine spatial heterogeneity and

aromatase-inhibitor resistance within three samples from a single

breast cancer patient. In both the AML and breast cancer data

sets, our analysis reveals subclones present in the primary tumor

but not discernible from a single primary tumor sample. This

reinforces the necessity of analyzing multiple patient-derived

tumor samples to elucidate the full complexity of a cancer’s

heterogeneity.

The SciClone package is available at http://github.com/

genome/sciclone.

Results

Mixture modeling objectively identifies subclones
Many tumors are highly heterogeneous and visualizations of

somatic VAFs reveal high-density aggregations that correspond to

Author Summary

Sequencing the genomic DNA of cancers has revealed that
tumors are not homogeneous. As a tumor grows, new
mutations accumulate in individual cells, and as these cells
replicate, the mutations are passed on to their offspring,
which comprise only a portion of the tumor when it is
sampled. We present a method for identifying the fraction
of cells containing specific mutations, clustering them into
subclonal populations, and tracking the changes in these
subclones. This allows us to follow the clonal evolution of
cancers as they respond to chemotherapy or develop
therapy resistance, processes which may radically alter the
subclonal composition of a tumor. It also gives us insight
into the spatial organization of tumors, and we show that
multiple biopsies from a single breast cancer may harbor
different subclones that respond differently to treatment.
Finally, we show that sequencing multiple samples from a
patient’s tumor is often critical, as it reveals cryptic
subclones that cannot be discerned from only one sample.
This is the first tool that can efficiently leverage multiple
samples to identify these as distinct subpopulations of
cells, thus contributing to understanding the biology of
the tumor and influencing clinical decisions about therapy.

SciClone: Detecting Subclones from Multiple Tumors
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specific subpopulations of cells (Fig. 1). To test our ability to detect

and segregate these clusters, we used 2,018 validated, deep-

sequenced (median depth 188x), genome-wide somatic SNVs from

a primary MM tumor (M.H.T., et al., in preparation). These

formed a high density region near 50% VAF, as expected of

heterozygous SNVs in the founding clone of a nearly pure tumor

sample (Figs. 1a and c). The actual average VAF of this founding

clone is slightly less (46.1%), reflecting a small amount of normal

cell admixture and a tumor purity r tumor of 0.922. Lower VAFs

correspond to subclone-specific mutations that arose later in the

tumor’s expansion; a cluster of such VAFs thus represents a

subclonal population, whose cells contain all of the founding clone

mutations, as well as these subclonal mutations.

This tumor is hyperdiploid with characteristic trisomies of

chromosomes 3, 5, 7, 9, 11, 15, 19, and 21. Founding clone

mutations in these (and other) copy number altered regions are

shifted in a predictable pattern, with a doubling of VAFs in regions of

single-copy deletion where only the variant allele remains (Fig. 1b). In

regions of single-copy amplification, mutations group near the

expected frequency of * 31% where the wild-type allele is amplified

(i.e., ,1 variant allele/3 total alleles) or * 62% when the mutant

allele is amplified (i.e., * 2 variant alleles/3 total alleles; Fig. 1d). A

more careful calculation that incorporates the tumor purity

r tumor~ 0:922 gives an expected frequency of the mutant-amplified

cluster, 100 | 2r tumor= 3r tumorz 2 1 { r tumorð Þ½ � & 62% ,

very close to the observed frequency of 63%. The same holds for the

wild-type-amplified cluster.

In this patient, these wild-type amplified SNVs occur at similar

VAFs to subclonal events that are copy number neutral (red circles

in Fig 1c). Disambiguating the two would require inference of

Figure 1. Inferring subclonal architecture objectively in multiple myeloma. (a) Kernel density plots of VAFs across regions with copy
number one, two, or three, posterior predictive densities summed over all clusters for copy number neutral variants, and posterior predictive
densities for each cluster/component. (b-d) VAFs plotted versus read depth for each of the three copy number regions. (c) Three mutation clusters
(green, dark orange, and blue) were detected using variants from copy number neutral segments. (d) Two clusters centered at VAF 31% and 62%
were detected from variants in copy number three segments; they likely result from single-copy amplification of the wild-type or the mutant allele of
mutations in the founding clone.
doi:10.1371/journal.pcbi.1003665.g001
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allele- (and subclone-) specific copy number profiles, with its

attendant uncertainty. To confirm that the two cases are in fact

distinct and not an artifact of inaccurate copy number calls, we

verified that none of the subclonal event VAFs in putative copy-

number neutral regions reside instead on trisomic chromosomes.

Further, they are not restricted to one or a few chromosomes,

whose amplification or deletion might not have been detected,

thus leading to apparent subclonal events.

To obtain a more objective view of this sample’s clonal

architecture, we identified low-frequency subclones by clustering

the VAFs from copy number neutral, LOH-free, non-repetitive

regions of the genome using SciClone, which uses an approach

based on variational Bayesian beta mixture modeling [43,44,47].

The method automatically infers the optimal number of clusters,

based on an initial overestimation of their expected number (ten,

unless specified otherwise). In this MM sample, SciClone detected

three clusters (Fig. 1): the first with average VAF of 46.1%, and

two lower-frequency clusters with average VAFs of 32.0% and

11.9% (Fig. 1). Each cluster is represented by a posterior

predictive density (see Materials and Methods), which provides

the probability of a VAF given the observed data (and subsequent

model fit). These densities probabilistically define boundaries

between clusters, including the visually ambiguous separation

between the highest-frequency cluster and the cluster with average

VAF of 32.0%.

As a comparison for our results, we applied an MCMC method,

PyClone [11,30], to the same variants in copy-number neutral,

LOH-free regions. PyClone recapitulated the presence of the

minor clusters, though with increased computational demands

(Table S1). We tested PyClone’s ability to integrate copy-number

altered SNVs expected to be in the founding clone and found that

it often assigned these sites to independent clusters.

As a second point of comparison, we applied THetA [32], a

method that infers clonal architecture based on copy number

events alone. For reasons of computational complexity, we

applied it to a limited number of segments with representative

copy number states. THetA detected clonal amplifications that

occurred in 89.8% of the cells (44.9% VAF) and a subclonal

deletion that occurred in 54.1% of the cells (27.0% VAF). We

integrated these data and SciClone clustering of all CNA and

SNV VAFs revealed that the THetA-inferred CNA VAFs support

the presence of subclones originally inferred from SNVs alone

(Fig. S1).

