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FOLFOX (oxaliplatin, fluorouracil and calcium folinate) is the first-line chemotherapy
regimen for colon cancer therapy in the clinic. It provides superior efficacy than
oxaliplatin alone, but the underlying mechanism remains unclear. In the present study,
pharmacomicrobiomics integrated with metabolomics was conducted to uncover the role
of the gut microbiome behind this. First, in vivo study demonstrated that FOLFOX exhibited
better efficacy than oxaliplatin alone in colon cancer animal models. Second, 16S rDNA
gene sequencing analysis showed that the abundance of Akkermansia muciniphila (A.
muciniphila) remarkably increased in the FOLFOX treated individuals and positively
correlated with the therapeutic effect. Third, further exploration confirmed A.
muciniphila colonization significantly enhanced the anti-cancer efficacy of FOLFOX.
Last, metabolomics analysis suggested dipeptides containing branched-chain amino
acid (BCAA) might be responsible for gut bacteria mediated FOLFOX efficacy. In
conclusion, our study revealed the key role of A. muciniphila in mediating FOLFOX
efficacy, and manipulating A. muciniphila might serve as a novel strategy for colon
cancer therapy.
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INTRODUCTION

Oxaliplatin is a diamine cyclohexane platinum derivative that shows better tolerance than cisplatin in
terms of nephrotoxicity (Yuan et al., 2020). Like other platinum compounds, oxaliplatin acts
primarily through binding with inter- and intra-strand cross-links in DNA, forming DNA adducts,
and thereby inhibiting cell DNA synthesis (Zimmermann et al., 2020). However, oxaliplatin reached
only ∼10% response rate when applied alone in clinical practice. Meanwhile, severe peripheral
sensory neuropathy occurs in ∼10% of patients after six treatment cycles and the rate reaches ∼50%
after nine cycles, which largely limited its further application (Cvitkovic and Bekradda, 1999; Zhang
et al., 2020). Therefore, oxaliplatin is often applied in combination with fluorouracil (5-FU) and
calcium folinate in the clinic (i.e., FOLFOX). According to the latest version of the National
Comprehensive Cancer Network (NCCN) guidelines (https://www.nccn.org/), FOLFOX is the first-
line chemotherapy regimen for advanced colon cancer (Abraham et al., 2020). Compared to
oxaliplatin alone, FOLFOX achieves prominently increased efficacy and attenuated toxicity.
Recent studies have suggested that gut microbiota, immune regulation, and tyrosine kinase Src
might influence the anti-cancer effect of FOLFOX (Parseghian et al., 2017; Dosset et al., 2018; Chang
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et al., 2020). However, the underlying mechanism for the
increased efficacy of FOLFOX remains unclear (Machover
et al., 1996).

An increasing number of studies suggested that the intrinsic
gut microbiome is one of the important factors affecting the
efficacy of chemotherapeutics (Liu et al., 2020; Zhang et al., 2020).
Pharmacomicrobiomics is an emerging field that investigates the
interplay of microbiome variation and drug response and
disposition (Doestzada et al., 2018). On the other hand, as the
significant role of intestinal flora in mediating drug efficacy is
gradually recognized, the application of microflora
transplantation alone or in combination with other drugs has
achieved surprisingly satisfactory outcomes in the clinic. For
example, fecal microbiota transplantation was used in the
treatment of pseudomembranous colitis and sepsis, which
could overcome traditional drug resistance and reach
distinguished therapeutic efficacy (Gupta and Khanna, 2017;
Panigrahi et al., 2017). In the case of FOLFOX, we speculated
that intestinal flora might also play key roles in mediating the
superior efficacy.

In the current study, pharmacomicrobiomics and
metabolomics were applied to investigate the involvement of
gut microbiota in the efficacy of FOLFOX. First, a colon cancer
xenograft model was established to compare the efficacy of
oxaliplatin and FOLFOX. Then, 16S rDNA gene sequencing
analysis and correlation analysis were conducted to screen
differential gut microbiota after oxaliplatin and FOLFOX
treatments. Further, bacterial colonization combined with
FOLFOX was performed to verify the influence of the focused

bacteria on the therapeutic effect. Finally, metabolomics analysis
was conducted to discover metabolites derived from gut
microbiota.

