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Background: The importance of gut microbiota in human health is being increasingly studied. Imbalances 
in gut microbiota have been associated with infection, inflammation, and obesity. Antibiotic use is the most 
common and significant cause of major alterations in the composition and function of the gut microbiota 
and can result in colonization with multidrug-resistant bacteria. Methods: The purpose of this review is 
to present existing evidence on how microbiota modulation and prevention of gut dysbiosis can serve 
as tools to combat antimicrobial resistance. Results: While the spread of antibiotic-resistant pathogens 
requires antibiotics with novel mechanisms of action, the number of newly discovered antimicrobial 
classes remains very low. For this reason, the application of alternative modalities to combat antimicrobial 
resistance is necessary. Diet, probiotics/prebiotics, selective oropharyngeal or digestive decontamination, 
and especially fecal microbiota transplantation (FMT) are under investigation with FMT being the most 
studied. But, as prevention is better than cure, the implementation of antimicrobial stewardship programs 
and strict infection control measures along with newly developed chelating agents could also play a crucial 
role in decreasing colonization with multidrug resistant organisms. Conclusion: New alternative tools to 
fight antimicrobial resistance via gut microbiota modulation, seem to be effective and should remain the 
focus of further research and development.
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INTRODUCTION

Humans are colonized with a very large number of 
microorganisms (bacteria, archaea, viruses, and unicellu-
lar eukaryotes) immediately after birth. These commen-
sal and symbiotic microorganisms, which were formerly 
believed to outnumber human cells 10-fold, but now 
their ratio is estimated closer to 1:1, comprise the host 
microbiota. [1,2]. The term microbiota was first described 
by Joshua Lederberg referring to the community of all 
microorganisms residing in the human body and their col-
lective genome [3]. The majority of colonizing bacteria 
are found in the gastrointestinal tract (GIT), with approx-
imately two-thirds of all microorganisms, residing in the 
colon [4]. The gut microbiota includes several hundred to 
more than 1,000 species [5]. The predominant organisms 
are anaerobes, followed by facultative anaerobes and aer-
obic bacteria and predominant phyla are Firmicutes and 
Bacteroidetes, followed by Proteobacteria, Fusobacteria, 
Cyanobacteria, Verrucomicrobia, and Actinobacteria [6].

It is known that the microbial populations residing 
in the GIT change throughout life in terms of both con-
tent and function [7,8]. Each individual has a unique GIT 
microbiota at genus and species level, influenced by host 
genetics, ethnicity, diet, early microbial exposure, envi-
ronmental conditions, lifestyle, and immune and overall 
health status. However, the composition of the human 
microbiota is fairly stable at the phylum level. The major 
phyla that dominate the human intestine are conserved 
between all individuals, although the proportions of 
these groups can vary [9]. Other factors that likely phys-
iologically contribute to microbiota variations between 
individuals include type of delivery, feeding pattern, diet 
and age-related changes in the GIT, namely low-grade 
inflammation [10]. Although the microbiota composition 
differs between individuals, certain functions encoded in 
the gut microbiota (core microbiota) are shared between 
individuals [11]. Some of these functions that are most 
important to the host are digestion of polysaccharides, 
vitamin production, lipid metabolism, regulation of the 
host immune response, and protection against pathogenic 
organisms [12].

Alterations in the composition of gut microbiota, 
known as dysbiosis, can be induced by several exogenous 
factors, with antimicrobial use probably being the most 
important one. Dysbiosis can promote disease, impair 
immune responses, but also facilitate colonization resis-
tance imbalance and a shift to predominance of resistant 
pathogens [13]. The problem of increasing antimicrobial 
resistance worldwide is an imminent public health threat. 
The discovery pace of new antimicrobials cannot catch 
up with the development and spread of novel resistance 
mechanisms. Hence, there is need for novel effective pre-
ventive or therapeutic approaches, at individual or pop-

ulation level, against these difficult to eradicate resistant 
pathogens.

The purpose of this review is to describe how anti-
microbial use affects the human microbiota towards the 
development of antimicrobial resistance and to present 
existing evidence on the role microbiota modulation 
strategies in reducing antimicrobial resistance potential.

METHODS/DATA SEARCH

Literature search included articles published in En-
glish, until April 2022, belonging to journals indexed in 
PubMed. We also searched the reference lists of the initial 
papers for further relevant articles.

