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ABSTRACT: MS1-based label-free quantification can compare precursor
ion peaks across runs, allowing reproducible protein measurements. Among
bioinformatic platforms enabling MS1-based quantification, MaxQuant
(MQ) is one of the most used, while Proteome Discoverer (PD) has
recently introduced the Minora tool. Here, we present a comparative
evaluation of six MS1-based quantification methods available in MQ and
PD. Intensity (MQ and PD) and area (PD only) of the precursor ion peaks
were measured and then subjected or not to normalization. The six methods
were applied to data sets simulating various differential proteomics scenarios
and covering a wide range of protein abundance ratios and amounts. PD
outperformed MQ in terms of quantification yield, dynamic range, and
reproducibility, although neither platform reached a fully satisfactory quality
of measurements at low-abundance ranges. PD methods including
normalization were the most accurate in estimating the abundance ratio between groups and the most sensitive when comparing
groups with a narrow abundance ratio; on the contrary, MQ methods generally reached slightly higher specificity, accuracy, and
precision values. Moreover, we found that applying an optimized log ratio-based threshold can maximize specificity, accuracy, and
precision. Taken together, these results can help researchers choose the most appropriate MS1-based protein quantification strategy
for their studies.

KEYWORDS: accuracy, differential analysis, label-free quantification, log ratio, mass spectrometry, precision, proteomics, sensitivity,
specificity

■ INTRODUCTION

MS1-based methods are widely used for protein quantification
in shotgun proteomics, in view of their flexibility and cost-
effectiveness.1,2 Using these approaches, a peptide can be
successfully quantified across all samples of a data set, even if
identified by MS2 in a single sample. This can be pursued by
detecting and comparing MS1 ion current peaks of that
peptide across runs, thus allowing reproducible protein
measurements and minimizing missing values (MVs).3 One
of the most used tools for MS1-based quantitative proteomics,
MaxQuant (MQ), employs a “match between runs” function,
able to match precursor ion m/z and peak retention time
information among different sample runs and to infer the
peptide identity from run(s) with a valid MS2 identification.4

The Proteome Discoverer (PD) platform from Thermo Fisher
Scientific has recently introduced the “Minora Feature
Detector” node, designed as well to perform an efficient
MS1-based quantification by detecting, aligning, and matching
peaks across LC/MS runs, and by mapping them to the
corresponding peptide sequences identified by MS2. This tool
can provide two types of quantitative MS1-based measures,
namely the height of the most abundant peak at the apex of the

chromatographic profile (“intensity”) or the integrated peak
area (“area”). To date, no studies evaluated the performance of
PD’s Minora in comparison with other state-of-the-art protein
quantification tools.
Nonbiological variability of MS data is due to many factors,

including sample preparation and instrumental biases. Both
MQ and PD can carry out a chromatogram alignment step,
aimed to minimize variability in LC retention time. Several
postprocessing methods for label-free quantitative data
normalization have also been proposed to reduce systematic
biases and, therefore, increase robustness of downstream
statistical analyses.5,6 To this regard, MQ is able to apply an
optimized normalization strategy to the intensity profile,
providing an “LFQ” quantitative value (in addition to the
“raw” intensity value).7 PD users have as well the opportunity
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to apply a data normalization step, which can be based on total
peptide intensity or on the abundance of an internal reference
protein.
Here, we comparatively evaluated the performance of six

MS1-based label-free protein quantification methods available
in the MQ and PD suites, based on different measures
(namely, intensity or area of the precursor ion peak) and
including or not a normalization step. To this aim, we
reanalyzed a previously published proteomic data set where a
mix of human standard proteins was spiked at varying amounts
in a yeast lysate background. This allowed us to simulate
various differential proteomics experimental settings, covering
a wide range of protein abundance ratios and amounts.
Differential analysis results obtained with the six quantification
methods were compared in terms of sensitivity, specificity,
accuracy, and precision. A second data set containing a “blank”
sample (background only) was also analyzed to further
investigate the performance of the compared methods.