MATERIALS AND METHODS

Chemicals and Reagents
Oxaliplatin and Calcium Folinate Injection were both obtained
from Aosaikang (Jiangsu, China), and 5-FU Injection was
obtained from SunRise (Shanghai, China). Oxaliplatin and
FOLFOX Injection were prepared according to clinical
guidelines as well as existing studies (Iida et al., 2013; Yang
et al., 2016). Chemicals including O-Methoxyamine
hydrochloride, N-methyl-N-trifluoroacetamide (MSTFA) and
cortisone acetate were purchased from Sigma–Aldrich
(St.Louis, MO, United States). Vancomycin (MB1260),
Ampicillin (MB1507), Neomycin sulfate (MB1716) and
Metronidazole (MB2200) were purchased from Meilunbio
(Dalian, China).

Colon Cancer Cell
Mice colon cancer cell line CT-26 was purchased from the Cell
Bank of the Institute of Biochemistry and Cell Biology, Chinese
Academy of Sciences (Shanghai, China). The cells were
cultured in RPMI-1640 (Gibco, Grand Island, United States)
supplied with 10% Fetal Bovine Serum (Gibco, Grand Island,
United States) in a humidified atmosphere with 5% CO2

at 37°C.
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Colon Cancer Xenograft Model
Construction and Sample Collection
Five to six-week-old male BALB/c mice were provided by Beijing
Vital River Laboratory Animal Technology Co. Ltd. (License No.
SCXK 2019-0001). The mice were housed in a temperature-
controlled environment (24 ± 2°C) under a 12/12 h-dark/light
cycle. The study was conducted in accordance with the Guide for
the Care and Use of Laboratory Animals and approved by the
Animals Ethics Committee of China Pharmaceutical University
(License No: SYXK 2018-0019).

After acclimation for 1 week, approximately 1×106 CT-26 cells
were injected subcutaneously into the flank of mice. When the
tumors reached to about 100 mm3, mice were randomly allocated
to one of the groups (day 0), i.e., model for oxaliplatin (MO,
n � 8), oxaliplatin treatment (Oxaliplatin, n � 27), model for
FOLFOX (MF, n � 6), FOLFOX treatment (FOLFOX, n � 33).
Based on previous studies, oxaliplatin (10 mg/kg) was
intraperitoneally administrated twice a week (Yang et al.,
2016), and FOLFOX (oxaliplatin 6mg/kg, 2 h after 5-FU
50 mg/kg and Calcium Folinate 90m g/kg treatment) was
intraperitoneally administrated once a week (Robinson et al.,
2013; Limani et al., 2016). MO and MF individuals were treated
with corresponding vehicles. Individuals in the control group
(n � 7) received neither tumor cell injection nor drug treatment.
Tumor volume was monitored by a Vernier Caliper throughout
the whole experimental period. All the mice were sacrificed at the
end of the experiment (day 12), fecal samples were collected for
16S rDNA gene sequencing analysis and non-target
metabolomics analysis.

Tumor volume (TV), Relative tumor volume (RTV) and
inhibition rate were calculated by the following formulas:

TV (mm3) � A
2
× B2,

where A represents the longest diameter of tumor, and B
represents the shortest diameter;

RTV � Vt

V0
,

where V0 represents the tumor volume of day 0 (the day of
first oxaliplatin administration), Vt represents the tumor
volume of day t; Inhibition rate by Relative Tumor Volume
(%) � (1−RTVt /RTVm) × 100%, where RTVm represents the
RTV of model group, and RTVt represents the RTV of
treatment group.

Bacterial DNA Extraction andQuantification
Total bacterial DNA was isolated from fecal with Stool Genomic
DNA Kit (CWBIO, Beijing, China) according to the
manufacturer’s instructions. DNA quantification was
conducted by a NanoDrop 2,000 (Thermo Fisher Scientific,
Waltham, United States).