THE IMPORTANCE OF MICROBIOTA IN 
HEALTH AND DISEASE

The importance of microbiota in human health is 
being increasingly recognized. The role of gut microbiota 
in several diseases has been well studied (inflammatory 
bowel disease, obesity, diabetes mellitus, irritable bow-
el syndrome, colorectal cancer) and its association with 
many others is currently being investigated [6,14]. Gut 
microbiota plays a fundamental role in the development 
of both local and systemic immunity. Specifically, it pro-
vides its host with a physical barrier to invading patho-
gens by competitive exclusion, and production of antimi-
crobial products and it also stimulates the host to produce 
various antimicrobial compounds [12,15-17]. Some of 
its other beneficial functions include digestion of plant 
polysaccharides and host glycans in the colon, production 
of essential vitamins, functional and structural maturation 
of the GIT and development of the intestinal surface area 
and microvasculature [18]. Moreover, a healthy gut mi-
crobiota influences the gut-brain axis and shapes stress 
related symptoms such as anxiety and pain [19] and is 
also implicated in appetite control [20].

Gastrointestinal microbiota contribute in the regula-
tion of gut homeostasis by maintaining epithelial barrier 
integrity, stimulating angiogenesis, inducing T regulatory 
cells, and by their anti-inflammatory and immunostimu-
latory properties [21]. Gut barrier function is also regulat-
ed by the brush border enzyme, intestinal alkaline phos-
phatase (IAP), whose absence has been associated in the 
pathophysiology of certain diseases such as inflammatory 
bowel disease, necrotizing enterocolitis, metabolic syn-
drome, and type 2 diabetes mellitus [22,23].

A quantitative, qualitative, metabolic, or locational 
imbalance of gut commensals, called dysbiosis [24], may 
be associated with diseases like dental plaque, bacterial 
vaginosis, psoriasis, atopic dermatitis, asthma, inflamma-
tory bowel disease, diabetes, obesity, colon cancer, and 
recurrent Clostridium difficile infection (RCDI) [25]. 
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Critical illness has also been associated with the loss of 
normal, “health promoting” bacteria [26].

EFFECT OF ANTIMICROBIAL USE ON THE 
MICROBIOTA AND RESISTOME

Disturbance in Composition and Function
Many factors can harm the beneficial GIT microbi-

ota, including antibiotic use, psychological and physical 
stress, radiation, altered GIT peristalsis, gastrointestinal 
infections, and dietary changes [27]. Antibiotic use is the 
most common and significant cause of major alterations 
in the composition and function of the normal gut micro-
biota [28] (Figure 1). Antibiotics cause serious alterations 
in gut microbiota which result in low levels of bacterial 
diversity, and expansions of the presence of certain taxa 
[29]. The potential for an antimicrobial agent to influence 
gut microbiota is related to its spectrum of activity, mode 
of action, potency, pharmacokinetics, dosage and length 
of administration [30], but is also associated with the 
existing microbiota of the host and the presence of anti-
microbial resistance genes in this community [31].

Altered diversity of gut bacteria can lead to irritable 
bowel syndrome or infections by gut pathogens such as 

C. difficile, inherently resistant to many antimicrobials 
[32]. Additional unintended consequences of antibiotic 
use on gut microbiota include the selection for a reservoir 
of bacterial antibiotic resistance (AR) genes, promotion 
of horizontal gene transfer between bacterial strains, 
increased populations of enteric bacteria through altered 
carbohydrate composition, depletion of vitamin-produc-
ing bacteria, changes in metabolic activities that contrib-
ute to nutrition and immune dysregulation [29].

Increased Susceptibility to Infections
Besides alteration of microbiota composition, antibi-

otics also interfere with local gut immune defenses [33]. 
For example, decreased IL-17 and INF-γ production, 
was observed in the small intestine and decreased num-
bers of Treg cells in the colon post antimicrobials [34]. 
Hence, dysbiosis is likely an effect not only of the bac-
tericidal properties of antibiotics, but also of the altered 
host-microbiota interactions [35]. Additionally, the gut 
microbiota induces mucin production, while antibiotics 
result in thinning of the mucus barrier thereby increasing 
susceptibility to bacterial invasion [36]. Alterations of 
the bacterial populations, which normally colonize the 
gut lumen, may result in intestinal infections either from 

Figure 1. Effect of antimicrobial use on gut microbiota.
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requires antibiotics with novel mechanisms of action, the 
number of new antimicrobials approved for therapy re-
mains very low [39]. For this reason, an intriguing alter-
native modality to combat antimicrobial resistance could 
be the modulation of the gut microbiota. We describe the 
most important interventions that have been employed 
for targeted as well as non-specific microbiota modula-
tion (Table 1).