In some samples, ordering of subclonal VAFs may reveal the

clonal phylogeny of the tumor [48]. However, in this sample, the

data are insufficient to distinguish between a branched phylogeny,

in which the two subclones arose from independent cells within the

founding clone, and a linear phylogeny, where the lower VAF

subclone is descended from the higher VAF subclone. The latter

case implies that all mutations in the higher VAF subclone are also

present in the lower VAF subclone, as are all founding clone

mutations.

Bayesian modeling quantifies the (un)certainty of
mutation clonality

Using WES to both discover variants and obtain deep read

counts for defining VAFs may be an attractive, direct approach to

clonality analysis [10], as it avoids the additional time and expense

of WGS followed by targeted sequencing. However, while WES

data captures the coding variants likely driving disease progression,

their number may be insufficient to reliably infer clonal

architecture, particularly for cancers with relatively low somatic

mutation rates. To begin to address these considerations, we

applied SciClone to whole-exome sequenced breast [49] and

endometrioid carcinoma [50] cancer samples from The Cancer

Genome Atlas (TCGA) project. To obtain a sufficient number of

variants, we relaxed the minimum depth of coverage requirement

to 50x, resulting in 29 copy-number neutral variants from the

breast sample and 53 from the endometrial sample. The breast

tumor has a high-VAF cluster corresponding to its founding clone

as well as a subclonal cluster, with most variants occurring in the

latter (Fig. 2a). The endometrial sample is more complex, with

both a high-VAF cluster and three tightly-grouped and poorly-

separated subclonal clusters (Fig. 2b).

Drawing inferences about mutation clonality (e.g., assessing

whether mutations generally occur in the founding clone and

hence are likely to be early, disease-initiating events [14] or

attempting to correlate subclonal mutations with clinical outcome

[10]) requires accurately and confidently assigning individual

VAFs to clusters. Our variational Bayesian approach does so via

‘‘fuzzy’’ cluster assignments, which describe the (conditional,

posterior) probability that a VAF belongs to a particular cluster

(given that it belongs to one of them). In particular, the likely

driver PIK3CA mutations in the endometrial sample are assigned

confidently to the highest-frequency cluster one, with probabilities

of 93.1% for the lower VAF variant and 97.1% for the higher. In

contrast, the potential driver ATM mutation is nearly as likely to

belong to cluster one (42.1% probability) as to the lower VAF

cluster two (57.8% probability) to which it was ‘‘assigned’’ (i.e.,

that which maximized its posterior probability). Given the

relatively few SNVs, this ambiguous assignment indicates that

the data are insufficient to accurately define the clonal structure

and that the separation between cluster one and cluster two may

be an artifact of sparse data. This uncertainty might be resolved by

increased depth of sequencing or by additional clonal markers

(e.g., as discovered by WGS). Nevertheless, the strong assignments

of the PIK3CA mutations to a cluster with average VAF near 50%

suggest that, despite the relatively high level of noise in the data,

they belong to the founding clone.

Longitudinal studies refine subclonal architecture and
reveal mechanisms of resistance

Tumors evolve in response to treatment, both through loss of

specific mutations and acquisition of new ones. Understanding this

process in the context of a tumor’s clonal architecture is critically

important in defining mechanisms of resistance and in informing

therapeutic decisions. To better understand mechanisms of

therapy resistance, we extended our method to accommodate

multiple samples and applied it (Fig. 3) to samples from a primary

AML tumor and post-treatment relapse occurring 26 months after

chemotherapy [5]. These primary and relapse tumors were

initially sequenced to depths of 26.7x and 31.5x, respectively,

with subsequent capture validation providing deep read counts for

all discovered variants (median depth: 753x). All variants were

analyzed, as no CNAs are present in either sample.

Analysis of the primary tumor sample in isolation (Fig. 3c)

suggests a simple organization consisting of a single subclone and a

founding clone containing an IDH2 R140L mutation. Mutations

in this residue may play a role in oncogenesis, given their

recurrence in AML [51] and resulting neomorphic enzymatic

activity [52]. Hence, this clonal mutation is an attractive target for

small molecule inhibitors, such as those reactive against IDH2
R140Q [53]. However, simultaneous analysis of the relapse

genome further dissects the apparently homogeneous highest-

frequency cluster harboring IDH2 R140L into three distinct

subpopulations of cells (Fig. 3a): one that is effectively eliminated

by chemotherapy (cluster three, average relapse VAF v 0:5% ), a

second diminished by treatment (cluster two, average relapse VAF

SciClone: Detecting Subclones from Multiple Tumors
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11.6%), and a third largely unaffected by treatment (cluster one,

average relapse VAF 41.3%). As further evidence of their high

degree of overlap in the tumor sample, their respective average

VAFs in the tumor are 42.7%, 43.1%, and 44.9%. The additional

resolution provided by the relapse sample distinguishes these

subpopulations to expose a more complex clonal architecture

(Fig. 3d) and indicates that the IDH2 R140L mutation in cluster

two is subclonal. Thus, targeting it therapeutically would be

unlikely to eradicate the founding clone. We do observe that the

subclonal mutations in cluster five were eliminated by treatment,

suggesting that it carried a lower proclivity for resistance than the

surviving clones.

Remarkably, there is a second, independent IDH2 mutation

(R140W) in the relapse sample. But, as above, defining its clonality

from this sample alone (Fig. 3b) is confounded by an inability to

associate its VAF (32.8%) unambiguously with either the founding

clone or a subclone. This uncertainty is resolved through

multidimensional analysis that incorporates the tumor sample

and places the mutation in cluster four. Mutations within this

cluster, including IDH2 (R140W), were either present in the

primary tumor below the level of detection or are new mutations,

possibly induced by cytotoxic chemotherapy [5]. In either case,

they are potential drivers of disease progression.

Given the clonal complexity of this sample, we next asked how

many variants were required to capture this complexity and

whether we were likely to have missed additional complexity. To

address these concerns, we randomly selected a subset of the

original variants and performed clustering. The number of clusters

inferred as a function of the number of variants analyzed is fairly

constant for w 200 variants (Fig. 4a), whereas it drops precipi-

tously for v 100 variants. As sequencing detected a total number

of variants within the flat regime of this curve, we can be confident

that no subclones with a higher VAF than the most infrequent

cluster identified (average VAF ,12%) were missed. Further, this

suggests that ,200 variants would have been sufficient to reveal

this sample’s clonal architecture. To assess the sensitivity of our

approach in inferring the separation of clusters, we performed one-

dimensional analysis of VAFs from relapse sample clusters one and

two (Fig. 3) after varying their inter-cluster separation (Fig. 4b).