16S rDNA Gene Sequencing Analysis
The DNA integrity was checked by 1% agarose gels
electrophoresis. PCR amplification was performed spanning
the V3-V4 hypervariable regions of the bacterial 16S ribosomal

RNA gene with the conventional barcoded universal bacterial
primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and
806R (5′-GGACTACHVGGGTWTCTAAT-3′), and
sequenced with an Illumina Hiseq 2500 platform (Illumina,
San Diego, United States) (Holm et al., 2019; Wan et al., 2019;
Chen X. et al., 2020). Raw fastq files were filtered by the
Quantitative Insights in the Microbial Ecology software.
High-quality sequences were clustered into Operational
Taxonomic Units (OTUs) with the similarity threshold of
97% by USEARCH UPARSE (Feng et al., 2019). Then,
OTUs were classified into kingdom, phylum, class, order,
family, and genus levels referring to the Greengenes
database (Shikany et al., 2019), and eventually an OTU
table was created. The parameter α-Diversity (Chao1/
Shannon/Simpson) was used to reflect the bacterial gene
diversity. Wilcoxon rank-sum test was applied to identify
differential taxa between groups (taxa with p < 0.1 was
screened). Bacteria that existed in less than 50% samples
were excluded (Feng et al., 2019). Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States
(PICRUSt) was applied to predict the potential function of
microbial communities based on the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway database as previously
reported (Park et al., 2020). Data concerning the samples
included in this study are deposited in the NCBI BioProject
database under BioProject accession number PRJNA706146.

Bacteria Culture
Akkermansia muciniphila (A. muciniphila, ATCC BAA-835) was
purchased from American Type Culture Collection (Manassas,
VA, United States), the bacterium was cultured in Brain Heart
Infusion Agar at 37°C under anaerobic condition.

Animal Experiment Evaluating A.
muciniphila on FOLFOX Efficacy
A broad-spectrum antibiotics mixture namely ABX consisting
of Vancomycin (100 mg/kg), Neomycin sulfate (200 mg/kg),
Metronidazole (200 mg/kg) and Ampicillin (200 mg/kg) was
intragastrically administrated to mice every day for five
consecutive days (day −14 to −9) to deplete gut microbiota
and decrease its α-Diversity (Gong et al., 2019). The mice were
then treated with A. muciniphila by gavage at 1 × 108 colony
forming unit (cfu)/mouse every other day until the end of the
experiment (day −7 to 12). Fecal samples were collected at day
−7 and 0 for transplantation efficiency verification. CT-26 cells
(approximately 1 × 106) were injected subcutaneously into the
flank of mice at day −7. When the tumor volumes reached about
100 mm3, mice were randomly allocated to one of the following
groups and the day was marked as day 0: Model (n � 10),
FOLFOX (n � 10), ABX (n � 10), ABX-FOLFOX (n � 10), ABX-
Akk (n � 10), ABX-Akk-FOLFOX (n � 10). FOLFOX was
administrated once a week (day 2 and 9). Tumor volume was
monitored by a Vernier Caliper throughout the experiment. All
the mice were sacrificed at the end of the experiment (day 12),
tumors were removed and prepared for immunohistochemistry
analysis.
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Quantitative Polymerase Chain Reaction
Relative levels of A. muciniphila were quantified by qPCR (Tsoi
et al., 2017). Total bacterial genome DNA isolation and
quantification were conducted as mentioned above. Then,
qPCR was performed using SYBR Green Ι Master (Roche
Diagnostics, Basel, Switzerland) on a LightCycler 480
instrument (Roche) following the manufacturer’s instructions.
The levels of A. muciniphila were calculated according to the
2–ΔΔCT method (Wang et al., 2021). Information on PCR primers
was provided in Supplementary Table S1.

Histopathology
Tumors were fixed in formalin and embedded in paraffin. Sections
were then subjected for hematoxylin and eosin (HE) staining and
Ki67 immunohistochemistry detection as previously reported
(Hou et al., 2018).

Non-Target Metabolomics Analysis
Methods for fecal sample non-target metabolomics analysis were
presented in our previous studies (Zhang et al., 2017a; Gao et al.,
2019). Briefly, gas chromatography-mass spectrometry (GC-MS)