■ EXPERIMENTAL SECTION

Data Sets and MS Analysis Parameters

The main part of the study is a reanalysis of a proteomic data
set deposited on the ProteomeXchange repository with the
identifier PXD001819 and described by Ramus and
colleagues.8 The data set had been obtained by spiking a
proteomic standard composed of an equimolar mixture of 48
human proteins (UPS1) at nine different amounts into a
background (2 μg) of yeast cell lysate. According to the
original paper, LC−MS/MS analyses were performed using a
nanoRS UHPLC system (Dionex, Amsterdam, The Nether-
lands) coupled to an LTQ-Orbitrap Velos mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany). Samples were
loaded on a C-18 precolumn (300 μm ID × 5 mm) at 20 μL/
min using a 5% acetonitrile (ACN), 0.05% trifluoroacetic acid
solution. After desalting, peptides were separated in an
analytical C-18 column (75 μm ID × 15 cm), equilibrated in
95% solvent A (5% ACN, 0.2% formic acid (FA)) and 5%
solvent B (80% ACN, 0.2% FA). Peptide elution was carried
out at 300 nL/min flow rate, using a solvent B gradient as
follows: 5 to 25% for 75 min; 25 to 50% for 30 min; 50 to
100% for 10 min. The mass spectrometer was operated in data-
dependent acquisition mode using the XCalibur software.
Survey scans were acquired in the Orbitrap on the 300−2000
m/z range, with resolution set to 60 000. The 20 most intense
ions per survey scan were selected for CID fragmentation and
the resulting fragments were analyzed in the LTQ. Dynamic
exclusion was set to 60 s. A total of 27 raw files, corresponding
to nine different amounts of UPS1 proteins (namely 100, 50,
25, 10, 5, 1, 0.5, 0.25, and 0.1 fmol, named P1−P9) analyzed in
triplicate, were retrieved from the ProteomeXchange reposi-
tory and reanalyzed in this study.
A second data set, deposited in the ProteomeXchange

repository with identifier PXD003472 and described by
Jarnuczak and colleagues,9 was selected to further investigate
method specificity. Within the data set, we specifically choose
two samples, both containing 500 ng of yeast protein digest as
background: the first one (YH) with 25 fmol of spiked-in
human proteins (the same UPS1 standard used in the main
data set); the second one (Y) with no spiked-in proteins
(background proteins only). Four replicate runs were available
for each sample. According to the original paper, LC-MS/MS
analyses were carried out using a nanoAcquity UPLC system

(Waters, Manchester, UK) coupled with an LTQ-Orbitrap
Velos mass spectrometer. Peptide mixtures were loaded on a
75 μm × 25 cm, 1.8 μm particle size, C18 nanoAcquity
analytical column in mobile phase A (0.1% FA) and separated
with a linear gradient of 3−35% mobile phase B (0.1% FA in
ACN) at a flow rate of 300 nL/min over a 240 min gradient.
The instrument was operated in a data-dependent mode. A
survey scan was acquired over the 350−2000 m/z range at a
mass resolution of 30 000 and the top 20 most intense
precursor ions were subjected to CID fragmentation.
A complete list of MS parameters, retrieved from the

deposited raw files of the two data sets, is provided in Data Set
S1.

Protein Identification and Quantification

Protein identification and quantification were performed on
the whole data set using two search engine platforms:
MaxQuant (MQ; version 1.6.0.13)10 and Proteome Discoverer
(PD; version 2.4.1.15; Thermo Fisher Scientific). A given
protein was considered as “identified” when a valid MS2
spectrum was available for at least one of the peptides
belonging to that protein. Quantification was carried out
according to six different methods. MQ protein quantification
returned a (raw) intensity value (MQ-I) and an “LFQ”
(normalized intensity) value (MQ-L). PD provided for each
quantified protein the height of the most abundant peak at the
apex of the chromatographic profile (“intensity”) and the
integrated peak area (“area”); furthermore, quantitative values
were subjected (or not) to a normalization step, based on the
total peptide intensity of the samples. Therefore, the four PD-
based quantitative methods were named intensity (PD-I),
normalized intensity (PD-nI), area (PD-A), and normalized
area (PD-nA). The quantification value reported for a given
protein is calculated as the sum of the quantification values of
all peptides belonging to that protein.
A complete list of the parameters used in the MQ and PD

