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Abstract

The use of digital tools in pharmaceutical manufacturing has gained traction over the past 

two decades. Whether supporting regulatory filings or attempting to modernize manufacturing 

processes to adopt new and quickly evolving Industry 4.0 standards, engineers entering the 

workforce must exhibit proficiency in modeling, simulation, optimization, data processing, 

and other digital analysis techniques. In this work, a course that addresses digital tools in 

pharmaceutical manufacturing for chemical engineers was adjusted to utilize a new tool, 

PharmaPy, instead of traditional chemical engineering simulation tools. Jupyter Notebook was 

utilized as an instructional and interactive environment to teach students to use PharmaPy, a 

new, open-source pharmaceutical manufacturing process simulator. Students were then surveyed to 

see if PharmaPy was able to meet the learning objectives of the course. During the semester, 

PharmaPy's model library was used to simulate both individual unit operations as well as 

multiunit pharmaceutical processes. Through the initial survey results, students indicated that: (i) 

through Jupyter Notebook, learning Python and PharmaPy was approachable from varied coding 

experience backgrounds and (ii) PharmaPy strengthened their understanding of pharmaceutical 

manufacturing through active pharmaceutical ingredient process design and development.
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1 | INTRODUCTION

In recent years, the Industry 4.0 wave has accelerated the development of digital tools, 

data science and data analysis, and the use of the Internet of things to connect sensing and 

automation networks in the context of manufacturing [3]. Modern manufacturing facilities 

must develop smart, digital systems that can communicate with each other in real-time 

to effectively take advantage of the quickly evolving Industry 4.0 concepts. As industrial 

manufacturing facilities adopt Industry 4.0 and related paradigms, engineers entering the 

workforce will need to exhibit proficiency in both traditional manufacturing disciplines 

as well as competency in communicating with and utilizing digital tools, which presents 

newfound and persistent challenges for educators [14, 31]. One recent review of the scope 

of Industry 4.0 [16], particularly with a focus on the new responsibilities of educators and 

students themselves [23], provides great motivation for traditional engineering disciplines, 

such as chemical or mechanical engineering, to include dedicated data-centric and digitally 

focused material into both elective and core courses to modernize curriculum.

Education on the digital aspects of Industry 4.0, specifically those related to data science 

and machine learning, have been analyzed several times in recent literature. A tool that 

has consistently been found to be useful in digital education applications is the Jupyter 

Notebook, which provides a flexible and practical canvas to present graphics, code, 

mathematics, and instructional text in the same place [24]. For this reason, computational 

notebooks in digital education have been widely adopted throughout the data science and 

machine learning community. Examples of Jupyter Notebook are evident in Germany [4, 

13, 17], Pakistan [20], and Portugal [6] for data science and engineering education with 

and without the use of graphical user interfaces. The book “Jupyter for Data Science” 

[28] provides interactive Jupyter Notebook examples alongside readings and technical 

material. Other areas of the world are following suit by confirming the need to implement 

digital manufacturing training programs along-side standard curriculum: for instance, in 

Azerbaijan [1] and the Netherlands [9]. Interestingly, [9] point out that the traditional call for 

modernization in curriculum primarily addresses engineering disciplines. However, in their 

work, they identify that the massive Dutch agriculture, food sciences, and plant sciences 

industries also require data science and other advanced manufacturing concepts to move 

the industry forward. They note that digitally focused courses and modernization to make 

these strides are lacking in life sciences disciplines as well. Although many components 

of Industry 4.0 are connected to data science or machine learning through data analysis, 

in this work, our focus is on: (i) the digital design of manufacturing facilities, (ii) the 

development of digital twins, and (iii) the use of other software tools during process design 

and monitoring.

There are some recent examples of chemical engineering departments across the United 

States and Canada that have been incorporating digital tools. Jupyter Notebook (both Python 

and Julia programming languages) and other computational notebooks were integrated into 

lectures, exercises, and projects to teach digital analysis techniques for optimization, applied 

statistics, and reactor design and control, at both undergraduate and graduate level [5]. 

The development of computational modules for courses in the areas of process control, 

process optimization, and experimental methods by utilizing a combination of commercial 
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and open-source software tools were also discussed [31]. In Brazil, some examples include 

the development of digital tools for designing ideal chemical reactors [25], optimization of 

traditional manufacturing problems with mixed-integer programming formulations [26], and 

the deployment of other tools for optimization and design of chemical engineering systems 

[15, 29]. Throughout these developments, varying levels of coding experience are required 

for the students enrolled in the corresponding course. The focus in these efforts is on the 

development of teaching software or digital tools where the user is not required to have 

prior coding experience [25], to have little coding experience [26], or to have high levels of 

coding competency [15, 27].