While the results are sample-dependent, they indicate that clusters

can be reliably distinguished if they lie greater than ,7% away

from one another.

To ensure that the inferred number and composition of clones

were not overly sensitive to our computational method, we varied

both the number of initial clusters and the clustering approach

itself. Consensus clustering indicated that the (subjectively) correct

number of clusters (five) was inferred by the variational Bayesian

beta mixture modeling for a range of initial number of clusters

from six to 15 (data not shown). We next used SciClone to cluster

using a variational Bayesian binomial mixture model and a

previously-published [40,54] variational Bayesian Gaussian mix-

ture model (see Text S1). Consensus clustering indicates that the

results are stable for the majority of variants as both the number of

initial clusters and the method (beta, binomial, or Gaussian) are

varied (Fig. 4c). The few variants that clustered differently between

methods (Fig. S2) were situated near cluster boundaries or between

clusters. A similar effect was seen when clustering the data with

PyClone (Table S1), though in this case variants along cluster

boundaries tended to coalesce into independent clusters (clusters

six and eight in Fig. S3): PyClone’s default hyperparameter

settings lead it to overdissect the founding clone. After increasing

the number of iterations from 10,000 (with a burn-in of 1,000

iterations) to 100,000 iterations (with a burn-in of 10,000

iterations), PyClone results were even more similar to those

obtained with SciClone, but the former still split the highest-VAF

cluster into two (data not shown). Despite these differences, the

results are largely consistent between SciClone and PyClone and

we have increased confidence in variants that are similarly

assigned by both approaches.

Multiple biopsies reveal intratumoral heterogeneity and
impact of treatment

Spatial heterogeneity complicates the analysis of solid tumors, as

distinct regions of a tumor may harbor different subclonal

populations [9,13,16]. Assaying multiple regions of heterogeneous

tumors should assist in uncovering the full spectrum of mutations

and subclones present in a tumor and help identify the spatial

origins of subclones that give rise to therapy resistance. To

investigate this effect, we analyzed two pre-treatment biopsies from

the same breast tumor and added a temporal dimension by

Figure 2. Overcoming uncertainty in sparse exome-sequencing data to determine clonal structure and mutation clonality. (a) Breast
cancer sample with well-defined clones. (b) Endometrial cancer sample with overlapping clusters. PIK3CA mutations are strongly associated with the
dominant clone (posterior probabilities w 93%), whereas the clonal context of an ATM mutation is more ambiguous (57.8%).
doi:10.1371/journal.pcbi.1003665.g002

SciClone: Detecting Subclones from Multiple Tumors
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examining a single sample from the tumor collected 16 weeks after

aromatase-inhibitor (AI) therapy. Mutations in the three samples

had median coverage of 130.5x from deep capture sequencing.

Three-dimensional clustering with SciClone revealed five

distinct groups of mutations and a fairly low purity, resulting in

reduced VAFs in all samples (Fig. 5, Movie S1). Differences

between the two pre-treatment biopsies were captured in clusters

four and five, containing region-specific mutations. Cluster two

cannot be identified from pre-treatment tumor one alone, but the

second biopsy reveals it as a distinct subpopulation of cells with

higher VAF in the first biopsy (36.03% vs. 8.13%). The effect of AI

therapy is revealed by inclusion of the post-treatment sample, in

which clusters two and four are eliminated. These likely represent

AI-responsive subpopulations of cells, though additional spatial

heterogeneity leading to their apparent removal cannot be

discounted. Cluster five contains mutations specific to the second

biopsy; while some of the cells harboring them expanded in the

post-treatment sample, others appear to have been eradicated

completely. The heterogeneity in response observed in this cluster

suggests that it actually encapsulates several distinct, but overlap-

ping subclonal populations that occur at similar VAFs in the pre-

treatment biopsy and are difficult to separate without additional

data.

Application of PyClone to these data (Table S1, Fig. S4) reveals

several significant differences. While it infers two distinct clusters

from the heterogeneous cluster five, it also partitions variants in

the founding clone into two clusters. This separation is likely a

clustering artifact, since (1) the two clusters are merged when all of

the data (in copy-altered and -neutral regions) are clustered using

34,000 iterations (data not shown) and (2) the presence of two

large, independent clusters comprising * 70% of the cellular

population each is biologically unreasonable. The discordance

between methods suggests that the limited number of variants

affected require special attention.

Figure 3. Refining subclonal architecture from longitudinal analysis of tumor/relapse pair in acute myeloid leukemia (AML). Two-
dimensional analysis of tumor/relapse sample (a) dissects clusters one and four, which overlap in the relapse sample (b), and one, two, and three,
which overlap in the tumor sample (c). Single-sample analyses (b and c) show histogram (rectangles) with posterior predictive densities. Several
genes recurrently mutated in AML [5] are highlighted. (d) Inferred schematic of clonal evolution from a single hematopoietic stem cell, showing
percentage of cells belonging to each clone (i.e., twice VAF for this nearly pure sample). Broken vertical white lines correspond to primary tumor
sample (before chemotherapy) and relapse subsequent to treatment.
doi:10.1371/journal.pcbi.1003665.g003
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Discussion

Clonal heterogeneity complicates both our understanding of the

biology of tumors and the design of effective treatment strategies.

While an individual tumor sample provides a glimpse of this

complexity, additional temporally or spatially distinct samples

allow higher resolution mapping of subclonal architecture,

including the isolation of drug-sensitive clones and small subpop-

ulations driving relapse. To leverage the increasingly common-

place and cost-effective opportunities to sequence multiple samples

from an individual, we developed SciClone, which scalably

analyzes large numbers of samples to provide an unbiased,

probabilistic dissection of a cancer’s clonal landscape. To do so,

SciClone employs variational Bayesian mixture modeling of beta,

Figure 4. Determining stability of inferred subclones as a function (a) of number of variants, (b) of inter-cluster separation, and (c)
of clustering method from AML sample. (a) A fraction of the ,800 variants from Fig. 3 were randomly sampled and the resulting number of
clusters was inferred using beta mixture modeling. Error bars represent standard deviation (n~ 10). (b) Mutations from clusters one and two from the
AML relapse sample were used to assess the limits of cluster separability. As the distance between the two mutation groups was varied, the resulting
clusters were assessed for overlap (the fraction of the data within a single standard deviation of both clusters) and accuracy (the fraction of items that
were correctly assigned to a second cluster). (c) Consensus clustering of the AML data set (Fig. 3) for number of initial clusters varied from six to 15
and clustering method varied across beta, Gaussian, and binomial mixture models for a total of 30 runs. N | N consensus matrix holds all N variants
across both rows and columns and has been reordered so that variants belonging to the same cluster are adjacent to one another. Matrix entry i, j is
the fraction of runs in which variant i and j were co-clustered; entry 1, 1 corresponds to the top-left of the matrix heat map. The narrowest neutral-
colored band corresponds to a single variant alternatively classified by Gaussian mixture modeling (Fig. S2a). The larger neutral-colored band
corresponds to variants alternatively classified as a sixth cluster by binomial mixture modeling (Fig. S2b).
doi:10.1371/journal.pcbi.1003665.g004