protein identification and quantification processes is provided
in Data Set S2. Specifically, the time windows for chromato-
graphic peak alignment and matching/mapping were set for
both platforms at 10 and 2 min, respectively, based on the
default or automatically calculated values reported by PD.
Moreover, False-Discovery Rates (FDRs) for peptide and
protein identifications were set to 1% with both platforms. The
protein database used was a combination of the reference
proteome of Saccharomyces cerevisiae (6049 sequences
retrieved from UniProtKB release 2020_04, Database_1.fasta)
and the sequences of the 48 human proteins included in the
UPS1 (https://www.sigmaaldrich.com/content/dam/sigma-
aldrich/life-science/proteomics-and-protein/ups1-ups2-
sequences.fasta, Database_2.fasta). The files named pro-
teins.txt and proteingroups.txt, generated by PD and MQ,
respectively, were used as input for statistical analyses. Proteins
not labeled as “IsMasterProtein” were filtered out from the PD
file, whereas proteins labeled as “reverse” were filtered out from
the MQ file. Protein lists with complete identification and
quantification data are provided in Data Set S3.
The protein identification/quantification files generated in

this study were deposited to the ProteomeXchange Con-
sortium (http://proteomecentral.proteomexchange.org) via
the PRIDE partner repository with data set identifier
PXD022169. The original mass spectrometry files were already
available in the ProteomeXchange repository with identifiers
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PXD001819 (main data set) and PXD003472 (second data
set).

Statistical Analyses

Correlation analyses were carried out comparing measured vs
expected protein abundance values for each quantitative
approach. Proteins quantified in less than half of the points
analyzed were filtered out from the analysis inputs. Proteins
were grouped into seven categories based on their Spearman’s
rank correlation coefficients (ρ), namely: “ρ ≥ 0.95”, “0.90 ≥ ρ
> 0.95”, “0.75 ≥ ρ > 0.90”, “0.50 ≥ ρ > 0.75”, “0 ≥ ρ > 0.50”,
“ρ < 0” and “too many MVs” (i.e., proteins filtered out due to
the high number of MVs), and the distribution of proteins in
each category was compared across the six quantification
methods considered.
Differential analyses of protein abundance were carried out

between sample groups at different protein amounts (three or
four replicates per sample). Concerning the main data set, the
following comparisons, corresponding to different values of
protein abundance log ratio (LR), were evaluated: P1 vs P2
(LR = 1), P1 vs P3 (LR = 2), P1 vs P4 (LR = 3.3, high
abundance range), P4 vs P6 (LR = 3.3, intermediate
abundance range), P6 vs P9 (LR = 3.3, low-abundance
range), P1 vs P9 (LR = 10). The comparison evaluated for the
second data set was YH vs Y.
Differential analyses were performed using the Perseus

computational platform (version 1.6.7.0),11 according to the
following steps: (i) data log-transformation: abundance data
were subjected to binary logarithmic transformation to
approximate a normal distribution, subsequently verified
using the Shapiro−Wilk test; (ii) protein filtering: features
not reaching 100% valid values in at least one group (for each
comparison) were filtered out; (iii) MV replacement: MVs
were replaced with a constant value, calculated for each
comparison as the binary logarithm of the minimum of the
distribution (approximated to the nearest integer) minus 1;
(iv) differential analysis: differential protein abundances
between groups were tested with a two tails Welch’s t test;
(v) correction for multiple testing: FDR was calculated based
on the p-value distribution, according to Benjamini and
Hochberg,12 considering q = 0.05 as the threshold of
significance.
A protein abundance LR was also computed as a quantitative

measure of the change in abundance of a protein between two
sample groups. It was calculated starting from the original
abundance data (neither log-transformed nor subjected to MV
replacement) as the binary logarithm of the ratio between the
mean abundances measured in two sample groups, according
to the following formula:

= [ + + ]LR log (MA CF)/(MA CF)2 1 2

where MA1 and MA2 are the mean protein abundances
measured in group 1 and 2, respectively, while CF indicates the
background correction factor. Specifically, a correction factor
equal to 1000 (close to the minimum quantitative value
measured) was added to eliminate discontinuity due to zero
values. The LR was calculated for those proteins which were
identified in all replicates of at least one sample group.
On the basis of differential analysis results, we computed the

number of true positives (TPs), false positives (FPs), true
negatives (TNs), and false negatives (FNs) for each
combination of quantification approach and comparison. The
criteria used to define TPs, FPs, TNs, and FNs are described in

Table S1 (before the application of the LR threshold described
below) and Table S2 (after the application of the LR threshold
described below). On the basis of these values, we calculated
four statistical metrics, namely sensitivity, specificity, accuracy,
and precision (the related formulas are provided in Table S3).
Balanced accuracy was also computed as the mean between
sensitivity and specificity.
Finally, we evaluated the effect of an additional filter based

on an LR threshold on the statistical metrics defined above.
Specifically, we evaluated the changes in sensitivity, specificity,
accuracy, and precision as a function of the LR, ranging
between 0 and 25 (in absolute value).