Diet and Dietary Supplements
Dietary composition affects the makeup and genetic 

diversity of gut microbiota. The role of individual dietary 
components, predominantly the ratio and type of protein, 
carbohydrates, and fat intake in gut microbiota variation 
is increasingly being studied [47]. It was shown that the 
feces of omnivores contained more species of the Clos-
tridial clusters IV and XIVa, bacteria which are able to 
convert fiber to short chain fatty acids (SCFAs), compared 
with those of vegetarians and lactovegetarians [48,49]. 
SCFAs can regulate the expression of virulence genes of 
Salmonella spp. or E. coli in vitro [50]. Moreover, in a 
study where mice were fed a “Western” high-fat/simple 
carbohydrate or a low-fat/complex plant polysaccharide 
diet, the former had less bacterial diversity, a lower pro-
portion of Bacteroidetes and an increased proportion of 
Firmicutes compared to the group which received a low-
fat diet [51].

We know that limited bacterial diversity is consid-
ered an “unhealthy” microbiota [52], which is a risk 
factor for decreased colonization resistance. Elderly 
individuals who resided in long-term facilities and had 
limited variety in their diet, also had decreased gut bacte-
rial diversity, compared to their counterparts that resided 
in the community; this was associated with worse health 
status [53]. In another experimental model, a high-protein 
diet disrupted gut microbiota, suggesting that avoiding a 
high-protein diet could help preserve colonization resis-
tance [54]. On the other hand, a diet high in fibers was 
associated with a quicker restoration of the gut microbio-
ta after antibiotic exposure when compared to a high-pro-
tein diet [55]. There are also reports of specific substanc-
es such as konjac glucomannan (glucomannan derived 
from Amorphophallus konjac, a plant with edible tubers) 
with protective effects on the gut microbiota [56], and 
reports of Chinese dietary remedies that have a beneficial 
result on the gut restoration [57,58]. Other studies found 
that chemically created human milk oligosaccharides 
(HMOs), if given as a dietary supplement, could restore 
human gut microbiota by promoting the development of 
beneficial commensal bacteria (bifidobacteria) [59,60]. 
In addition, oral supplementation of IAP has been linked 
with the maintenance or even restoration of normal gut 
microbiota after its disruption [61]. In two experimental 

newly acquired pathogens or from the overgrowth and 
pathogenic potential of opportunistic microorganisms.

It is of interest that antibiotic exposure, by altering 
the gut microbiota and by changing the balance between 
species, as well as their interactions, can lead to an in-
crease in host-derived free sialic acid, which may result 
in easier invasion by pathogens such as Salmonella typhy-
morium [9,37]. Several studies have been performed in 
infants treated with antibiotics, especially preterm ones. 
Treatment with various antibiotics such as cephalexin, 
gentamicin, vancomycin, and erythromycin altered the 
normal bacterial microbiota of infants increasing the per-
centage of potentially pathogenic Enterobacteriaceae and 
lowering the amount of bacteria like Bifidobacteriaceae, 
Bacilli, and Lactobacillus which are part of the healthy 
microbiota [38].

Development of Antimicrobial Resistance
Abuse of antibiotics has led to the development of 

multidrug resistant organisms (MDROs). Infections with 
MDROs are a major cause of morbidity and mortality 
worldwide [39].

Microbes can develop defensive mechanisms and 
employ resistance mechanisms against the agents used 
for their elimination. The human gut microbiota harbors 
a large reservoir of resistance genes, named as the gut re-
sistome. Using metagenomic sequencing, Forslund et al. 
were able to detect resistance genes for 50 of 68 classes 
of antibiotics in 252 fecal metagenomes from individuals 
from different continents with an average of 21 AR genes 
per sample [40]. Additionally, Hu et al., again in an inter-
national cohort of 162 persons, identified a total of 1093 
AR genes [41].