Figure 5. Assessing intratumor spatial heterogeneity and treatment response with multiple biopsies. Three breast tumor samples from
a single individual were simultaneously analyzed: two spatially distinct samples from a primary tumor and one sample taken after aromatase-inhibitor
treatment. (a–c) Two-dimensional slices and (d) still frame of the full three-dimensional interactive plot.
doi:10.1371/journal.pcbi.1003665.g005
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binomial, and Gaussian distributions. Each of these may have

advantages (see Text S1) in certain situations, though our tests

suggest that the beta mixture model works best in practice. We

have previously used related techniques in analyzing FACS data

[55] and expect them to be of general interest to those requiring

methods that automatically and efficiently infer the number of

clusters from high-dimensional biological data.

Application of SciClone to primary and relapse AML tumors

identified subclonal populations with dramatically divergent

response to conventional therapy. Such analyses are the first step

towards inferring driver mutations responsible for both resistance

to therapy and clonal expansion following treatment. Insight into

the spatial origins of treatment response was provided by analysis

of three samples from a breast tumor, two of which were obtained

from distinct regions of a single tumor at the same time point.

The AML and breast cancer cases highlight an inherent

limitation of bulk sequencing of tumor cells: subclonal populations

cannot be distinguished if they occur at similar frequencies. Single-

cell sequencing may eventually offer a solution, but will require

dramatic improvements in fidelity and throughput. Using

currently available data, we demonstrated that temporally or

spatially distinct samples from the same tumor can be used to tease

apart these overlapping subclones. This is demonstrated in AML,

where the apparent founding clone in the primary tumor is

dissected into two additional subclones by incorporating the

relapse sample. The breast cancer samples exhibit two-fold

complexity. As in the AML primary tumor, a cryptic subclone is

revealed in the pre-treatment breast tumor when multiple samples

are considered; in this case, from two spatially-isolated biopsies.

Additionally, each pre-treatment sample exhibits a clone not

detected in the other. This suggests that manipulation of the

patient’s tumor-derived cells (e.g., passage within culture or as

mouse xenografts) may be a viable method for identifying

additional subclones and predicting those with differential

responses to therapy.

Our analysis of exome-sequenced cases showed that SciClone

can be useful on samples with as few as 29 SNVs (Fig. 2a), but our

simulations (Fig. 4a) showed that in more complex cases, such as

the AML tumor/relapse pair, establishing subclonal boundaries

may require two hundred or more variants and that subclones be

separated by VAFs of ,7% or more (Fig. 4b). This downsampling

approach may be applied to any data set to establish a baseline

sensitivity. Cases with poorly defined cluster boundaries (e.g., due

to a paucity of mutations), such as the endometrial case (Fig. 2b),

benefit from SciClone’s probabilistic formalism. In particular, by

assigning an ATM mutation similar probability of belonging to the

founding clone and a subclone, SciClone reflected the lack of

certainty inherent in the data and indicated that their sparsity may

poorly characterize the tumor’s clonal diversity. The sensitivity of

any clustering method in dissecting clonal boundaries is dependent

on cluster overlap, which we have characterized via the

‘‘uncertainty’’ of their probabilistic assignments (Refs. 45 and 46

and Materials and Methods). An additional, qualitative means of

detecting high-confidence variant/cluster assignments involves

taking the consensus, or intersection, across clustering methods

(Fig. 4c). Confidence in detecting all major subclones increases

with the number of variants, including passenger mutations more

likely to be missed by exome sequencing. Thus, WGS followed by

deep validation sequencing is most likely to capture the full

spectrum of mutations and yield high-quality characterization of

subclonal entities.

Next-generation sequencing of variants within copy-number

neutral regions of autosomal chromosomes leads to a straightfor-

ward interpretation of the inferred VAFs as half the cellular

frequency harboring the corresponding variant. Because of the

widespread availability of variants to serve as clonal markers and

the relative reliability of their bioinformatic analysis and quanti-

fication, our initial clonality analyses have focused on SNVs.

Nevertheless, other genomic events have been used to identify

clonal dynamics. For example, the alternate ‘‘waxing’’ and

‘‘waning’’ of subclonal CNAs has been observed in multiple

myeloma [17,33]. However, the analysis and discovery of CNAs

pose several challenges for clonality: (1) Cancer types may be

described hierarchically in terms of their propensity to elicit either

mutations or copy number changes [56]. For mutation-dominated

cancer types, such as the cytogenetically-normal AML analyzed

here, few CNA events may be available for analysis. The converse

does not apply: since SNVs accumulate with age [4], an

abundance of SNV clonal markers are expected in all malignant,

as well as in non-malignant, tissues. Given the density of SNVs,

clonality analyses that rely solely on them may well capture the full

clonal architecture, while missing specific (copy number) events of

pathogenic interest; clonality analyses relying solely on copy

number events are likely to miss both. (2) There is no digital

readout of CNAs, rather observed copy number reflects the

admixture of subclonal populations and is a (linear) combination of

the copy number state of each subclone, weighted by the fractional

subpopulation of the subclone. In principle, the correctness of the

analysis requires the simultaneous inference of this admixture and

the number of copies (0, 1, 2, 3, or greater) of each chromosomal

segment in each subclone. Though such an analysis would infer

the clonal hierarchy directly, rather than the clusters of variants

that serve to identify them as in a SNV-based analysis, inference in

the latter case is simplified since there are fewer mutational states

(presence or absence, at least of the vast majority of variants, which

are heterozygous) and the correctness of inferring one cluster is

independent of a second cluster.