FIGURE 1 | FOLFOX exhibited better chemotherapeutic efficacy in colon cancer xenograft model than oxaliplatin alone. (A) Schematic of the pharmacodynamic
evaluation of oxaliplatin and FOLFOX in CT-26 colon cancer xenograft model. (B) Influence of oxaliplatin and FOLFOX on the body weight of tumor bearing mice.
Inhibition rate was calculated by (C) TV and (D) RTV. (E) Inhibition rate calculated by RTV at the end of the experiment (day 12). Data were presented as mean ± SD. The
p-values < 0.05 were considered statistically significant, *p <0.05, **p < 0.01.
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FIGURE 2 |Oxaliplatin and FOLFOX could reverse the disordered distribution of gut microbiota induced by tumor. (A, B) Change of α-Diversity estimated by Chao
1, Shannon and Simpson estimator. Taxonomic distributions of bacteria based on fecal 16S rDNA gene sequencing data at (C) phylum and (D) genus level after
oxaliplatin or FOLFOX treatment.
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analysis was performed on a GC-MS-QP2010 Ultra (Shimadzu Inc.,
Kyoto, Japan) with an Rtx-5MS capillary column (30.0 m × 0.25 mm
× 0.25 μm). Liquid chromatography-mass spectrometry (LC-MS)
detection was carried out on an ultra-flow liquid chromatography
system coupled with ion trap/time-off light hybrid mass
spectrometry (UFLC-IT/TOF-MS, Shimadzu Inc., Kyoto, Japan)
and compounds were separated by a Phenomenex Kinetex C18
column (100 × 2.1 mm, 2.6 μm). Details on sample preparation,
instrument parameters, metabolite annotation, quality control, and
data analysis were provided in the supporting information.

Statistical Analysis
Spearman’s correlation analysis was applied to test the
correlation between fecal bacterial abundance and
pharmacodynamic indices (IR, RTV, TV, and body weight)
or metabolite intensities. Data analysis and graph plotting were
performed by GraphPad Prism 8 software (GraphPad Software
Inc., La Jolla, CA, United States). The results were presented as
mean ± SD. Independent unpaired two-tailed Student’s t test
was performed to evaluate the differences between two groups,
unless elsewhere specified.

FIGURE 3 | A. muciniphila might be the key bacteria accounting for the superior efficacy of FOLFOX. (A) Venn diagram illustrating the shared/unique
differential gut microbiota OTUs after oxaliplatin and FOLFOX treatment. (B) Heatmap of Spearman correlation coefficient between pharmacodynamic
indices after FOLFOX treatment and abundance of changed bacterial genera. The intensity of the colors represents the degree of association between
the level of pharmacodynamic indices and abundance of changed bacterial genera determined by Spearman’s correlations. IR, Inhibition rate by
Relative Tumor Volume. (C) Relative abundance of A. muciniphila in the MF and FOLFOX groups. The p-values < 0.05 were considered statistically significant,
*p < 0.05, **p < 0.01.
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RESULTS

FOLFOX Exhibited Superior Therapeutic
Effect Than Oxaliplatin
In this study, a colon cancer xenograft model was constructed to
evaluate the anti-cancer effect of oxaliplatin and FOLFOX
(Figure 1A). Consistent with clinical practice and existing
literature (Cvitkovic and Bekradda, 1999; Hoff et al., 2012),
oxaliplatin caused more severe adverse effects than FOLFOX,
manifested by a larger body weight reduction (Figure 1B).
Moreover, the tumor development was more significantly
inhibited with FOLFOX treatment compared to oxaliplatin
throughout the whole experiment (Figures 1C,D). At the end
of the experiment (day 12), significant difference in tumor
inhibition rate (IR) (p < 0.01) was observed between the
FOLFOX and oxaliplatin treated individuals (Figure 1E).
Taken together, FOLFOX exhibited a superior therapeutic
effect than oxaliplatin alone in colon cancer xenograft mice.

Oxaliplatin and FOLFOX Showed Different
Influence on the Gut Microbiota
Many studies have illustrated important roles of gut microbiota in
mediating chemotherapy efficacy (Roy and Trinchieri, 2017),
primarily through affecting drug biotransformation directly
and interacting with the host indirectly (Vivarelli et al., 2019;
Zimmermann et al., 2019). To investigate the underlying

mechanism for the superior therapeutic effect of FOLFOX,
fecal samples were collected at the end of the experiment and
all the samples were subjected to 16S rDNA gene sequencing
analysis.