■ RESULTS AND DISCUSSION

Experimental Design

The experimental design of this study is summarized in Figure
1. The study aims to compare the performances of the label-

free protein quantification methods available in the MQ and
PD bioinformatic platforms. Six quantitative methods were
evaluated, two for MQ and four for PD. MQ analysis returned
a (raw) intensity value (MQ-I), corresponding to the peak
maximum over the chromatographic profile, for all quantified
proteins, as well as a normalized LFQ intensity value (MQ-L)
for most of the quantified proteins. PD analysis provided four
different quantitative values for each quantified protein:
intensity (PD-I), normalized intensity (PD-nI), area (PD-A),
and normalized area (PD-nA).
In the main part of the study, the six quantification methods

were applied to a publicly available data set,8 consisting in nine
samples (named P1−P9) run in triplicate. All samples
contained a constant background (yeast lysate proteome); a
mixture of 48 human proteins was spiked at different amounts
in each of the nine samples (with the protein amount analyzed
by MS ranging from 100 to 0.1 fmol). The results obtained
with the six quantification methods were compared in terms of
general quantitative metrics, dynamic range, reproducibility
among replicates, as well as correlation between expected and
measured values.
Then, the main data set was exploited to simulate a typical

differential proteomics scenario, where a small portion of the
proteome varies in abundance while most proteins remain

Figure 1. Schematic illustration of the experimental design of the
study. The “Spike fmol” column reports the amount of spiked-in
proteins contained in the different samples of the main data set,
expressed in fmol. The “LR” column lists the protein abundance log
ratio between groups expected for the spiked-in proteins in the six
sample comparisons evaluated for the main data set.
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constant. Accordingly, six different comparisons were designed
to investigate the performance of the quantitative methods
with different protein abundance LRs (ranging from 1 to 10)
and amounts. The results of the differential proteomic analyses
achieved with the six quantification methods were compara-
tively evaluated according to four different statistical metrics,
namely sensitivity, specificity, accuracy, and precision.
Finally, we chose a second data set9 containing a “blank”

sample (background only, no spiked-in proteins) to further
investigate the performance of the six quantification methods.
Specifically, two samples were selected from the data set: the
first one (YH) containing a human protein standard mixture
(25 fmol) spiked in a yeast lysate background, and the second
one (Y) containing no spiked-in standards (“blank”). This
allowed us to comparatively evaluate the six quantification
methods testing the above-mentioned statistical metrics in an
extreme scenario.

Identification and Quantification Metrics, Dynamic Range,
and Reproducibility

We initially compared the general performance of MQ and PD
in terms of identified and quantified proteins using the main
data set. Considering the whole data set, all 48 spiked-in
proteins were successfully identified and quantified by MQ and
PD, while the overall number of background proteins identified
and quantified varied based on the bioinformatic platform
used. Specifically, the number of background proteins
identified/quantified were 1015/1007 for MQ and 1223/
1209 for PD. Identification/quantification metrics in all
samples and replicates are provided in Data Set S4.
Figure 2 shows how the number of protein identifications

and quantifications achieved by the two platforms varies as a
function of the spiked-in protein amount. Detailed data at the
replicate level are provided in Data Set S5. Although the
number of identified proteins was globally comparable between
the two platforms, the quantification rate reached by PD from
P6 (1 fmol) downward was almost 2-fold compared to that
reached by MQ. PD showed a wider dynamic range, as it
achieved a quantitative value for over 68% of spiked-in
proteins, even at the lowest abundance point (compared to
35% for MQ). The ratio between identified and quantified
proteins observed for MQ was comparable to the results of
previous studies.13