For these reasons, we prefer to overlay CNA events on the

higher confidence copy-number neutral SNV VAFs. Incorporat-

ing such events is important: (1) to include SNVs from CNA

regions, which are especially likely to be involved in disease, and

(2) to ameliorate the loss of SNVs from copy-number neutral

regions occurring as the number of genomic regions perturbed by

CNA (in some sample) increases with the number of samples

analyzed. Accommodating these events may be accomplished: (1)

by determining the fractional population harboring the event (as in

Fig. S1) or (2) by adjusting a SNV’s VAF based on it’s inferred

copy number states across subclonal populations. One approach to

the latter involves inferring copy number states from the B-allele

frequencies of germline SNPs (e.g., using ASCAT [34] or

APOLLOH [39]) and phasing these to somatic variants (e.g., by

detecting a single sequencing read spanning both) to impute

subclone-specific copy numbers to each variant [6]. After adjusting

the SNV VAFs, they could be clustered by SciClone in a manner

completely analogous to the analysis of unadjusted VAFs (using

the beta or Gaussian mixture model approaches). We are currently

pursuing this approach.

MCMC techniques, such as PyClone [11,30], offer an

alternative approach to clustering variants. However, our com-

parisons of SciClone and PyClone (Table S1) reinforce the

computational inefficiencies of MCMC approaches relative to

variational Bayesian techniques [40] and show that SciClone is

between one and two orders of magnitude faster. SciClone inherits

the simple variational Bayesian (computational) convergence

condition of monitoring monotonic changes in a lower bound

(see Text S1). While this approach may converge to a local

extremum, more subtlety is required to ensure the (theoretical)

asymptotic convergence to the global extremum guaranteed by
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MCMC, e.g., monitoring variance within a Markov chain relative

to variance between independent Markov chains [41]. PyClone

provides no direct facilities to monitor convergence. Regardless,

the theoretical convergence properties of MCMC seem unjustified

given the involved computational overhead for a clustering

application, such as clonality detection, where error estimates of

the parameters are of marginal interest.

SciClone has already contributed to the understanding of

biological mechanisms underlying cancer and has the potential for

increased utility with the advent of clinical sequencing. Towards

this end, we are developing methods that cross-reference the clonal

status of specific mutations with databases of targeted therapeutics.

As an example, the Drug-Gene Interaction Database [57]

identifies three genes in the AML sample as as potentially

druggable: (DRD2, KCNQ2, and P2RY2). The fact that each of

these mutations lies in a subclone complicates their interpretation,

and suggests that careful study is needed to understand how

specific subclonal populations respond to different therapeutics.

While clinical decisions of which (sub)clones to target and how

remain controversial, it is clear that making these decisions will

require accurate assessment of clonal architecture using tools such

as SciClone.

Materials and Methods

Variational Bayesian mixture modeling of beta
distributions

A VAF f is defined with respect to the number of reads, xvar ,

supporting the variant allele and the number of reads, xref ,

supporting the reference (or non-major-variant, in the case of

multiple variants) allele: f ~
xvar

xvar z xref
. Our previous method

[14] considered variants in a single sample and modeled the

probability of a VAF f belonging to cluster k as

Beta(f ; uk,vk)~
C(ukzvk)

C(uk)C(vk)
f uk{1 1{fð Þvk{1

where C ( : ) is the gamma function. Here, we extend this to the

case with S§ 1 samples by defining the S-vector

f : ( f1, f2, . . . , fS) , whose sth component, fs, is the VAF of

that variant in the sth sample. We make the assumption that,

within a cluster, the VAFs are independent across samples, so that

the cluster may simply be modeled as

p(fDuk,vk)~Beta(f; uk,vk)~ P
S

s~1
Beta(fs; uks,vks) , ð1Þ

where uk and vk are the S-vectors whose sth components are uks

and vks, respectively. This implies only that within a cluster there

is no correlation between samples. The validity of this

assumption is indicated by the visually-observed orthogonality

of the VAF principal component axes to the coordinate (i.e.,

sample) axes. We have rarely, if ever, seen evidence for such

intra-cluster correlation. Nevertheless, this assumption may be

relaxed through use of a mixture of multivariate Gaussian

distributions (see Text S1), each of which has a full-rank

covariance matrix.

In considering a mixture of K (multi-dimensional) beta

components [Eq. (1)], we introduce a K-dimensional latent (or

unobserved) binary random variable zn indicating whether VAF fn

does (znk~ 1) or does not (znk~ 0) belong to component k and

satisfying a 1-of-K representation in which
PK

k~ 1 znk~ 1. The

marginal probability p( znk~ 1) that a VAF belongs to compo-

nent k is given by its mixing coefficient p k,

p(znk~1)~pk ,

subject to the probabilistic constraints

0ƒpkƒ1 ,

XK

k~1

pk~1 :

Given the 1-of-K representation of zn, this may be written as

p(znDp)~ P
K

k~1
pk

znk : ð2Þ

Similarly, the conditional distribution p( fnD zn, ) that a

VAF fn arises from the mixture may be written

p(fnDzn, )~ P
K

k~1
Beta(fn; uk,vk)znk ð3Þ

in terms of the shape parameter vectors uk and vk of the kth beta

component, with aggregate parameters : f ukg and

: f ukg .

To accommodate binomial and Gaussian mixture models in

addition to the beta mixture model, we introduce abstract notation

used below to define quantities (e.g., p-values) independently of the

concrete representation of likelihoods and posterior distributions.

We begin by defining abstract parameters W , which differ

according to the model, i.e., beta, binomial, or Gaussian. For

example, p( fnD zn, W beta ) : p( fnD zn, ) , with

W beta : f g . Further, while the Gaussian mixture model

is also a function of VAFs f, the binomial mixture model is defined

with respect to the variant and reference count vectors, xvar and

xref , respectively. To abstract away these details, we use the

notation x to denote the VAFs f of a beta or Gaussian mixture

model or the counts xvar and xref of a binomial mixture model,

when convenient. In particular, p( x nD zn, W beta ) :
p( fnD zn, W beta ) : p( fnD zn, ) , while p( x nD W beta

k ) :
p( fnD uk, vk) , with W beta

k : f uk, vkg .

Eqns. (2) and (3) extended across the entire set F : f fng of

VAFs (or, more abstractly, X : f x ng of data) and their

associated latent variables z : f zng are combined to express the

complete-data (i.e., including the latent variables) likelihood

p(X,ZDp,Wbeta):p(F ,ZDp, )~P
N

n~1
P
K

k~1
pkBeta(fn; uk,vk)½ �znk,ð4Þ

which may be summed over zn to give the incomplete likelihood

p(F Dp, )~ P
N

n~1

XK

k~1

pkBeta(fn; uk,vk) :

These equations could be used to fit the beta parameters using

expectation maximization (EM) or Markov chain Monte Carlo

(MCMC) techniques.