The gut resistance reservoir encompasses naturally 
occurring bacteria, bacteria with acquired resistance 
genes and acquired bacteria, harboring resistance genes, 
which do not normally colonize the gut [42,43]. The lat-
ter may survive and dominate in the gut microbiota for 
a long period of time. Transfer of resistance genes or 
virulence traits between non-pathogenic and pathogenic 
isolates is possible although not common. One example is 
the vanB-type vancomycin resistance transposon, which 
is commonly carried by anaerobic gut commensals of the 
phylum Firmicutes [44], and can be transferred to En-
terococcus faecium, rendering it resistant to vancomycin 
[45]. As it has been shown from experimental studies but 
also in human cohorts, decreased gut microbiota vari-
ability can decrease colonization resistance and facilitate 
colonization of pathogenic and MDROs [33,46].

Gut Microbiota Modulation as a Tool Against 
Antimicrobial Resistance

While the spread of antibiotic-resistant pathogens 
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[74]. Although there are many systematic reviews with a 
recent umbrella review focusing on the role of probiotics 
on reducing infections among critically ill patients, there 
are no large studies examining the effect of probiotics 
on colonization resistance [75]. There are many studies 
showing their effectiveness on gram-positive bacteria, 
such as MRSA or VRE [76-78], while the outcome in 
gram-negative pathogens is disappointing [79,80].

The current need for the development of future 
probiotics is to determine which bacteria could enhance 
colonization resistance, as well as to design a more cus-
tomized probiotic administration [81]. Finally, as there 
are reports of clinically significant bacteremias with bac-
terial strains contained in probiotic supplements in ICU 
patients, it is advisable to use them with caution in this 
population [82,83], and always in the context of a clinical 
trial.

Fecal Microbiota Transplantation
Fecal microbiota transplantation (FMT), the trans-

plantation of stool from a healthy donor into the GIT of a 
patient, was first used 1,700 years ago, in China, to treat 
food poisoning and severe persistent diarrhea [84]. The 
first case of application of this method in the treatment 
of pseudomembranous colitis was described by Eiseman 
in 1958 [85]. In recent years, and most importantly after 
the epidemic of the hypervirulent BI/NAP1/027 strain 
in North America, donor feces infusion is used for the 
treatment of RCDI, showing excellent results with high 
cure rate, up to 90%, and minimal adverse effects [86,87].

FMT has shown important clinical success in elim-
inating C. difficile, in decreasing C. difficile relapses 
and in resolving C. difficile infection (CDI) associated 
symptoms. Patients suffering from RCDI have decreased 
diversity of bacterial species and reduced number of Bac-
teroidetes and Firmicutes phyla in their feces compared 
with patients experiencing the first episode of CDI or an-
tibiotic-associated diarrhea (AAD) [88]. The rationale of 
using FMT is to repopulate the colon with a healthy and 
balanced microbiota, characterized by wide diversity and 
to displace harmful bacteria, which colonize the gut [89].

It is believed that the transplanted microbiota may 
hinder colonization by pathogenic bacteria through 
changes in the luminal microenvironment and antagonism 
for nutrients and binding sites. Also, pathogenic bacteria 
can detect microbiota derived signals or host derived sig-
nals that have been modified by the microbiota, which 
alter their virulence or colonization potential [9]. Such 
mechanisms may also come into play for the inhibition of 
colonization by multi-drug resistant pathogens, although 
strong data to support such an argument is still lacking.

Also, there is evidence that changes in gut microbial 
metabolites may enhance host responses. Enrichment 
in secondary bile acids after FMT is associated with al-

mouse models, oral supplementation of IAP was effec-
tive in preventing infections from Salmonella enterica 
(serovar Typhimurium), C. difficile, and possibly other 
pathogens, by restoring commensal gut microbiota [62]. 
An ongoing cross-sectional study, named the Wisconsin 
microbiota study, will provide us with fruitful informa-
tion about the relation between diet, gut microbiota, and 
MDROs [63]. Although, relevant studies in humans are 
still lacking, modulation of diet in order to increase bacte-
rial diversity could serve as an adjuvant strategy in order 
to decrease antimicrobial resistance.