As is shown in Figures 2A,B, there was no significant
difference in the α-Diversity for the model, FOLFOX, or
oxaliplatin individuals compared to the controls indicated by
Chao1, Shannon, and Simpson. This suggested that no dramatic
changes in the overall microbial community richness were
induced by the tumor model construction or the anti-cancer
treatment. Notably, both FOLFOX, and oxaliplatin could reverse
the disorder of gut microbiota induced by tumor at phylum, class,
order, family, or genus level (Figures 2C,D and Supplementary
Figure S1). At phylum level (Figure 2C), the control group was
dominated by Bacteroidetes (55.27%), and Firmicutes represented
the dominant bacteria in the MO (Model for oxaliplatin, 58.36%)
and MF (Model for FOLFOX, 49.09%) groups, while the
abundance of Bacteroidetes was reversed in the Oxaliplatin
(48.00%) and FOLFOX (51.44%) groups. At the genus level,
21 significantly changed bacterial genera were obtained from
MO vs. Oxaliplatin group (Supplementary Figure S2), and 19
bacterial genera from MF vs. FOLFOX group (Supplementary
Figure S3). Moreover, according to LEfSe analysis based on
KEGG pathways, oxaliplatin could increase the carbohydrate
and nucleotide metabolism of gut microbiota (Supplementary
Figure S4A), while carbohydrate and lipid metabolism was
elevated in the FOLFOX group (Supplementary Figure S4B)

FIGURE 4 | A. muciniphila colonization significantly enhanced the anti-cancer effect of FOLFOX. (A) Relative abundance of A. muciniphila before (day −7) and after
(day 0) the transplantation. (B) Change of the body weight of tumor-bearing mice across the experiment. (C) Inhibition rate by RTV were calculated: Model vs. FOLFOX
(36%), ABX vs. ABX-FOFOX (48%) and ABX-Akk vs. ABX-Akk-FOLFOX (76%). (D) The percentage of Ki67 positively stained cells. Data were presented as mean ± SD.
The p-values < 0.05 were considered statistically significant, *p < 0.05, **p < 0.01.
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(LDA score > 2.0 with p < 0.05). Taken together, the 16S rDNA
gene sequencing analysis suggested an altered gut microbiota
composition and function after oxaliplatin and FOLFOX
treatment, implicating potential roles of the gut bacterial
community in chemotherapy outcome.

Here, changes in the distribution and function of gut
microbiota in tumor-bearing mice were observed after
oxaliplatin and FOLFOX treatment, but the actual role of gut
bacteria in the improved efficacy of FOLFOX requires further
exploration. For this purpose, we listed the significantly changed
bacteria from the comparisons of MO vs. Oxaliplatin and MF vs.
FOLFOX, respectively. As is shown in the Venn diagram
(Figure 3A), in total there were 29 bacterial genera, among
which 11 were shared by the both treatments, 10 and 8 were
unique to oxaliplatin and FOLFOX treatment, respectively.
Meanwhile, Spearman correlation analysis was performed to
reveal the correlation between differential bacteria and
chemotherapeutic efficacy (IR, RTV, TV, and Weight) after
FOLFOX treatment (Figure 3B and Supplementary Figure
S5). The abundance of RF32 and A. muciniphila was positively
correlated with the IR of FOLFOX (p < 0.05). According to
existing literature, A. muciniphila is known to associate with the
improved prognosis of cancer patients and shows beneficial

effects on metabolic disorders as well (Everard et al., 2013;
Routy et al., 2018). Considering A. muciniphila had the
highest fold change (33.55) between the MF and FOLFOX
groups among all the bacteria (Figure 3C and Supplementary
Figure S3), we conducted further experiments to validate its
function.

A. Muciniphila Colonization Significantly
Increased FOLFOX Efficacy
To verify the influence of A. muciniphila on FOLFOX efficacy, A.
muciniphila colonization combined with CT-26 colon cancer
xenograft model was constructed (Supplementary Figure S6).
The A. muciniphila transplantation was established referring to
the published studies and our previous exploration (Gong et al.,
2019). Three mice (labeled with Akk1, Akk2, Akk3) were
randomly selected to evaluate the bacterial transplantation
efficiency. As is shown in Figure 4A, the relative abundance
of A. muciniphila remarkably increased after the colonization,
indicating the success of model construction. First of all, FOLFOX
treatment caused decreased body weight of tumor bearing mice,
while A. muciniphila colonization did not influence it
(Figure 4B). After pharmacodynamic evaluation, we found