U, V

U, V

U, V

U, V

U
V

U, V
U, V

U, V
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We instead use a previously described [43,44] variational

Bayesian approach [40,42,54,58,59] to modeling a mixture of beta

distributions. The general variational Bayesian theory and its

application to mixture modeling are described in depth in several

excellent references [40,42,54,58,59]. To establish consistent

notation, we provide an abridged, but self-contained, introduction

to this general theory and to its application to Gaussian

[40,54,58,59] and binomial mixture models in Text S1. Here,

we summarize its application to beta mixture models to provide

sufficient context for its use in and extension for clonality analysis.

For full details of this derivation, the reader is referred to the

original references [43,44].

Variational Bayesian beta mixture modeling approximates the

posterior distribution, p( Z, p , W beta D X ) : p( Z, p ,
D F ) , over the model parameters p , , and and the latent

variables Z with a distribution q( Z, p , W beta ) :
q( Z, p , ) . The form of this approximate distribution is a

consequence of choice of prior distribution, whose product with

the likelihood [Eq. (4)] defines the posterior p( Z, p , D F )
according to Bayes’ theorem, and of the mild and standard [40]

assumption that the latent variables Z factorize from the model

parameters, i.e., q( Z, p , ) ~ q( Z) q( p , ) . This fur-

ther simplifies, without assumption, to q( Z, p , W beta )
:q( Z, p , ) ~ q( Z) q( p ) q( ) : q ( Z) q( p ) q

( W beta ) . Finally, the authors assume the and variables are

independent and factorize to ultimately give q ( Z, p , )~
q( Z) q( p ) Pk, s q( uks) q( vks) .

Ma and Leijon used four synthetic one-dimensional data sets

(Fig. 4 of Ref. 43), including two with highly overlapping beta

distributions, to demonstrate the high accuracy of this method

despite its assumption that the parameters of the beta distribution

are independent. Fan et al. [44] additionally analyzed six three-

dimensional data sets and similarly found that accuracy was not

adversely effected by this factorization approximation (Table I of

Ref. 44). Our own extensive simulation results further support

these findings. We generated data sets by sampling a mixture of

beta distributions in one, two, or three dimensions and having

between two and five clusters (100 data sets for each dimension-

ality/number of clusters pair). Fig. S5 shows the concordance (i.e.,

fraction of correctly assigned items) between the clustered and

known results for each simulated data set. The average concor-

dance is 0:861, 0:985, and 0:999 in one, two, and three

dimensions, respectively. Performance increases with dimension-

ality as the clusters become increasingly separated. This sparsity

may be quantified by the minimum cluster self-overlap (see below).

Data sets having a relatively small minimum cluster self-overlap

have a relatively large overlap between clusters, which leads to

uncertainty and degrading performance.

The prior distributions are generally selected to be conjugate to

the likelihood for analytic convenience (e.g., see the derivations of

the variational Bayesian Gaussian and binomial mixture models in

Text S1). While a conjugate prior to the beta likelihood is formally

available, its use would lead to an analytically intractable

integration [43]. Therefore, Ma and Leijon [43] instead propose

use of the following prior distribution

p(uks)~Gam(uks; m0
ks,a

0
ks)

p(vks)~Gam(vks; n0
ks,b

0
ks)

p(p)~ (p; c0)

ð5Þ

where Gam( uks; m 0
ks , a 0

ks ) and Gam( vks; n 0
ks , b 0

ks ) are

gamma distributions

Gam(u; m,a)~
am

C(m)
um{1e{au m, a [ Rz ,

and ( p ; c0 ) is the Dirichlet distribution

(p; c)~C(c) P
K

k~1
pk

ck{1

over proportions p , with the normalizing constant C( c)

C(c)~
C(ĉc)

Pk C(ck)

and

ĉc:
XK

k~1

ck :

The parameters of the approximate posterior distribution are

now determined by iteratively minimizing the Kullback-Leibler

divergence, a measure of the difference, between it and the

posterior distribution, following the general prescription of

variational Bayesian inference (see Text S1). The authors make

a non-linear approximation to an expectation value arising during

the iterative procedure so that the resulting, approximate posterior

distribution has the form of a gamma distribution, despite the fact

that the above gamma prior distribution is not conjugate to the

beta likelihood. Significantly, the authors show that this additional

approximation can be used to minimize the original, desired

Kullback-Leibler divergence between the posterior distribution

and the approximate, non-gamma posterior distribution. This

results in the approximate posterior distribution

q(p,Wbeta):q(p) P
K

k~1
P
S

s~1
q(uks)q(vks)

~ (p; c) P
K

k~1
P
S

s~1
GGam(uks; mks,aks)GGam(vks; nks,bks) ,

ð6Þ

where ck, m ks, a ks, n ks, and b ks are defined in Eqns. 47–51,

respectively, of Ref. 43. These parameters are updated from the

corresponding initial hyperparameter values c0
k , m 0

ks , a 0
ks , n 0

ks ,

and b 0
ks as in a traditional EM iterative algorithm. It will also be

convenient to define the posterior density with respect to the kth

component

q(Wbeta
k ): P

S

s~1
q(uks)q(vks) : ð7Þ

Probabilistic and hard cluster assignments
Variational Bayesian mixture models provide probabilistic

assignments of variant x n (i.e., a VAF fn for beta or Gaussian

mixture models or variant counts xvar
n for a binomial mixture

model) to cluster k according to the posterior probabilities

p( znk~ 1D x n) : rnk. The rnk act as ‘‘responsibilities’’ and

satisfy
P

k rnk~ 1: In the case of the beta mixture model, the rnk

are defined by Eqns. 31 and 32 of Ref. 43. A more general

derivation is provided in Text S1, along with specific calculations

for binomial and Gaussian mixture models.

D

U, V

U, V

U, V

U, VU, V
U V

U, V

U, V U, V

D

D

D
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For visualization purposes, for example, we occasionally

transform these probabilistic assignments into hard assignments,

which assign Xn to one and only one cluster k according to

k~arg
k’

maxp(znk’~1Dxn) :

Posterior predictive density
The posterior predictive density gives the probability of a new

(i.e., unobserved) variant, x̂x , given the observed data X

p(x̂xDX )~
X

ẑz

ð
p(x̂xDẑz,W)p(ẑzDp)p(p,WDX )dpdW

and all possible assignments ẑz of that variant to a cluster.