Figure 3 shows the number of spiked-in proteins quantified
by both bioinformatic platforms or a single platform (or not
quantified at all) in the nine samples. Detailed data at the
replicate level (including both MQ-L and MQ-I results,
showing few slight differences) are provided in Data Set S6.
From P6 downward, most of the quantified spiked-in proteins
were either quantified by both platforms or by PD only, while

no more than 3 proteins on average were quantified exclusively
by MQ.
Also, we comparatively investigated the reproducibility of

quantification among sample replicates both in qualitative and
in quantitative terms. Under a qualitative perspective, we
calculated for each spiked-in protein the number of replicate
runs (out of three) per sample where it was consistently
quantified. As illustrated in Figure S1, MQ presented a
considerably higher number of MVs from P4 (10 fmol)
downward, compared to PD. In other words, the probability of
quantifying a low-abundance protein in a random run (with
that protein being identified in another sample included in the
data set) was higher for PD than for MQ. Of note, earlier
investigations described a quite high number of MVs reached
upon MQ-L analysis, when compared with other quantitative
tools.14,15 Under a quantitative perspective, we considered the
distribution of the abundance values measured by the six
methods and calculated their coefficients of variation (CV)
among replicates as a measure of variability (and, inversely, of
reproducibility). Boxplots in Figure S2, as well as detailed data
provided in Data Set S7, show that quantitative values obtained
using PD methods (in particular those employing normal-
ization) have a lower CV compared to MQ methods, at least
from P1 to P6. A lower CV could be observed in
normalization-based methods also when considering back-
ground proteins. The CV values measured here for MQ-L
quantification were consistent to those reported by other
groups in standard protein mixture16 and cell line13 experi-
ments.
Correlation between Measured and Expected
Quantitative Values

The correlation between measured and expected quantitative
values was also calculated (according to Spearman) for the six
quantification approaches. The list of the ρ values obtained for

Figure 2. Distribution of the number of spiked-in proteins identified (I) and quantified (Q) by MQ and PD in the nine samples of the main data
set. The average number of identified/quantified proteins (N = 3 replicate runs) is reported for each sample.

Figure 3. Distribution of the number of spiked-in proteins quantified
by MQ-L and/or PD in the nine samples of the main data set. The
average number of quantified proteins (N = 3 replicate runs) is
reported for each sample.
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each protein of the main data set is reported in Data Set S8.
The bar graph in Figure 4A shows the distribution of spiked-in
proteins in classes based on their ρ values, revealing that
correlation coefficients were globally close to one for all
methods. More specifically, MQ-I presented the highest
number of proteins with a very strong correlation (ρ ≥
0.95), followed by MQ-L and PD-A. Instead, PD-nI slightly
outperformed the other methods if considering proteins with ρ
≥ 0.90. Figure 4B reports scatterplots (observed vs measured
abundances) and regression lines of the three spike-in proteins
quantified in all sample replicates with all quantification

methods. In all cases, ρ was higher than 0.85. For two proteins
out of three, the top ρ was achieved by MQ-L.
We then focused on the low-abundance half of the data set

and calculated the correlation between measured and expected
quantitative values considering the samples from P5 (5 fmol)
downward. As shown in Figure S3A, the global performances
of the six methods were clearly poorer compared to those
observed for the whole abundance range. No correlation could
be calculated for more than 50% of the spiked-in proteins
when using MQ methods, as expected, due to a high number
of MVs; on the other hand, more than a quarter of the proteins
quantified with PD methods exhibited ρ < 0.5. Comparatively

Figure 4. (A) Distribution of spiked-in proteins in classes based on their ρ values, calculated according to Spearman’s correlation between expected
and measured quantitative values. Proteins with 14 or more MVs were classified in the “too many MVs” class. (B) Scatterplots of expected (x-axis)
vs observed (y-axis) abundances and regression lines for the three proteins quantified in all sample replicates of the main data set with all
quantification methods. Each plot displays the quantification values obtained according to a specific quantification method and reports the ρ value
calculated for each protein.
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Figure 5. Tukey’s boxplots showing the distribution of spiked-in protein abundance LRs obtained for the six comparisons performed within the
main data set using the six quantification methods. The expected LR for each comparison is indicated by the dotted gray line. The LR value was
calculated for proteins identified in all replicates of at least one sample group.

Figure 6. Statistical metrics of differential analysis results obtained from the six comparisons performed with the main data set. Five bar graphs are
reported for each comparison. The first bar graph on the left illustrates the distribution of true positives (TPs), true negatives (TNs), false positives
(FPs), false negatives (FNs), and proteins filtered out due to the high number of missing values (MVs) for the six quantification methods; spiked-in
(left) and background (right) protein data are reported. The remaining four graphs, from left to right, show values of sensitivity, specificity,
accuracy, and precision, respectively, reached by the six quantification methods.
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speaking, PD-nI and PD-A resulted as the best performing
methods in a low-abundance scenario, with PD and MQ
methods quantifying around 11 and 24 proteins with ρ > 0.5,
respectively. Figure S3B provides a zoom of the scatterplots
and regression lines presented in Figure 4B, focusing on the
lowest half of the data set. No consistent trends could be found
among the three selected proteins. For instance, the measured
ρ values were (approximately) 0.7 with MQ-L and 0.3 with
PD-A for one protein, while being 0.3 with MQ-L and 0.9 with
PD-A for another of the selected proteins.
To summarize, the correlation between measured and