Prebiotics and Probiotics
Prebiotics are defined as “selectively fermented in-

gredients that allow specific changes, both in the com-
position and/or activity in the GI microbiota that confer 
benefits upon host well-being and health” [64]. Prebiotics 
are considered to stimulate lactobacilli or bifidobacteria 
growth and have been associated with beneficial effects 
in human metabolism through modulation of the gut mi-
crobiota [65,66]. In a murine study, diet supplementation 
with SCFAs or fructooligosaccharides caused a shift in 
microbiota composition [67]. Similarly, fructooligosac-
charides were found to result in a reinstitution of the gut 
microbiota [68], while other inulin-type probiotics were 
found to inhibit the disruption of gut microbiota by pre-
serving the commensal bacteria [69].

Probiotics are “live microorganisms which when 
administered in adequate amounts confer a health benefit 
on the host” as defined by the World Health Organization 
[70]. The most commonly used probiotics are strains from 
the genera Lactobacillus and Bifidobacterium. According 
to Rijkers et al., probiotics exert their beneficial role in 
three ways, namely by interfering with the growth or sur-
vival of pathogenic microorganisms in the gut lumen, by 
improving mucosal barrier function or mucosal immune 
system and by having an effect on the systemic immune 
system and other organs [71]. Lactobacillus plantarum 
and L. acidophilus were shown to reduce enteric counts 
of multidrug resistant enteroaggregative E. coli in an ex-
perimental murine study [72]. However, because of the 
great interindividual variability of gut microbiota, and 
the different mechanisms with which dysbiosis promotes 
disease, more research is needed to determine the most 
suitable probiotic for each dysbiosis-related condition.

More recently, engineered probiotics have been em-
ployed for targeted P. aeruginosa eradication in two stud-
ies. These probiotics are programmed to detect quorum 
sensing molecules and upon detection of the pathogen, 
they express antimicrobial compounds or activate other 
previously engineered mechanisms in order to eradicate 
their target [73]. Apart from probiotics, phages have also 
been the focus of genetic engineering to enable targeted 
killing of bacteria with AR or specific virulence traits 
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fect for FMT. The only RCT directly addressing MDRO 
decolonization found only a small, non-significant reduc-
tion in ESBL and CRE colonization after the combina-
tion of antibiotics and FMT [110]. FMT appears to be a 
safe and potentially effective intervention in eradicating 
Carbapenem-resistant Enterobacteriaceae (CRE) coloni-
zation. In a recent systematic review, which included ten 
studies (one RCT) CRE decolonization rate was estimat-
ed 61.1% and 78.7% at 1 month and 6-12 months after 
FMT, respectively [99].

FMT appears to have few, often mild to moderate 
and self-limiting side effects including nausea, fever, ab-
dominal tenderness, constipation or diarrhea, cramping, 
and abdominal distension [111]. However, there have 
been reports of serious adverse events such as death, aspi-
ration pneumonia, viral and bacterial infections, transient 
relapse of irritable bowel disease, and adverse effects 
related to the procedure such as sore throat and bowel 
perforation [112]. Furthermore, a possible transmission 
of Van B resistance gene after FMT has been described 
[113]. Last, concerns about long-term outcomes of FMT 
are not negligible. Remarkably, FMT was safe even when 
used in severely immunocompromised patients, such as 
those with hematological malignancies receiving inten-
sive chemotherapy and immunosuppressive drugs and 
in patients with allogeneic HSCT; bacteremia due to 
pre-FMT colonizing bacteria was potentially prevented 
[114-116]. In summary, FMT may protect against intes-
tinal translocation of MDROs preventing bloodstream 
infections [100] independently of gut decolonization, as 
several studies showed a reduction in the incidence of 
clinical infection post-FMT in MDRO-colonized patients 
[109,114,116,117]. Currently, there are several ongoing 
studies designed to evaluate the role of FMT in decolo-
nization from MDROs (NCT03479710, NCT04181112, 
NCT04759001, NCT04431934, NCT04593368, 
NCT02922816, NCT04583098, NCT04759001, 
NCT02543866, NCT04146337, NCT04746222, 
NCT0418874, www.clinicaltrials.gov).

Antimicrobial Compounds for Targeted Therapy
Several gut microbial strains produce bacteriocins, 

which are antimicrobial compounds of high-potency and 
low toxicity [118]. The role of a gut derived bacteriocin, 
namely thiuricin CD, has been used in a CDI mouse mod-
el and showed that it was able to inhibit the growth of C. 
difficile, without a major shift in the gut microbiota [119]. 
Such molecules could represent future targeted therapeu-
tic interventions in order to minimize unnecessary use of 
broad-spectrum antimicrobials [52].