Existing chemical engineering software has also seen recent innovations in the form of 

self-generating problems and codes. A tool that generates chemical engineering homework 

and test problems with varying inputs and outputs within a Jupyter Notebook framework 

was also reported in the literature [10], in which the option is given to completely hide 

the code (i.e., use only a graphical user interface to the tool and forgo looking at the 

source code), enabling students to explore the digitalization aspect of the educational tool 

in addition to completing the homework assignments. The modeling and optimization tool 

MOSAIC [11] has also been proposed to have teaching utility as the software automatically 

generates code in a chosen modeling format based on a user-friendly, object-oriented design 

[12], which showed encouraging educational results.

One important field closely related to chemical engineering is the manufacturing of 

pharmaceuticals. However, the tools that represent the traditional chemical industry and 

are a standard component in the education of chemical engineers (i.e., AspenPlus) require 

tailored approaches to adequately model a pharmaceutical manufacturing process. In small 

molecule oral drug processing, there is a diverse set of unit operations required to process 

raw materials into medicines that involve complex phase interactions including liquid-liquid, 

gas-liquid, and solid–liquid systems. Also, even with modernization of control and process 

intensification, pharmaceuticals are typically manufactured using batch processes. When 

batch processes are used in conjunction with continuous unit operations, or are simulated 

over extended campaigns, discontinuities associated with the start and stops of batch steps 

cause numerical difficulties that require custom-written simulation tools, or numerical 

simulation expertise. For these reasons, a digital tool for pharmaceutical manufacturing that 

can simulate batch, continuous, and hybrid (i.e., a process which contains both batch and 

continuous unit operations) operating modes addressed a major gap in the software space. 

Also, as digitalization continues, it is imperative to equip and educate engineers pursuing a 

career in pharmaceutical manufacturing with powerful numerical tools that are easy to use.

For these reasons, there has been a concerted effort at the University in West Lafayette, 

IN USA toward the development of a pharmaceutical process simulator, PharmaPy [7], 

to facilitate rapid in-silico design of manufacturing alternatives across batch, continuous, 

and hybrid operating modes. PharmaPy is written in Python and is an open-source 

tool encouraging wide-spread availability, transparency with respect to the internal unit 

operation model library, as well as community development of the tool. So far, the value 

in addressing research problems has been shown through a series of studies involving 

flowsheet simulation-optimization [7], economic comparison of the effect of manufacturing 
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scale and operating mode on total cost [8], design space analysis [21], and derivative-based 

optimization strategies [22] using PharmaPy. However, the value of including PharmaPy 

in a teaching and education setting has not yet been demonstrated. Fortunately, given that 

PharmaPy is written in Python, it can readily be combined with the interactive teaching 

environment through Jupyter Notebook to provide the basis for teaching pharmaceutical 

manufacturing to both undergraduate and graduate students by exploring design, parameter 

estimation, and optimization of pharmaceutical processes. The accessibility of Python as a 

programming language and the format of the Jupyter Notebook, which may contain code, 

mathematics, figures, and interactive graphics in a coherent manner, provide an excellent 

framework for tutorials and self-led training modules [4-6, 10, 13, 17, 20, 24, 26, 28]. In 

this work, initial feedback on the tools used and learning format indicate that PharmaPy 

simulations within a Jupyter Notebook present a promising, open-source framework to teach 

digital design in pharmaceutical manufacturing.

The rest of this article is organized into six sections. In Section 2, we present a brief 

description of the course, and introduce the tools used (i.e., Jupyter Notebook and 

PharmaPy). Then, in Section 3, we present the course layout, some learning objectives of 

ChE 55300, and general survey topics and questions used to gather initial student feedback. 

In Section 4, we describe each project offered by the course in more detail. Section 5 details 

an example of the crystallization project described in Section 4.3 with some insight on 

student solutions. Then, Section 6 summarizes and analyzes results from the survey of the 

course. Finally, Section 7 concludes the work with discussion and future ideas for improving 

the tool, improving the educational experience, and expanding the influence of digital tools 

within the chemical engineering and manufacturing curriculum.

2 | COURSE AND TOOL OVERVIEW

In the School of Chemical Engineering at Purdue, there are technical elective course 

offerings that cover development of pharmaceutical products and processes, important 

operations related to pharmaceutical manufacturing such as reaction and crystallization, and 

digital analysis techniques that aid in adopting good manufacturing practices. ChE 55300 is 

one such course teaching Pharmaceutical API Process Development and Design.