FIGURE 5 | Non-target metabolomics analysis of fecal samples from the MF and FOLFOX groups. (A–C) QCs clustered very well in the PCA score plots
constructed based onGC-MS, LC-MS (+) and LC-MS (−) data. (D–F)OPLS-DA score plots based onGC-MS (R2X: 0.474; R2Y: 0.929; Q2: 0.66), LC-MS (+) (R2X: 0.449;
R2Y: 0.938; Q2: 0.607) and LC-MS (−) (R2X: 0.342; R2Y: 0.925; Q2: 0.746) data, respectively. (G–I) Permutation test result (500 times) of OPLS-DA models constructed
from GC-MS, LC-MS (+) and LC-MS (−) data, respectively.
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that the anti-cancer effect of FOLFOX was increased from 36 to
48% by ABX pretreatment, suggesting the involvement of gut
microbiota in FOLFOX efficacy (Figure 4C). More importantly,
the inhibition rate of FOLFOX was significantly enhanced (from
48 to 76%) with A. muciniphila colonization (p < 0.05)
(Figure 4C). In addition, immunohistochemistry of Ki67 in
tumor tissues further supported the above conclusion
(Figure 4D). To summarize, our study confirmed that A.
muciniphila transplantation could improve the efficacy of
FOLFOX on colon cancer.

Metabolomics Analysis Revealed Potential
Gut Microbiota-Metabolite Axis
Responsible for FOLFOX Efficacy
It was well known that gut microbiota derived metabolites are
important functional readouts of the gut microbiome and play
essential roles in the action of chemotherapeutic drugs (Zhang
et al., 2017b; Jia et al., 2018). Therefore, fecal samples from MF
and FOLFOX groups were further subjected for non-target
metabolomics analysis referring to our previous studies (Zhang

et al., 2017a; Gao et al., 2019). In metabolomics, LC-MS is the
most commonly applied platform. However, GC-MS with
chemical derivatization is advantageous in acquiring polar
metabolites such as carbohydrates and organic acids that are
usually not well retained on a reverse phase column in LC-MS
(Beale et al., 2018). Therefore, both GC-MS and LC-MS were
utilized in the current study to achieve a wide coverage of
metabolites. A tight clustering of the QCs in the PCA score
plots was observed (Figures 5A–C), indicating good
reproducibility of the methods. OPLS-DA models based on
GC-MS and LC-MS were established to identify differential
features between the two groups (Figures 5D–F). Permutation
tests with 500 iterations were performed to confirm the OPLS-DA
models were not overfitting (Figures 5G–I). As a result, 45
significantly changed metabolites were annotated with VIP > 1
and p < 0.05 (Supplementary Table S2). Spearman correlation
analysis was performed to correlate the abundance of differential
bacteria and annotated metabolites. As is shown in Figure 6, the
relative level of stearoylethanolamide, arachidonic acid, and
docosahexaenoic acid was positively correlated with the
abundance of A. muciniphila, whereas phenylalanyl-valine,

FIGURE 6 | Non-target metabolomics analysis to explore the potential gut microbiota-metabolite axis for FOLFOX efficacy. The intensity of the colors represents
the degree of association between the relative level of metabolites and the abundance of changed bacterial genera by Spearman’s correlations. The p-values < 0.05were
considered statistically significant, *p < 0.05, **p < 0.01.
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leucyl-glutamate, isoleucyl-alanine, linoleic acid, octadecanedioic
acid, and lysoPE (18:2) had negative correlations with A.
muciniphila (p < 0.05). Interestingly, we observed three
branched-chain amino acid (BCAA) containing dipeptides
(i.e., phenylalanyl-valine, leucyl-glutamate, isoleucyl-alanine)
which might be potentially important mediators involving in
the superior efficacy of FOLFOX.

DISCUSSION

Although oxaliplatin is extensively applied for colon cancer
therapy, it was often combined with other chemotherapeutics
because of the severe adverse effects and poor prognosis (Kang
et al., 2020). In this study, oxaliplatin treatment exhibited a less
satisfied anti-cancer effect and decreased body weight compared
with FOLFOX, which is consistent with previous reports
(Panebianco et al., 2018; Heshiki et al., 2020). FOLFOX is a
regimen based on oxaliplatin in combination with 5-FU and
calcium folinate, but the mechanism of its high efficacy and low
toxicity is still unclear. Meanwhile, a limited response rate of
FOLFOX (about 30–50%) existed in clinical practice (Wiseman
et al., 1999), which is also confirmed in our study indicated by
significantly individualized pharmacodynamic results.
Importantly, emerging studies proposed
“Pharmacomicrobiomics is the Holy Grail to Variability in
Drug Response” (Sharma et al., 2019). Therefore, through the
pharmacomicrobiomics approach, the study eventually focused
on A. muciniphila for further verification.