expected protein amounts was globally rather good with all
quantification methods, although a clear drop in performance
could be observed for low-abundance points. In some cases,
both quantification tools were not able to detect differences
between low signals in a proper way, reaching a low-value
plateau; this might be due to background noise or contaminant
interference, as seen in other types of protein/peptide
measurement by mass spectrometry.17

Statistical Evaluation of the Quantification Methods in a
Differential Proteomics Experiment Simulation

In a further investigation, six comparisons between groups
were carried out within the main data set to simulate a
differential proteomics experimental setting. Each group
included three technical replicates of the same sample (i.e.,
having the same spiked-in protein amount). As illustrated in
Figure 1, the expected spiked-in protein abundance LR
between groups in the six comparisons ranged from 1 to 10,
with three comparisons presenting the same expected LR, but
at different abundance ranges.
Initially, we evaluated the distribution of the observed LR

values (in relation to the expected LR values) obtained with
the six quantitative methods for the six comparisons (Figure
5). In the P1 vs P2 comparison, we observed an overestimation
of LRs for MQ and non-normalized PD methods, while PD-nI
provided the best performance. We observed a similar pattern
of results both in the P1 vs P3 and P1 vs P4 comparisons,
where PD-nI and PD-nA exhibited the lowest deviation
between observed and expected LRs, while MQ-L provided the
widest variability. In the P4 vs P6 comparison the best LR
estimation was reached by PD-I and PD-nI, although the lower
abundance range led to an increased variability for all methods
(especially for MQ). A significant LR underestimation was
observed in the P6 vs P9 comparison, with all values being
close to 0, indicating that all quantification methods seem not
to work appropriately for low-abundance proteins. Finally, in
the P1 vs P9 comparison we saw a substantially increased
variability for all methods (probably due to the high amount of
MVs in P9); the median LR value measured by MQ-L was the
closest to the expected LR value. Considering background
proteins (Figure S4), all methods consistently displayed LR
values quite close to 0, with non-normalized methods
exhibiting a slight overestimation versus a slight under-
estimation of the normalized ones. In previous comparative
studies (not including PD’s Minora among the tools
evaluated), MQ-L was found to estimate the expected LR
values of spiked-in proteins better than other quantitative
methods.14,15 This further underlines the accuracy of the
estimation reached by Minora in this work. Complete FDR
and LR values calculated for each protein, in each comparison
and with each method are provided in Data Set S9.

Then, we parsed the differential analysis results to calculate
the number of TPs, TNs, FPs, and FNs (see Table S1 for
details) for each comparison. On the basis of these data, we
computed four statistical metrics (namely, sensitivity, specific-
ity, accuracy, and precision; see Table S3 for details) to
evaluate the performance of the quantitative methods in a
differential proteomics setting. Results are shown in Figure 6.
Considering the P1 vs P2 comparison (narrow LR and high

protein abundance), PD-nI and PD-nA clearly outperformed
the other methods in terms of sensitivity. Specificity and
accuracy were instead comparable among methods, whereas
MQ-L showed the higher precision value. With such a narrow
LR, the impact of data normalization, at least for PD, appeared
to be particularly relevant.
Passing to a LR value of 2 (P1 vs P3 comparison), the results

changed considerably. Sensitivity values were much higher
than in the previous comparison (almost all spiked-in proteins
were correctly identified as differentially abundant), as well as
comparable among methods, with a slight preference for PD-I
(reaching 100%). On the other hand, a general decrease in
specificity and accuracy, and even more in precision, was
observed compared to the LR = 1 condition; specifically, MQ-
L stood out for specificity, accuracy, and precision. Of note, the
dramatic reduction in the precision index was mainly driven by
the increased rate of FPs (especially for non-normalized PD
methods). These results clearly support the need of an
additional filter to reduce FP rate (discussed in detail in the
next paragraph).
A similar trend could be measured for the third comparison