The development and design of processes to produce pharmaceutical products involves three 

important tasks:

1. Translation of the recipe for the drug substance (or active pharmaceutical 

ingredient [API]) from a laboratory development recipe to a process that is, 

usable for manufacture.

2. Selection, preliminary design, and scale-up of equipment used to carry out the 

steps of the recipe for a given API.

3. Selection, preliminary design, and scale-up of equipment used to make the drug 

product (e.g., tablets or capsules), which is the vehicle for delivery of the API to 

the patient.
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Typically, tasks 2 and 3 are considered as the drug substance and drug product 

manufacturing process, respectively. With this in mind, ChE 55300 primarily focuses 

on the drug substance side, considering the implementation of digital tools to perform 

model calibration (parameter estimation), design, optimization, and other digital analyses to 

complete tasks 1 and 2 successfully.

The course provides background information on regulatory aspects of pharmaceutical 

manufacturing, and introduction to the various unit operations relevant to the pharmaceutical 

manufacturing industry. Also, the course presents the benefits and drawbacks of batch, 

semibatch, and continuous operating modes for both drug substance and drug product 

processes. However, in this work, the focus will be on the digital design of the upstream 

drug substance unit operations (e.g., synthesis, separations, crystallization, filtration, drying) 

both on an individual basis and as a complete process flowsheet. There is work underway to 

address the operations relevant to drug product manufacture but is outside the scope of this 

paper.

PharmaPy was used to address digital process design and simulation throughout the course. 

Given the scope of the course, there is significant overlap between the principles used 

in the previously mentioned research and the currently available unit operations within 

PharmaPy (e.g., reactors, crystallizers, vaporization units, etc.) and the course objectives, 

as shown in Table 1. PharmaPy is written as an object-oriented tool, using an intuitive 

representation of unit operations and other necessary components, such as material phases or 

process kinetics, when constructing digital process models. When represented visually, the 

abstraction of object-oriented programming overlaps with traditional engineering schematics 

and process flowsheet diagrams commonly taught and used throughout undergraduate 

and graduate engineering curriculum. This promotes an intellectual connection between a 

physical unit operation, a schematic or drawing of that unit operation, and ultimately the 

digital representation of that unit operation through objects. PharmaPy is also open source, 

which allows students to look directly at model equation implementations to understand how 

the process model translates first principles equations to a digitally or numerically realizable 

simulation.

Object-oriented software is inherently modular, which also promotes key concepts in 

manufacturing. PharmaPy is no exception, giving the user capability in connecting 

both continuous and discontinuous unit operations together to form a complete process, 

spanning multiple processing steps. During the course, several projects were completed 

by the students to analyze unit operations both individually and as part of a complete 

manufacturing process. Early course projects covered the design of individual unit 

operations, including semibatch reaction, batch filtration, batch cooling crystallization, 

and continuous cooling crystallization. Then, the learnings from running standalone units 

were assembled into a final project, where students were asked to choose the best 

economical multiunit manufacturing route to produce a set amount of API, contrasting a 

fully continuous manufacturing process with an alternative manufacturing process that was 

not fully continuous (e.g., fully batch or hybrid batch-continuous). The final project allowed 

students to analyze and understand the overall impact of adjusting the operating mode of 

specified unit operations within the full process. This exercise demonstrates the modular 
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nature of the architecture with respect to manufacturing, the flexibility of modeling tools that 

are capable of interchanging unit operations with minimal effort, and the impact of operating 

mode on product cost and efficacy.

Jupyter Notebooks represent an optimal environment for teaching PharmaPy, or any process 

design software tool. Within Jupyter Notebooks, one can render figures of a process 

schematic, mathematics of the process model equations, instructional text, and code using 

different cells in the same notebook, as shown in Figure 1. As stated previously, the 

direct comparison of the process schematic to the code side-by-side provides an important 

connection between technical understanding of the process and digital understanding of the 

process. The instructional text and mathematical expressions allow in-depth, self-guided 

tutorials and interactive sessions to be created and taught throughout any course, which 

employs Jupyter Notebooks. In this case, a Jupyter Notebook tutorial for each project was 

sent to the students before the class when the project was assigned, where one of those 

tutorial notebooks was completed during class as a follow-along exercise. Also, later in the 

course for the final project, the modular architecture of PharmaPy, and of pharmaceutical 

manufacturing as a whole, can be easily broken down between different cells of a notebook. 

This allows students to define each unit operation as an object in a separate block of code 

before combining the units together into a fully defined flowsheet. Overall, using Jupyter 

Notebooks provided a lens into the structure of PharmaPy and facilitated understanding of 

the modular architecture of many engineering and manufacturing problems.

