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Abstract: Alpha and beta particulate radiation are used for non-treated neoplasia, due to their ability
to reach and remain in tumor sites. Radium-223 (223Ra), an alpha emitter, promotes localized cytotoxic
effects, while radioactive gold (198Au), beta-type energy, reduces radiation in the surrounding tissues.
Nanotechnology, including several radioactive nanoparticles, can be safely and effectively used in
cancer treatment. In this context, this study aims to analyze the antitumoral effects of [223Ra]Ra
nanomicelles co-loaded with radioactive gold nanoparticles ([198Au]AuNPs). For this, we synthesize
and characterize nanomicelles, as well as analyze some parameters, such as particle size, radioactivity
emission, dynamic light scattering, and microscopic atomic force. [223Ra]Ra nanomicelles co-loaded
with [198Au]AuNPs, with simultaneous alpha and beta emission, showed no instability, a mean
particle size of 296 nm, and a PDI of 0.201 (±0.096). Furthermore, nanomicelles were tested in an
in vitro cytotoxicity assay. We observed a significant increase in tumor cell death using combined
alpha and beta therapy in the same formulation, compared with these components used alone.
Together, these results show, for the first time, an efficient association between alpha and beta
therapies, which could become a promising tool in the control of tumor progression.

Keywords: alpha–beta therapy; bone cancer; radium-223 dichloride; radioactive gold nanoparticles;
nanomicelles

1. Introduction

Targeted radionuclide therapy consists of a modality of treatment in which a biological
effect is obtained by the energy absorbed from the radiation emitted by the radionuclide.
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Targeted radionuclide therapy is an optimal choice for intractable tumors [1]. There are
the following three types of particulate radiation used for targeted radionuclide therapy:
(i) alpha particles, (ii) beta particles, and (iii) Auger electrons. According to Ersahin et al. [2],
radionuclides that emit α- or β-particles are preferred for the treatment of bulky tumors. At
the same time, Auger electrons can be used for small clusters of cancer cells or small tumor
deposits. For therapeutic purposes, radiations with high linear energy transfer (LET), such
as α- and β-particles, are preferable [3].

The efficacy of systemic or localized cancer therapy rests on the ability of the radionu-
clide to reach and remain in the tumor site specifically. In this regard, to increase the
targeting and efficacy of radionuclide therapy, the use of these radionuclides, inserted
into nanoplatforms, may represent an innovative and effective approach, since nanopar-
ticles (NPs) may (i) improve the bioavailability, (ii) increase the biological half-life, and
(iii) increase the targeting of the drug to a specific location [4–8].

198Au is a beta-emitting radioisotope that has attracted interest in cancer molecular
therapy using radioactive nanoparticles [9]. The mean penetration range (0.38 mm) in the
tissue of beta particles of 198Au (0.960 MeVmax) is sufficient to destroy tumor cells [10].
The beta particles have less energy than alpha particles; consequently, they cause less
cytotoxicity. However, they can travel longer distances in circulation and damage DNA,
promoting tumor cell death [11,12]. Moreover, 198Au has an appropriate half-life (2.7 d) for
clinical application [10]. Thus, the conversion of 198Au into [198Au]AuNPs is an attractive
option, due to its ability to produce varying forms and sizes, enabling direct delivery to the
cancer site [13,14].

During the last decades, gold nanoparticles (AuNPs) have exhibited promissory
potential for the diagnosis of various cancers and treatment, owing to their morphological
and structural nature, surface chemical modification, and tunable sizes and shapes [15–21].
Gold is considered the most stable nanoparticle and the most common among noble
metals [22,23]. It has low cytotoxicity compared to other metals, high targeting ability,
well-established synthesis, easy surface functionalization, and high bio-interaction with
target cells, and is non-immunogenic [16,22,24–30]. Furthermore, AuNPs can be prepared
in different shapes, such as sticks, cages, and spheres, with sizes ranging from 1 nm to over
100 nm [31]. Conversely, [198Au]AuNPs are of increasing interest for local radionuclide
therapy, as a powerful alternative for cancer treatment [15,32–35]. Several reports have
shown the excellent efficacy of [198Au]AuNPs for tumor shrinkage in vivo [14,36–38].
Furthermore, [198Au]AuNPs have the advantage of being nanosized radioactive particles,
with the potential to contain several radioactive atoms in a single particle [39,40].

On the other hand, 223Ra is an alpha emitter radionuclide that emits high-energy
alpha particles (95.3% (energy range of 5.0–7.5 MeV)) of short range (<100 µm/10 µm
cell diameters) [41–44], which endows short penetration, promoting localized cytotoxic
effects, with shallow toxic effects on the adjacent healthy tissue [45–47]. In addition, it is
a radionuclide with a suitable half-life (11.4 d) for clinical application [19,48]. The 223Ra
acts as a calcium mimetic drug, predominantly accumulating in the bone tissues of the
body [48,49]. In fact, 223Ra is currently used in targeted alpha therapy (TAT) for treating
bone metastases of patients with metastatic castration-resistant prostate cancer [50]. For this,
223Ra is used in the chemical form of the salt radium dichloride ([223Ra]RaCl2). However,
the preparation of stable formulations of 223Ra is challenging because of the daughter
isotopes’ recoil energy and different chemical properties [51]. Although there are carriers
reported for 223Ra, such as liposomes [52], iron oxide [53], hydroxyapatite particles [54],
etc., there is still a problem in the radionuclide formulation for generating a stable product,
with targeted distribution to organs and tissues [48]. In this sense, the use of 127-Pluronic
nanomicelles works as an alternative to solve this problem.