(P1 vs P4, LR = 3.3), with MQ methods slightly decreasing in
sensitivity (mainly due to a higher number of FNs) and
normalized PD methods slightly decreasing in the other three
metrics (mainly due to a higher number of FPs). Three
methods (PD-I, PD-nI, and PD-A) reached 100% sensitivity,
while MQ-L outperformed the other methods in terms of
specificity (92%), accuracy (92%), and precision (35%).
The next comparison (P4 vs P6) maintained the same LR,

but at a lower abundance range. Globally, the number of FNs
raised considerably, resulting in a clear decrease in sensitivity.
A slight reduction of FPs could also be observed. PD-I was the
most sensitive method, while MQ-I reached the maximum for
specificity (99%), accuracy (96%), and precision (65%).
A low-abundance range was reached with the fifth

comparison (P6 vs P9), keeping LR constant (3.3). The
number of TPs and sensitivity dropped to zero (MQ), very low
(intensity-based PD methods), and low (area-based PD
methods) values. Precision tended to zero as well, whereas
the low number of FPs ensured almost unvaried values for
specificity and accuracy (except for PD-A) compared to the
previous comparison.
The last comparison reached a wider LR (10), correspond-

ing to a remarkable 1000-fold difference in spiked-in protein
abundance between the two groups compared. Sensitivity was
globally acceptable, with PD-A reaching 79% (against 50% of
MQ methods); on the contrary, the lower number of FPs led
MQ methods (as well as PD-I) to good levels of specificity and
accuracy. The relatively low sensitivity (at least when
compared to other comparisons with narrower LRs and
involving P1) might be explained by a considerable
quantitative variability in the P9 group, related to the presence
of MVs (and thus to their imputation), concomitant with the
application of a parametric statistical test.
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Specificity, sensitivity, and precision values measured in this
study after MQ-L analysis were globally in line with previously
published results, presented in comparison with those obtained
using labeling methods.16 Furthermore, a recent study showed
that MQ-L outperformed other quantitative tools (not
including PD) according to several statistical metrics,14

highlighting the value of the results achieved by the approaches
compared in this study.
Increasing Specificity, Accuracy, and Precision Using an
Optimized Log Ratio-Based Threshold

Since a relatively high number of FPs were observed in several
comparisons (likely due to background noise), we wondered
whether the application of an additional LR-based threshold
could help reduce FPs and therefore increase specificity,
accuracy, and precision of differential analyses. Accordingly, we
investigated how the four statistical metrics varied as a function
of LR threshold (ranging from 0 to 25). Results are shown in
Figure S5 (for detailed data see Data Set S10 and S11; an

updated definition of TPs, TNs, FPs, and FNs, as resulting
upon application of the LR threshold, is provided in Table S2).
As expected, a strong reduction in sensitivity was observed
around the expected LR value for each comparison. Instead, a
clear increase in specificity was seen as the LR threshold
increased, with a higher slope between 0 and 1. Accuracy trend
was generally characterized by a steep increase (usually within
LR = 1), followed by a plateau and a slight decrease. A
Gaussian-like trend of precision value as a function of LR
threshold was seen for the first three comparisons, with the
maximum close to the expected LR value; the comparisons
involving low-abundance points presented more complex and
irregular trends, further supporting a poorer quality of
measures at lower amounts.
On the basis of these results, we identified (for each

quantification method) the LR threshold maximizing each of
the statistical metrics evaluated, considering the average value
among the six comparisons performed within the main data set

Figure 7. Statistical metrics of differential analysis results obtained from the six comparisons performed with the main data set, upon application of
an optimized LR-based threshold. The LR threshold was set to 1.4 for MQ-I, 1.0 for MQ-L, 1.6 for PD-I, 1.3 for PD-nI, 1.6 for PD-A, and 1.1 for
PD-nA. The legends for the five bar graphs shown for each comparison are identical with those described for Figure 6.
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(Table S4). Since sensitivity and specificity reached their
respective maximum at very low and very high LR values, we
considered the maximum of balanced accuracy (mean between
sensitivity and specificity) to calculate the LR threshold
enabling the best balance between sensitivity and specificity. In
order to identify a univocal LR threshold for each
quantification method, we computed the mean of the three
LR thresholds maximizing, respectively, balanced accuracy,
accuracy and precision. Accordingly, the following optimized
LR thresholds were set: 1.4 for MQ-I, 1.0 for MQ-L, 1.6 for
PD-I, 1.3 for PD-nI, 1.6 for PD-A, and 1.1 for PD-nA.
The values obtained for each statistical measure after the

application of the optimized LR-based threshold are shown in
Figure 7. The reduction of the number of FPs was clear and
generalized, leading to a strong increase in specificity and
accuracy (and, to a lesser extent, in precision) at the cost of a
very slight loss in sensitivity. Consistently with our strategy,
also Ramus and colleagues described an increase of sensitivity
and precision upon the application of a z-score-based filter.8