To address the diversity of coding expertise throughout the student population, two 

dedicated lectures were given at the beginning of the course covering introduction to Python, 

the use of Anaconda for package control and package installation, and the general syntax of 

PharmaPy using both an integrated development environment (IDE) and Jupyter Notebooks. 

An example of the semibatch reactor tutorial notebook is shown in Figures 1 and 2. Here, 

Figure 1 demonstrates the inclusion of figures and mathematical equations in markdown 

format to give background information on the engineering problem and visually connect 

the model schematic, model equations, and the digital representation of that unit in the 

object-oriented PharmaPy syntax. Figure 2 continues the tutorial with partially filled coding 

blocks, where the students are led by an instructor to complete missing coding snippets 

during an interactive lecture.

In addition to single-unit operations, such as the semibatch reaction case study presented 

in Figures 1 and 2, students used PharmaPy to simulate a 3-unit pharmaceutical process 

containing chemical synthesis, crystallization, and filtration. In PharmaPy, single units are 

defined as objects. A flowsheet is also an object but can be more accurately described as a 

collection of those unit operations and connections between them. The flowsheet can then 

be simulated as a process with dynamic information transferring from unit to unit using 

a sequential-modular simulation scheme [18]. The modular architecture of PharmaPy is 

conceptually supported well by the format of Jupyter Notebooks. In a Jupyter Notebook, 

code can be divided into cells where a specific function is defined, or task is completed. 

During the final project, students were supplied with a Jupyter Notebook that defined a 

continuous synthesis-crystallization process ending with batch filtration. A portion of the 

notebook is shown below in Figure 3.
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In Figure 3, the definition of the filtration unit is shown in an individual cell. The students 

are guided on the new concept of defining the units of a flowsheet. At this point, they 

must aggregate the units into the flowsheet object “flst” so the units can be accessed by 

the simulation executive when the flowsheet is to be simulated. The full Jupyter Notebook 

is available in Supporting Information, where the definitions of the reactor, crystallization, 

and dynamic holding tank units are shown. Once all units have been defined, the user must 

connect each unit to the respective downstream unit using a “Connection” object. As shown 

in Figure 3, there is an individual code cell to define unit connections for the flowsheet 

object.

Finally, arguments necessary to run the process must be passed to the simulator. These 

arguments are typically the runtime of the unit operation, and for volume-discretized units, 

or a number of discretization segments for the model. Additional arguments can also be 

passed to units, for instance options to the SUNDIALS integrator [2, 19], may be passed to 

improve numerical stability or behavior of the model. A time grid is passed to the dynamic 

holder in this case to discard the startup material in the first 3 h of operation. Finally, the 

pressure used in filter operation is supplied. Once all the arguments necessary to run each 

unit in the processing sequence are defined, they are compiled into a dictionary and passed 

to the simulation executive of the flowsheet to run the process. Selected results from the 

continuous simulation are shown with plots and printed values in the full Jupyter Notebook 

as shown in the supplemental material.

Since PharmaPy is written in Python, students were encouraged to use other Python 

packages to supplement their analyses. For instance, using Pandas for data management, 

SciPy’s optimization suite for derivative-free and derivative-based optimization, or scikit-

learn for regression or data-driven regression or machine learning modeling. NumPy and 

SciPy are used throughout PharmaPy and were briefly introduced during the Python tutorial 

lectures at the beginning of the course. Anaconda provides package management capabilities 

through virtual environments, and the use of these environments was also taught and 

encouraged throughout completion of the projects.

3 | MATERIALS AND METHODS

During the fall semester of 2021, a cohort of 16 students who enrolled in ChE 55300, 

were taught using solely PharmaPy for simulation for the first time instead of utilizing 

combination of MATLAB, DynoChem, and Microsoft Excel. This course was offered 

as a cross-over undergraduate-graduate course, with five undergraduate students, seven 

professional master’s students, and four PhD students. Most of the students were chemical 

engineers, with one student coming from a biology and chemistry background, one student 

from materials engineering, and one indicating dual-focus on chemical engineering and 

computer science. Thirteen of the 16 students enrolled completed the survey.

The major goal of this study was to see if PharmaPy would be an adequate replacement 

for the previously used tools in ChE 55300. To this end, students were surveyed on the 

quality of PharmaPy, whether PharmaPy enhanced the learning experience or not, if Python 

was approachable as a coding language, and if they planned to use PharmaPy or Python 
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in the future for digital analysis. Three majors learning objectives were also analyzed: (i) 

if the students were able to utilize new, digital tools in Python with or without previous 

experience, (ii) if the students understood pharmaceutical manufacturing in the context 

of digital simulation (in this case with PharmaPy), and (iii) if the students were able 

to adequately report and disseminate findings using completely digital tools. The survey 

questions focused on objectives (i) and (ii) as well as requesting feedback on PharmaPy to 

improve the software and improve the student experience within ChE 55300.