A. muciniphila was firstly isolated from a sample of healthy
human feces by Muriel Derrien in 2004, which is recognized as
“beneficial bacteria” for its negative correlation with various
diseases (cancer, diabetes, inflammatory bowel disease, autism,
etc) (Ottman et al., 2017; Naito et al., 2018; Zhai et al., 2019;
Zhang et al., 2019). As previously reported, A. muciniphila
supplementation could restore the sensitivity of PD-1
inhibitor resistant individuals (Routy et al., 2018).
Meanwhile, Chen et al also emphasized that A. muciniphila
significantly improved the anti-tumor effect of cisplatin in Lewis
lung cancer mice through immune-regulation (Chen Z. et al.,
2020). In the current study, significantly increased efficacy of
FOLFOX was observed when combined with A. muciniphila
transplantation, which confirmed the importance of A.
muciniphila for FOLFOX response. In brief, our findings may
provide new insights into colon cancer therapy.

On the other hand, gut microbiota derived metabolites are
important reflections of the distribution and function of the gut
microbiome, which play pivotal roles in the interactions between
the host and gut microbe (Sharma et al., 2019). In this study, nine
metabolites were focused for their significant correlations with
the abundance of A. muciniphila. Notably, three of them are
BCAA containing dipeptides (i.e., phenylalanyl-valine, leucyl-
glutamate, and isoleucyl-alanine). Recently, researchers have
characterized the increased levels of dipeptides in various
cancers (Wu et al., 2013; Li et al., 2019; Ozawa et al., 2020;
Stolzenberg-Solomon et al., 2020). More importantly, Li et al
recruited 3,482 participants for metabolomics analysis, and

BCAA contained dipeptide glutamine-leucine was eventually
confirmed as potential metabolic markers for early-stage
colorectal cancer (Li et al., 2019). Thus, the negative
correlations between A. muciniphila and these dipeptides
observed in our study may reveal the possible gut microbiota-
metabolites axis for gut bacteria mediated FOLFOX efficacy.
Nevertheless, the relationship between A. muciniphila and the
dipeptides as well as the underlying signal pathways remain to be
elucidated.

Our study suggested the potential role of A. muciniphila in
FOLFOX response and revealed the possible gut microbiota-
metabolites axis which might be responsible for
mediating FOLFOX efficacy. However, there are some
limitations. First of all, FOLFOX was intraperitoneally
administrated to tumor bearing-mice and the period is only
12 days. An extended experimental duration simulating the
clinical practice in which several cycles of FOLFOX is applied
or analyzing samples from patients might strengthen the
clinical guidance. Meanwhile, the effect of A. muciniphila
on FOLFOX efficacy was confirmed by bacteria colonization
in our study, whether a decreased abundance of A.
muciniphila would have a negative impact needs to be
verified. Moreover, whether A. muciniphila colonization
could influence the efficacy of oxaliplatin as well, further
experiments are required. In addition, while up to 19
bacterial genera were initially identified to associate with
FOLFOX treatment, we only verified the function of A.
muciniphila which was the most significantly shifted.
Whether the rest were involved in the efficacy of FOLFOX
requires further explorations.

In this study, pharmacomicrobiomics approach was applied to
investigate the involvement of gut microbiota in the anti-cancer
effect of FOLFOX. As a result, A. muciniphila was selected for
functional verification based on the 16S rDNA gene sequencing
and correlation analysis results. The bacterial colonization
experiment demonstrated the key role of A. muciniphila in
FOLFOX efficacy. Metabolomics analysis further revealed a
gut microbiota-metabolite axis that might be responsible for
FOLFOX efficacy. In a word, this study highlighted the
importance of A. muciniphila for the therapeutic effect of
FOLFOX, providing a novel and effective strategy for clinical
colon cancer treatment.
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