Further Investigation of Quantification Efficiency Using a
Data Set with a “Blank” Sample

Finally, we searched for another data set containing a “blank”
sample, to further investigate the performance of the six
quantification methods in the extreme case in which the
abundance of the spiked-in proteins is zero. Within the data
set, a sample containing a human protein standard mixture
spiked in a yeast lysate background (YH) was reanalyzed along
with the “blank” sample (yeast background only, Y).
Initially, we were interested in checking how many human

proteins had been quantified in the “blank” sample. Although
none of the 48 human standard proteins was expected to be
present in sample Y, no less than 21 and 27 of them were
quantified on average in the “blank” sample replicates by MQ
and PD, respectively. To confirm that these “false”
quantifications were related to an incorrect alignment and
matching of chromatographic peaks and not to peptide
fragmentation and identification, we analyzed the “blank”
sample replicates alone (data not shown) and consistently
found no human proteins quantified with PD and a single
quantification with MQ.
Then, we performed a differential proteomics comparison

between YH and Y using the six quantification methods.
According to the differential analysis results, very slight
differences could be observed among methods (Figure 8).
Sensitivity was globally around 50% (the best result was 56%
for MQ-L, whereas the worst was 46% for MQ-I), while
specificity and accuracy were respectively 100% and 99% for all
methods; precision ranged between 81% (PD-nA) and 88%
(MQ-I). As noted above for the P1 vs P9 comparison of the
main data set, the relatively low sensitivity might be explained
by a MV-related variability in the Y group associated with the
application of parametric statistics.

Upon the application of the LR thresholds set for the main
data set (described in the previous paragraph), a slight
improvement in precision was seen (specificity and accuracy
were already excellent without applying any LR-based filter), as
illustrated in Figure S6. Complete results referring to the
second data set are available in Data Set S12.
In summary, the use of a data set containing a “blank”

sample revealed that both MQ and PD (with the latter
providing worse results) can detect a relatively high number of
“false” quantitative values when dealing with low/zero-
abundance proteins, suggesting possible biases in chromato-
graphic peak alignment and mapping with peptide sequences.
We cannot rule out that this might be partially due to
interference of human peptide traces from previous LC-MS
runs. Anyhow, this issue did not have a clear impact on
differential analysis performance, since specificity, accuracy,
and precision values were excellent, while sensitivity was
comparable with the results obtained with the main data set
when considering similar comparisons.

■ CONCLUSIONS
This study presents a comparative evaluation of six different
label-free approaches for protein quantification, available in the
PD and MQ suites. The overall performance of the Minora
quantification tool, embedded in the PD bioinformatic
platform, was at least comparable to that achievable using
the established MQ suite, especially when combined with data
normalization. More specifically, the following final consid-
erations can be made on the basis of the comparisons
described above:

• PD outperformed MQ in terms of quantification yield,
dynamic range, and reproducibility.

• All methods exhibited a good correlation between
measured and expected protein amounts, at least
considering medium/high-abundance points.

• PD methods including normalization were the most
accurate in estimating the protein abundance LR
between groups after differential analysis and displayed
a higher sensitivity when comparing groups with a
narrow LR.

• MQ methods generally reached slightly higher specific-
ity, accuracy, and precision values.

• Normalized approaches were globally more specific,
accurate, and precise compared to the corresponding
non-normalized ones.

• Applying an optimized LR-based threshold led to a
considerable increase in specificity, accuracy, and
precision, with a very slight loss in sensitivity.

• When dealing with low-abundance proteins, the quality
of measurements reached by both platforms was in some
cases quite poor, suggesting that features with a high
number of MVs or an average low abundance might be

Figure 8. Statistical metrics of differential analysis results obtained from the second data set. The legends for the five bar graphs are identical with
those described for Figure 6.
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discarded during data preprocessing, in order to reduce
the number of statistical tests and relax FDR correction
for multiple testing.

Taken together, our data provide useful indications for
scientists interested in applying an MS1-based label-free
protein quantification method to their studies.
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