To gain insight into whether the software tool was adequate to teach pharmaceutical 

manufacturing, a survey was organized. Initial questions asked how approachable Jupyter 

Notebook and Python were during the course. It was also polled to determine where students 

went to get assistance with Python or PharmaPy (i.e., Google, the T.A.s of the course, etc.). 

Each of the projects described in Section 4 had survey questions that were specific to each 

project. Then, two free response questions were asked: (i) Do you have any suggestions 

to improve PharmaPy, or issues with PharmaPy that you had difficulty with, and (ii) Do 

you have any feedback or suggestions on PharmaPy’s inclusion in the core curriculum? A 

final question was also added to ask whether they would be likely to use PharmaPy and 

Python for pharmaceutical modeling and general modeling and data analysis in the future, 

respectively.

4 | PROJECT DESCRIPTIONS

During ChE 55300, five projects, only four of them including unit operation simulation, 

were given to the students. Each simulation-oriented project was adapted from previous 

iterations of the course to be taught completely within PharmaPy. For the first four projects 

(each worth 12.5% of the final grade), students worked alone, wrote a report on their 

findings, and 25% of the students were asked to present their work during each project. For 

the final project (worth 25% of the final grade), students were allowed to choose a partner to 

write a final report and give a team presentation. For each project, the students were supplied 

with a tutorial Jupyter Notebook to guide them in how to use PharmaPy for the specific task. 

Also, the students were given one lecture on PharmaPy before each project, as mentioned 

in the previous section. The four projects where PharmaPy was used are described in more 

detail below.

4.1 | Semibatch reactor design

Chemical synthesis is commonly used in pharmaceutical manufacturing to produce an API. 

In this project, students were tasked with designing an optimal fed-batch reactor for a simple 

reaction system to create a desired product, species C. The reaction system also produced 

an undesired product, D. The students were given a few reactor variables to alter, and 

were asked to compare various feed profiles of the key reactant, species A. Given these 

parameters, students were asked to optimize the fed-batch reactor system using any strategy 

of their choosing but were given ideas of parameter sweep approaches (enumerative), 

and callback-based optimization approaches (systematic). Students were also introduced to 

multiobjective optimization during this project.
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4.2 | Filtration parameter estimation and scale-up

In the filtration project, students were given experimental filtration data to determine specific 

cake resistance and the dependence of cake resistance on pressure drop. Then, with the 

newfound parameters, students were tasked with scaling up the filter from lab-scale to 

pilot-scale through digital analysis. Students were asked to analyze the effect of scale on 

the filter, as well as the effect of running simultaneous smaller batches to filter instead of 

filtering the whole volume in one go.

Students were given the option to perform parameter estimation wherever they saw fit, 

but capabilities using PharmaPy for parameter estimation were in place. Even with these 

capabilities, most students used Microsoft Excel to perform the parameter estimation and 

simulated the filter with PharmaPy.

4.3 | Crystallizer design comparison

In pharmaceutical manufacturing, separation of the API to an acceptable purity is an 

important processing step. In this project, students were introduced to the comparison 

of batch and continuous manufacturing modes for separating an API from a reaction 

mixture via crystallization. The comparison centered around the trade-offs between yield, 

mean crystal size, and other crystal size distribution attributes. Students were tasked with 

optimizing both the batch and continuous systems over the same set of questions and 

ultimately recommend which system, batch or continuous, should be used for crystallization. 

More information on student responses and the exact details of the crystallization project are 

included in Section 5.

4.4 | Flowsheet design comparison

The final project combined elements from each of the previous projects. Groups of two were 

given a fully continuous flowsheet to optimize, which included synthesis, crystallization, 

and filtration. The systems were identical to those used in previous projects, but were now 

not individually represented, but instead linked into a connected process. To further analyze 

the batch versus continuous trade-off, groups were assigned 1 of 4 flowsheets that were 

either fully batch, or hybrid processes. The groups were asked to minimize production cost 

while on a per-time basis. Then, groups were asked to reformulate the optimization of these 

flowsheets into constrained optimization problems. Here, the students were to minimize 

production costs while adhering to product guidelines, often referred to as critical quality 

attributes (CQAs) or critical operating constraints. As a final challenge, the students were 

given a small block of code that generated samples of the uncertainty space of the reaction 

kinetic parameters. The students were asked a series of questions to analyze the robustness 

of their optimal solutions.