Evaluating the sum over ẑz, making use of Eq. (2), gives

p(x̂xDX )~
XK

k~1

ð
pkp(x̂xDWk)p(p,WDX )dpdW :

We next approximate the true posterior distribution,

p( p , W D X ) , with the variational approximation q( p , W ) to give

p(x̂xDX )&
XK

k~1

ð
pkp(x̂xDWk)q(p,W)dpdW :

Since for all mixture models considered in this manuscript

q( p , W ) ~ q( p ) q( W ) , with q( p ) ~ D( p ; c) and

Ep½pk�~
ð

pkq(p)dp~
ck

ĉc
,

this evaluates to

p(x̂xDX )&
XK

k~1

ck

ĉc

ð
p(x̂xDWk)q(W)dW : ð8Þ

Ma and Leijon [43] assumed that q( W ) & d ( W { W � ) ,

where d ( : ) is the Dirac delta function and W � are the

converged parameter values, i.e., that the posterior distribution

has negligible probability when any of the parameters differ from

their converged values. In this case,

p(x̂xDX )&
XK

k~1

ck

ĉc
p(x̂xDW�k) ,

which may be efficiently evaluated. We instead use Eq. (8), which

avoids any assumption on the approximate posterior distribution.

In the case of binomial and Gaussian mixture models, Eq. (8) may

be evaluated analytically. In the case of a beta mixture model, for

which p( x̂x D W k) is given by Eq. (1) and q( W ) is given by Eq.

(7), we instead resort to numerical integration, evaluating data

sampled from Eq. (7) via Eq. (1).

Prior initialization
We choose hyperparameters resulting in prior distributions

sufficiently broad to ensure that the number of clusters and their

posterior parameterization are determined primarily from the

data rather than from prior assumptions. In particular, following

Ma and Leijon [43], we choose c0
k ~ 0:001 for all k. We also

choose a 0
ks ~ b 0

ks ~ 0:005 and m 0
ks ~ n 0

ks ~ 1 for all k.

Given the latter choice, the gamma distributions

Gam( uks; m 0
ks ~ 1, a 0

ks ) and Gam( vks; n 0
ks ~ 1, b 0

ks ) col-

lapse to exponential distributions. The resulting variances of these

distributions, e.g., Var½uks�~ 1=a 0
ks

� �2
, are large given our

choice of hyperparameters and hence provide a broad prior.

We initialize the rnk according to the hard assignments

computed by k-means (provided in the R stats package and

using default parameters, except with nstart~ 1000 and

centers~ 10). We initialize the parameters m ks, n ks, and b ks

to their respective hyperparameter values m 0
ks , n 0

ks , and b 0
ks .

Finally, we initialize the a ks such that the expected means of the

cluster centers, �uuks=( �uuksz �vvks) , with �uuks~ E½uks�~ m 0
ks =a 0

ks

and �vvks~ E½vks�~ n 0
ks =b 0

ks , are set to the values returned by

k-means. We then perform the variational E step (i.e., calculate

the expectations immediately following Eq. 51 of Ref. 43) without
updating the rnk, followed by the variational M step to update the

parameters m ks, n ks, n ks, b ks, and ck (via Eqns. 47–51 of Ref.

43). For the AML28 data set, this initialization results in the

clusters shown in Fig. S6a. Initialization is followed by iteratively

applying the variational E step (including updating the rnk ) and M

step. To avoid undefined behavior in evaluating the beta

distribution, we shift VAFs at zero or one by d or { d ,

respectively, with d equal to machine precision.

Cluster pruning and outlier detection
Variational Bayesian mixture modeling generally discards

clusters that do not contribute to the model, as determined by

the data and strength of the prior distribution. Specifically,

following convergence of the variational iteration and hard

assignments of variants to clusters, we remove any clusters having

less than the larger of three variants or 0.5% of N, the total

number of variants, assigned to them, a condition similar to our

earlier approach [14]. If clusters are removed, the algorithm is

again executed until convergence. For the beta mixture model,

convergence is achieved when the absolute difference between all

p k across consecutive iterations is less than 10 { 4 . This

condition differs slightly for binomial and Gaussian mixture

models (see Text S1). The minimum cluster membership is

motivated by the requirement of needing at least two proportions

to fix the two degrees of freedom, uk and vk, of a beta distribution.

More intuitively, clustering is effectively a separation of intra- and

inter-cluster distances. Defining an intra-cluster distance requires

at least two items be assigned to that cluster.

To be conservative in our assessment of subclonality, we

require clusters be well separated. Previously [14], we used a

condition on overlapping cluster standard error of the means to

detect and remove overlapping clusters. Here, we instead adopt a

quantitative notion of cluster overlap [45,46], in which overlap

between clusters k and k’ results in uncertain assignments of

some variants, causing them to have appreciable rnk and rnk’ .

This in reflected in a large relative (to the ‘‘size’’,
P

n rnk, of

cluster k) cluster overlap
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Uk,k’:

P
n rnkrnk’P

n rnk

:

Minimizing this quantity for all k’ = k is equivalent to

maximizing the ‘‘self-overlap’’ of cluster k with itself,

�UUk:1{
X
k’=k

Uk,k’~

P
n rnkrnkP

n rnk

,

which satisfies, N { 1
ƒ �UU kƒ 1. Hence, we remove any cluster

having a �UU k less than a threshold U . Overlap between

(independent) clusters will be more likely in lower dimensional

problems; hence, to determine a dimensionality-dependent U we

clustered simulated data sets by sampling a mixture of beta

distributions in one, two, or three dimensions and having

between two and five clusters. Average concordance (across data

sets of a given dimensionality) between the clustered and known

results (in terms of fraction of correctly assigned items) was stable

for a wide range of U within each dimension: U in the range of

0:5 to 0:8 achieved the maximal concordance (of 0:86) in one

dimension, U in the range of 0:83 to 0:96 achieved a

concordance of 0:96 { 0:97 in two dimensions, and U in the

range of 0:84 to 0:99 achieved a concordance greater than or

equal to 0:97 in three dimensions. Intuitively, we anticipate that

the probability of clusters overlapping scales inversely with the

number of dimensions. Hence, we define U S for an S-

dimensional problem as U S : U
1=S
1 , where U 1~ 0:70 was

selected so that U S passes through the above optimal regions

defined by the simulation. Namely, U 2 & 0:84 and U 3 & 0:89.

Results for these settings of U S across all simulated data sets are

shown in Fig. S5.