Selective Digestive Decontamination (SDD) and 
Selective Oropharyngeal Decontamination (SOD)

terations in regulatory T cells [90]. FMT has also been 
associated with restoration of IgA mediated interactions, 
and T cell populations, even reversing a CDI-related 
immunosenescent phenotype [91]. Murine models also 
suggest a beneficial immune response associated with 
FMT [92,93]. In one study, ceftriaxone-induced dysbio-
sis leading to intestinal membrane compromise and in-
creased inflammatory cytokine release, was restored and 
cytokines decreased, three weeks post-FMT [94]. Simi-
larly, FMT reversed intestinal lymphocyte and dendritic 
cell depletion induced by broad spectrum antibiotic use in 
an experimental model [95].

Considering the favorable outcome in C. difficile 
infection and relapse other applications of FMT were ex-
plored, especially in diseases where dysbiosis is thought 
to play an important role [96]. Moreover, researchers 
observed that persons who underwent FMT for RCDI 
also had more favorable outcome regarding gut decolo-
nization from resistant pathogens [96]. In a case report 
by Crum-Cianflone et al., a critically ill patient received 
FMT to treat C. difficile colitis. After FMT the investiga-
tors observed that except for the resolution of symptoms 
related to CDI, the patient was also decolonized from 
MDROs and had reduced episodes of sepsis, health care 
associated infections. and antibiotic use [97]. The ratio-
nale for using FMT to eradicate MDROs is that especially 
for gram-negative pathogens, the gut is their main reser-
voir and thus elimination from the GIT may lessen the 
risk for systemic infection due to bacterial translocation 
and may eradicate them from other body sites [97]. Ev-
idence on the role of FMT for MDRO decolonization or 
treatment is increasing [98-106]. However, findings are 
often contradictory and due to the lack of large random-
ized trials (RCTs), assessment of long-term effectiveness 
is limited.

Recent studies have revealed that the normalization 
of gut microbiota following successful FMT resulted 
in reduction of the load of AR genes and this favorable 
outcome was maintained during the follow up period 
[91,105]. Furthermore, in a single center prospective 
study, FMT was associated with a decrease in the number 
as well as downregulation of the expression of antibiotic 
resistant genes (Van A, blaKPC, blaNDM, blaOXA). Data from 
metagenomic sequencing showed that after FMT, there 
was depletion of 95 resistance genes, including important 
quinolone, β-lactamase, ESBL, and vancomycin resis-
tance genes [107]. There is also evidence from a murine 
study, suggesting that transplantation of a healthy micro-
biota displaced both VRE and Klebsiella pneumoniae 
from the intestinal lumen despite an increased coloniza-
tion burden [108]. In a small study by Wei et al., FMT 
resulted in cure of MRSA enteritis in five patients and in 
eradication of gut MRSA colonization [109].

However, RCTs have yet to prove such beneficial ef-
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Choice of antibiotics: The type and spectrum of the 
antimicrobial used, is crucial for the development of 
resistance. For example, the unnecessary and prolonged 
use of anti-anaerobic antimicrobials has been related to 
a higher possibility of colonization with MDROs [135]. 
Avoiding anti-anaerobic antimicrobials and using nar-
row-spectrum agents whenever possible is beneficial to 
the human’s gut microbiota as fewer commensals will be 
affected [131,136].

Duration of antimicrobial therapy: Duration of an-
timicrobial therapy has been linked to greater alterations 
of gut microbiota. Shorter courses of antibiotics result 
in fewer microbiota disruptions and easier restoration of 
gut microbiota, which is supported by many studies in 
neonates [131]. Also, the use of ceftriaxone for more than 
14 days was correlated with higher number of resistance 
genes in gut microbiota [137]. However, the duration of 
treatment with fluoroquinolones was not associated with 
the emergence of resistant E. coli strains in another study 
[138]. Similarly, in patients receiving antibiotic therapy 
for gram-negative bacteremia, shorter antibiotic treat-
ment (7 days) was not associated with reduced resistant 
genes in the gut microbiota or with better preservation 
or restoration of the gut microbiota when compared with 
longer treatment courses (14 days) [139].