5 | SAMPLE PROJECT RESPONSES

In this section, a selection of student solution methodologies and expected responses to 

the project described in section 4.3, where an API was to be purified via crystallization 

is presented. This project covered both batch and continuous crystallization systems, and 

the crystallization step(s) involved nucleation and growth kinetics. Students were asked to 
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optimize a batch cooling crystallization process, as well as a continuous mixed suspension-

mixed product removal (MSMPR) crystallization process with respect to yield (fyield), crystal 

size (davg), or some combination of these two objectives, as shown below in the below 

equation:

min
T (t), τ

w1 davg + w2 fyield ,

(1)

where w1 and w2 are objective function weights for mean size, davg, and yield, fyield, 

respectively. The decision variables are T (t), which is a temperature profile in the batch 

case and constant temperature in the continuous case, and τ, which is the batch time 

for the batch case and residence time for the continuous case. The only requirement the 

students had in terms of software was to utilize PharmaPy for crystallization simulations 

while completing the project. The methodology for optimization was left completely to the 

student. Throughout the course, grid-based optimization and parameter sweep approaches 

were presented to students, and the use of common packages with black-box optimization 

capabilities, for instance, SciPy’s optimize package [30], were also suggested to the 

students.

With this in mind, most students designed a small number of crystallizer configurations, 

or organized a parameter sweep to choose the best design configuration over a discrete set 

of operating conditions. These methods were presented as potential derivative-free solution 

methodologies during the course. However, some did venture outside these methodologies 

and decided to use SciPy’s optimization suite, for instance using a differential evolutionary 

global optimization algorithm to design a cooling profile. In the batch case, the temperature 

profile and batch time were the operating conditions for the optimal design problem. 

Examples of standard cooling profiles, simulated as piecewise linear cooling trajectories, 

are shown below in Figure 4. Using these profiles, many students found the optimal cooling 

profile for crystal size was similar to the exponential cooling profile.

The students also optimized conditions for the continuous MSMPR crystallizer. In this case, 

students used both a parameter sweep approach and a SciPy optimization method to find 

the optimal operating temperature and residence time of the unit. All students were asked to 

plot the average crystal size over time to clarify how the startup period in the MSMPR to 

reach some constant mean crystal size could impact production. An example of that result 

is shown below in Figure 5. As seen, the average crystal size does not reach a steady value 

until approximately 1500 s into operation.

However, no students identified that the crystal size distribution may still be changing even 

though the average crystal size, a statistic calculated by the ratio between the first and zeroth 

moments of the crystal size distribution, has reached a relatively steady value. As shown in 

Figure 6, even after 4000 s, the distribution still has some remaining bimodality from the 

initial nucleation event, which is flushed out of the system after sufficient operating time 

(after 7000 s).
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Overall, students had mixed opinions on which operating mode was better. Depending on 

what scenarios were chosen for parameter sweep or grid-based optimization, the solutions 

varied slightly with respect to optimal size. Some students chose the method, which 

produced the largest crystals, whereas a few students did an analysis on the production 

rates of both methods, discovering that even with the startup period, the continuous MSMPR 

crystallizer would very quickly outproduce the batch system with the fixed unit sizes for this 

problem. Therefore, the slightly smaller crystal sizes seen with continuous crystallization 

could be accepted because the productivity of the continuous crystallizer greatly outweighed 

that of the batch case. This is just a small, but representative, insight into the variation of 

student responses over many projects and concepts tested throughout the course. It should 

be noted that individual unit operation optimization can result in suboptimal solutions for 

multiunit flowsheets. This fact was explained during the course lectures and was explored 

during the final project.

6 | INITIAL STUDENT FEEDBACK

Of the cohort of 16 students, 13 students responded to the survey. These 13 students 

were predominantly chemical engineers entering the course with varying levels of 

coding expertise. Previous coding experience was surveyed, with 5 of 13 respondents 

indicating they had the minimum coding experience required to complete their previous 

core coursework, and the remaining eight indicating they had some intermediate coding 

experience. As seen in Figure 7, with respect to Python approachability, the distribution 

of responses ranged from somewhat difficult to very easy to use, with the most common 

response being that Python was somewhat easy to use. Also shown in the figure, previous 

coding experience indicated a higher likelihood that Python was approachable for this small 

group of students. To mitigate difficulty with Python and improve students’ agency over the 

programming language, the instructors made a deliberate effort throughout the semester to 

encourage self-sufficiency in handling syntax errors during coding. From the 13 responses, 

11 found help online through Google and StackExchange, and of those 11, 10 listed Google 

or StackExchange as the first source of help. Of course, there were some issues that required 

instructor assistance, which was also reported in 9 of the 13 responses. However, only one 

student indicated the instructors as the first source of assistance.