We detect outliers using a more formal approach than our

previous method [14], by calculating the p-value of a variant with

the respect to the cluster to which it has been assigned (via a hard

assignment). If the probability of the variant belonging to that

cluster is less than pmin , the variant is removed from the analysis.

The default used in this manuscript is pmin ~ 10 { 2 (which is not
corrected for multiple testing). The p-value of a variant x n is

calculated with respect to the predictive posterior distribution [Eq.

(8)] as

ð
h p(xnDX ){p(xDX )½ �p(xDX )dx

where h ( x) is the Heaviside step function with h ( x) ~ 1 for

xw 0 and h ( x) ~ 0 for xv 0. In the case of beta mixture

models, this integral is evaluated numerically by sampling from the

predictive posterior distribution and then evaluating sampled

variants with that distribution, which again involves numerical

integration. For computational efficiency, we only calculate this

integral for variants likely to be outliers, which we heuristically

define as variants whose VAF f in each sample s lies outside of the

narrowest interval containing erf( 0:75=
ffiffiffi
2
p

) & 0:55 of the

fluctuation in the mean of cluster k. This interval ( loks, hiks) is

determined as the narrowest such interval satisfying

0:55~

ðhiks

f ~loks

ð?
u~0

ð?
v~0

d f {
u

uzv

� �
GGam(u; mks,aks)GGam(v; nks,bks)df dudv

and involves integrating the mean, u=( uz v) , with respect to the

posterior distribution.

Several iterations of the AML28 data set following the k-means

initialization (above and Fig. S6a) are shown in Figs S6b and c,

with the complete run shown in Movie S2.

Variant detection and copy number calling
Sequencing, alignment, and variant calling were performed as

previously described [5]. Somatic copy number events were detected

using copyCat (http://github.com/chrisamiller/copycat/). Copy-

number neutral LOH was detected using VarScan 2 [38] and

filtered to retain regions with 95% LOH and at least 10 sites.

PyClone
PyClone version 0.12.3 was downloaded from http://compbio.

bccrc.ca/software/pyclone/. VarScan 2-detected regions of LOH

were excluded from analysis. Copy number events detected by

copyCat were quantized and passed to PyClone as major_cn, with

minor_cn set to zero; additionally, PyClone was run with ––

var_prior total_copy_number, since allele-specific copy number

calls were not provided. PyClone clustering used the beta-binomial

mixture model. Initially, we attempted to cluster using 10,000

iterations and 1,000 burn-in iterations, as suggested by the authors

(Ref. 30 and https://bitbucket.org/aroth85/pyclone/wiki/

Tutorial). However, these parameters yielded discordant clusterings

across three runs. Therefore, we varied the number of total

iterations (and additionally varied the number of burn-in iterations

to be 10% of the total iterations) and for each configuration assessed

concordance across three independent runs. The authors have

suggested similar approaches based on visual inspection of

convergence across randomly-initialized runs [30]. We choose the

number of iterations at which the concordance across the three runs

stabilized. These are given in Table S1. Concordance was evaluated

for each of the three pairs and was calculated as the maximal

fraction of items assigned to the same cluster across permutations of

the cluster labels of one of the two runs being compared.

THetA
THetA version 0.51 was downloaded from http://compbio.cs.

brown.edu/projects/theta/. After failing to successfully run the

program on the complete set of copy number events in the MM

sample, we selected seven copy number regions, representing

neutral, amplified, and subclonally deleted chromosomes, and ran

THetA as described in the manual (parameters: –n 3 –k 4 –m 0.10

––NUM_PROCESSES 2). The resulting population frequencies

and copy number assignments were used to infer the VAF at which a

SNV in that region would appear. These sites were added to the list

of SNV inputs to SciClone and clustered with default parameters.

Supporting Information

Figure S1 Integration of copy number-derived subclo-
nal information from THetA. THetA was used to detect

clonal and subclonal copy-number events in a multiple myeloma

sample, then converted to pseudo-VAFs and co-clustered with

SNV data using SciClone. CN-derived points are highlighted in

yellow. The leftmost two CN events are single points and the

rightmost point consists of six overlapping points.

(TIF)

Figure S2 Detecting ambiguous or low-confidence as-
sociations between a variant and clone from inconsis-
tent assignments across clustering methods. Clonal

dissection of AML sample (Fig. 3) based on (a) Gaussian or (b)
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binomial variational mixture modeling. Beta mixture modeling

(Fig. 3) differs from Gaussian mixture modeling in the single

variant highlighted by arrow in (a) and from binomial mixture

modeling in the separation of cluster two from cluster one in (b).

(TIF)

Figure S3 Confirming subclonal AML populations using
an independent method. PyClone largely recapitulates sub-

clonal architecture inferred by SciClone (Fig. 3), though the

parameter settings used here (default hyperparameters to beta-

binomial mixture, with 10,000 iterations, and a burn-in of 1,000

iterations) overdissect the founding clone.

(TIF)

Figure S4 Confirming subclonal breast tumor popula-
tions using an independent method. PyClone clustering of

variants in copy-number neutral regions is similar to that obtained

by SciClone (Fig. 5), though the former partitions the variants

spread along the pre-treatment tumor 2 axis (clusters 1 and 2), as

well as those belonging to the founding clone (clusters 7 and 9).

Subpanels (a–c) correspond to two-dimensional slices in Fig. 5 of

three breast tumor samples (two spatially distinct samples from a

primary tumor and one sample taken after aromatase-inhibitor

treatment).

(TIF)

Figure S5 Assessing concordance between known and
clustered results. Beta mixtures having two to six components

were sampled in (a) one, (b) two, or (c) dimensions and clustered.

Concordance is the fraction of data points correctly clustered; the

highest concordance resulting from a permutation of the cluster

labels is reported. Reported self-overlap is the minimum reported

over any cluster, i.e., min k �U k. Self-overlap is shifted by 0.1 in

the plots for visual purposes to avoid obscuring concordance.

(TIF)

Figure S6 Converging to clustering solution using
variational Bayesian beta mixture model. k-means initial-

ization (A) of AML sample (Fig. 3) and results following second (B)

and fourth steps (of six) in iteration (C).

(TIF)

Movie S1 Interactive, three-dimensional clustering of
three breast tumor samples from a single individual (see
Fig. 5d).

(MP4)

Movie S2 Movie of convergence of AML sample clus-
tering (see Fig. 3 and Fig. S4).

(SWF)

Table S1 Execution time of SciClone (Variational
Bayes) and PyClone (MCMC).

(PDF)

Text S1 Supplemental methods and discussion.

(PDF)
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