Dose: Lower doses of antibiotics have been associat-
ed with a lower or slower risk of acquiring resistant genes 
[140]. However, appropriate dosing is very important 
since antimicrobial underdosing can also lead to resis-
tance.

Route of administration: Several animal studies 
showed that oral antibiotics disturb the gut microbiota 
more prominently than parenterally administered ones 
(IV or IM) [140,141]. However, recently published ev-
idence had contradictory findings, showing that oral or 
parenteral route of administration has the same disrupting 
effect on gut microbiota [142]. Besides, the key compo-
nents contributing to the preservation of gut microbiota 
after antibiotic exposure relies on the latter’s properties, 
like bile excretion, intestinal absorption, and presence 
in the feces [143,144]. Antibiotics that are not or only 
partially fecally and/or biliary excreted, may have fewer 
repercussions on the gut microbiota and therefore pre-
vent the augmentation of gut resistome [131,136]. Fur-
thermore, alternative modes of administration, like local 
application of antimicrobial agents, nebulized agents, 
or even transdermal administration lack strong data 
from clinical trials to support their non-inferior efficacy 
and beneficial profile for the gut microbiota [131,136]. 
Another interesting approach is to limit the use of oral 
antibiotics on discharge, granted there is clinical amelio-
ration, after the completion of an inpatient intravenous 
antibiotic treatment course [136].

SOD was introduced as a theoretical concept of pre-
venting bacterial pneumonia by altering the pharyngeal 
flora and averting the aspiration of these pathogens [120] 
while the idea of SDD was first introduced as a means 
to reduce the load of resistant pathogens colonizing the 
digestive tract of ICU patients [121]. The first study 
which showed a reduction of MDRO gut colonization 
was a single-center study [122] followed by two larger 
randomized cross-over studies supporting that SOD/SDD 
resulted in a significant decrease of resistant pathogens 
on the gut [123,124]. However, a more recent random-
ized multicenter study revealed that the use of SOD/SDD 
did not lead to a change in the gut resistant pathogens 
[125]. An explanation of the different outcomes between 
the first three and the last study could lie in the rates of 
antimicrobial resistance in the participating ICUs. There-
fore, SOD/SDD could be used in patients hospitalized 
in ICUs with low rates of resistant bacteria while more 
research should be done in centers with high prevalence 
of antimicrobial resistance [126]. However, a substantial 
concern raised from the use of SDD was the emergence 
of colistin-resistant Enterobacteriaceae in the gut of 
SDD-treated patients [127].

PREVENTION OF DYSBIOSIS

We describe here the main approaches of preventing 
gut dysbiosis which are also presented briefly in Table 2.

Control Measures
A first step to prevent gut colonization with MDROs 

in hospitalized patients is the application of effective 
infection control measures [103,128,129]. Measures to 
prevent in-hospital transmission of MDROs include pri-
marily hand hygiene followed by environmental clean-
ing, contact precautions, or even topical decolonization 
processes for some pathogens (ie, MRSA) [130].

Antimicrobial Stewardship and the Gut 
Antimicrobial Resistome

A significant approach in order to avoid major dis-
ruptions in gut microbiota is rationalizing antimicrobial 
use by implementing effective antimicrobial stewardship 
strategies [102,103,129,131].

Several large meta-analyses have supported that 
antimicrobial stewardship programs (ASPs) lead to a 
decrease in infections with MDROs [129,132,133] while 
others found the correlation inconclusive [134]. One 
large meta-analysis concluded that ASPs are successful 
in reducing MDRO colonization, independently from 
infection, and this success was higher when ASPs were 
combined with good infection control protocols (ie, hand 
hygiene) [129].
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in protecting gut microbiota and preventing colonization 
of resistant strains, without compromising therapeutic 
efficacy and safety [161,163].

CONCLUSION

Modulating the gut microbiota through diet, probiot-
ics, prebiotics, antimicrobial molecules, phage therapy, or 
FMT could be a promising intervention in the fight against 
antimicrobial resistance. Strategies that will selectively 
inhibit pathogens without causing major shifts in the gut 
microbiota are most desirable. As our knowledge of the 
host-microbiota interactions, microbial quorum sensing 
and the drivers of colonization resistance will expand, a 
more targeted modulation of the microbial communities 
may be possible, allowing for a selective elimination of 
pathogenic bacteria and a less disruptive approach to gut 
microbiota homeostasis.

Funding: This work was not funded.
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