Regarding student feedback on PharmaPy and Jupyter Notebooks in general, Table 

2 summarizes the responses from students on whether PharmaPy was helpful for 

understanding course material, and more broadly API process development. Also, all 

students agreed or strongly agreed that Jupyter Notebooks played a large role in their 

success throughout the course.

For PharmaPy, 10 of the 13 students agreed that the software helped in understanding 

pharmaceutical API process development, which would be considered a major goal for the 

course. Very similar results are seen for PharmaPy adding value beyond the core technical 

lecture materials, with 12 of 13 students agreeing. However, here one student did disagree, 

indicating that there is still room for improvement. A total of nine responses to written 

student feedback were given to the first free response question (Do you have any suggestions 
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to improve PharmaPy, or issues with PharmaPy that you had difficulty with?). Of those nine, 

select responses from three students are listed below:

Mostly just have better notation and comments for what certain lines of code do. 

Other than that, there were not any major issues I noticed that were from using 

PharmaPy itself.

Definitely create documentation for everything, as multiple times I found myself 

going through the source code just to understand syntax.

I think having very well-documented information about function calls would be 

helpful. For example, units can be hard to determine if the parameter is somewhat 

generic.

The major theme throughout the written feedback was the constructive criticism that 

documentation was lacking, leading to difficulty understanding exactly what the process 

models were doing, or what units of measure were required for kinetic constants as inputs. 

At the time PharmaPy was used in the Fall 2021 semester, detailed documentation was not 

yet available. These student responses encouraged the developers to dedicate more resources 

to create more comprehensive documentation of the software for the initial public release.

As shown in Figure 8, more than 80% of the students agreed that each project benefitted 

their understanding of pharmaceutical manufacturing, another major course goal. The 

semibatch reactor design appeared to be less accepted than the other projects, which may 

be attributed to it being the first project using PharmaPy and Python. However, all of the 

projects were well-received, and students felt that they learned about digital modeling and 

pharmaceutical manufacturing by completing these projects.

The second free response question (In terms of ChE55300, do you have any feedback or 

suggestions on PharmaPy’s inclusion in the core curriculum?) saw only six responses. Of 

those 6 responses, three are listed below.

I think it suited the course very well and I thought the projects were very 

intellectually stimulating.

I thought PharmaPy was a decent tool to understand pharma manufacturing and 

optimization.

Would be nice to consider a pharmapy intensive mini course or lectures (videos, in 

person) to help those with little to none coding experience.

Given these responses and others about Python proficiency, the mention of Python coding in 

the syllabus and some prerecorded mini lectures on using PharmaPy and Python in general 

are two aspects that will be added to improve ChE 55300 for future course offerings.

As shown in Table 3, most students responded that they would be likely or very likely to 

use PharmaPy and Python in the future. However, five students were neutral or unlikely to 

use PharmaPy in the future. As mentioned previously, the development of documentation 

and fine-tuning of tutorial materials likely would increase the number of students who 

would indicate to use PharmaPy in the future, and a study over multiple semesters of 
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CHE55300 student responses could identify if this initial semester was more difficult than 

future semesters for that reason.

7 | DISCUSSION

PharmaPy had been shown to be a powerful tool in research settings in the past [7, 8, 

21, 22], but now has been successful in the classroom as well. PharmaPy was originally 

written to provide an open-source modeling library that addressed both batch and continuous 

pharmaceutical modeling simultaneously. Subsequently, the dissemination of these materials 

to the public provided a unique opportunity to modernize a course in pharmaceutical 

modeling at Purdue that successfully encouraged many students to consider using software 

tools in future work. Jupyter Notebooks were already known to succeed in the engineering 

education community [4-6, 10, 13, 17, 20, 24, 26, 28], and this education application with 

PharmaPy follows that trend. Also, the idea of embedding software tools within each other 

in a Pythonic way was taught throughout the course. This represents a unique opportunity 

for students to weave together multiple tools for future analyses, which shows the utility 

of such a flexible software framework in an engineering setting. One important note is 

that the tools that come with a graphical user interface, such as the one discussed in [27], 

provide a future direction for PharmaPy that could lower the threshold for some users to 

pursue pharmaceutical modeling. As [27] reports, 96% of the students thought REAJA was 

user-friendly, which identifies that through future course offerings, there is still room for 

improvement with Python/PharmaPy’s 62% user-friendliness. However, the balance between 

coding autonomy (i.e., the ability to design and execute complex analysis frameworks 

without workarounds) and user-friendliness cannot be ignored. This trade-off may provide 

interesting future research directions for software tools used for teaching modeling to users 

with varying coding experience, especially in engineering settings.

8 | CONCLUSIONS

This was the first time PharmaPy was used in the classroom. Most students in ChE 55300 

found that using PharmaPy with Jupyter Notebook was approachable. Even further, most 

students found that Jupyter Notebook was a key part of success in their understanding of the 

software and of digital modeling. As shown in previous educational studies, the responses 

from this survey indicate that computational notebooks represent an excellent teaching tool 

for students with varying coding experience. These notebooks provide a mechanism for both 

student-led learning and instructor-led interactive lectures to combine learning coding and 

digital tools with technical manufacturing curriculum.

Also, exploring and adopting new digital tools and programming languages for digital 

analysis is an important skill considering the quick pace at which Industry 4.0 is evolving. 

Although searching for help with coding error messages, accessing material outside of 

lecture to aid in Python development, or digging through source code to understand a 

software tool are obvious to those experienced with coding, these do-it-yourself problem-

solving skills can be intimidating for students when learning new programming languages; 

especially when learning their first or second programming language. As described in 

the results, instructors bear some responsibility to foster this skill in students. Instructors 
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should encourage students to identify resources that can help their digital proficiency by 

themselves, while also encouraging direct interaction for problems that cannot be resolved 

through these do-it-yourself routes.

With this preliminary study, the survey results indicate that PharmaPy and Python are a 

promising alternative to traditional modeling and computation tools used within chemical 

engineering to teach digital design within pharmaceutical manufacturing. Students were 

able to utilize PharmaPy with little or no experience with Python. They also indicated 

that PharmaPy helped them understand and explore the digital space for pharmaceutical 

manufacturing. Finally, when compared with the previous course offering without PharmaPy 

(Spring semester 2020), there was no clear trend of student performance change. One 

possible inference is that PharmaPy is not overly difficult for students to use and is a 

reasonable modern replacement to the traditional tools used in the course, but further studies 

with other cohorts of students should be analyzed for a stronger conclusion. Even with this 

success, there is still room for improvement. There are plans to have in-depth documentation 

on public release to demystify user errors when developing digital pharmaceutical processes 

within PharmaPy, which would address thematic feedback from students. Also, utilizing 

PharmaPy over more offerings of the course would be helpful to solidify this initial feedback 

that PharmaPy is a promising tool for not only research, but education, in pharmaceutical 

manufacturing processes.
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FIGURE 1. 
Introductory material for the Jupyter Notebook tutorial on semibatch reactor design. 

Schematic, reaction schemes, mathematics, textual instructions, and code all rendered in 

one place. Jupyter Notebook mt’l (1)—Schematic, Chemistry, Math Equations, Code.
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FIGURE 2. 
Continuation of the tutorial shown in Figure 1 with a focus on coding blocks. This material 

was taken from the interactive lecture on semibatch reactor design, with an instructor 

guiding the students on how to fill in the missing coding pieces, for example, shown here is 

the definition of a dynamic inlet feed for the semibatch reactor unit. Jupyter Notebook mt’l 

(2)—Fill-in-the-blank coding example.
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FIGURE 3. 
Portion of a Jupyter Notebook tutorial for a continuous synthesis-crystallization process 

with batch filtration. Code for individual unit definition is kept in individual coding 

cells, promoting modular architecture. Jupyter Notebook mt’l (3)—More in-depth code, 

unit-operation definition.
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FIGURE 4. 
Various piecewise linear cooling profiles for crystallization operation. Cooling profiles to 

consider for Project 4 optimization.
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FIGURE 5. 
Average crystal size during operation of the mixed suspension-mixed product removal 

(MSMPR) crystallizer. Crystallizer dynamic mean size profile.
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FIGURE 6. 
Crystal size distribution in the mixed suspension-mixed product removal (MSMPR) after 

4000 s, and after it has reached a steady state with respect to crystal size distribution. Crystal 

size distribution at steady state for the optimal solution.
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FIGU RE 7. 
Students’ responses on the approachability of Python with previous coding experience 

indicated. Student feedback (1)—previous coding experience.
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FIGURE 8. 
Students’ responses on whether the specified project helped them better understand 

pharmaceutical manufacturing. From left-to-right: (i) semibatch reactor design filtration 

parameter estimation and scale-up crystallizer design (iv) final reactor-crystallizer-filter 

flowsheet comparison. Student feedback (2)—interest with each project involving 

PharmaPy.
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