Nanomicelles are well known as excellent drug delivery systems; they have structural
stability, nanoscale size, and low cytotoxicity, and they minimize drug degradation, reduce
adverse side effects, and improve drug bioavailability [55,56]. Nanomicelles are colloidal
structures (5–100 nm), formed from amphiphilic monomers, with a hydrophilic outer layer
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and a hydrophobic inner layer. Due to their amphiphilic nature, normal nanomicelles
encapsulate hydrophobic drugs and aid in their delivery. In the case of reverse nanomi-
celles, they can be used to encapsulate hydrophilic drugs, acting as better candidates for
their delivery [57,58]. However, only a few works have reported the use of nanomicelles
for the delivery of therapeutic radionuclides. These radionuclides were yttrium-90 and
iodine-131 [59,60], which decay by the emission of beta particles. Thus, there are a lack of
nanomicelles radiolabeled with alpha radionuclides, such as 223Ra.

Recently, our group developed 127-Pluronic-[223Ra]RaCl2 nanomicelles, which showed
dose–response behavior and an increased effect on osteosarcoma cells, decreasing the cell vi-
ability more efficiently [61]. Pluronic F127 is a poly(ethylene oxide)–poly(propylene oxide)–
poly(ethylene oxide) (PEO–PPO–PEO) copolymer, which forms micelles with the PPO as a
hydrophobic core and the terminal PEO segment acting as a hydrophilic corona [62–64].
Polymeric micelles, such as Pluronic®, have often been employed for sustained release,
achieving an extended circulation time, favorable biodistribution, reduced side effects, and
lower toxicity [55,65]. Nanomicelles, compared with conventional micelles, are more ther-
modynamically stable in physiological solutions [57]. Moreover, nanomicelles show some
advantages, due to their great biocompatibility, simple preparation methods, effectiveness,
and low cost [66].

Therefore, the need to modernize antitumor therapies has led to nanotechnology
aiming to develop a more effective, safe, and efficient therapy. In this sense, radioactive
nanoparticles have gained attention, due to their physical-chemical characteristics, bio-
compatibility, low toxicity, bioconjugation, and few side effects for healthy cells [67–69].
Although the literature states that alpha therapy is superior to beta therapy [1], there is a
total absence of combined alpha and beta therapy for tumor treatment.

This study has developed a nano-formulation of [223Ra] RaCl2 co-loaded with [198Au]
Au nanoparticles for bone cancer therapy.

2. Materials and Methods
2.1. Reagents

Phosphate-buffered saline (PBS), PBS/EDTA, bovine serum albumin (BSA), methy-
lated bovine serum albumin (mBSA), Freund’s complete adjuvant, Histopaque reagent,
Pluronic F127, TRAcP staining kit, DMEM high glucose, fetal bovine serum, M-CSF,
RANK-L, doxorubicin, chloroauric acid, tetraoctylammonium bromide, sodium borohy-
dride, Poly-D-lysine, glucose, HEPES, calcium, and magnesium were purchased from
Sigma Aldrich (St. Louis, MO, USA).

2.2. Preparation of the Nano-Formulations
2.2.1. [198. Au]AuNPs

Firstly, the non-radioactive AuNPs were synthetized. A gold solution of chloroauric
acid (HAuCl4 × 3H2O, 0.20 mmol, 78.7 mg) and tetraoctylammonium bromide (TOABr,
0.23 mmol, 126.8 mg) was dissolved in 10 mL of methanol and stirred vigorously for
24 h. Then, sodium borohydride (NaBH4 2 mmol, 75.6 mg, dissolved in 5 mL of ice
water) was added to the mixture, and the solution was kept under stirring for 8 h. After
this period, the reaction mixture was ultracentrifuged (40,000 rpm for 30 min) to remove
insoluble agglomerates. The supernatant was collected and concentrated by evaporation.
The agglomerates were precipitated by adding ethanol to the solution. Then, the precipitate
was extracted with minimal amounts of methanol several times. The AuNPs solution was
precipitated again by ethanol and finally dried under a vacuum.

Then, the samples of AuNPs were irradiated in the Argonauta reactor (power of
340 W), installed at the Nuclear Engineering Institute (Brazil). The sample was irradiated
for 12 h using a thermal neutron flow of 3.2 × 109 n·cm−2·s−1, with an average thermal
neutron energy of 0.0025 eV.
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2.2.2. Radioactivity Measure

The induced activity of the [198Au]AuNPs was determined by a gamma spectrometry
system with a hyper pure germanium (HPGe) detector, with a diameter of 6.2 cm, height
of 4 cm, active volume of 41.1 cm3, and detection efficiency of 30%, coupled with the
multichannel analyzer (Canberra) with 8192 channels. The detector was surrounded by a
lead cover of ~10 cm to reduce the background. The measurement time for each sample
was standardized at 3600 s (1 h).

2.3. Detection Efficiency

The detection efficiency for each energy type was determined using a LabSOCS
(Laboratory SOurceless Calibration Software, Canberra, Australia). It was necessary to
design the geometry used in a computational environment by inserting the physical,
chemical, and geometric characteristics of the sample holder used, the detector, and the
sample to be analyzed. After entering the data, the software simulates the detection
efficiency values for each energy type. Then, the software doubles the number of voxels
and repeats the entire process, obeying the convergence criteria and comparing the values
until satisfactory convergence is obtained.

2.3.1. Nanomicelles of [223Ra]RaCl2
A mass of 1 mg/mL of [223Ra]RaCl2 was weighed and added to the micellar dispersion

of Pluronic F127. The system was gently stirred using a magnetic bar (Magnetic Stirrer,
IKA, C-MAG HS-7) for 5 min and then processed for 5 min using an ultrasonic processor
(UP100H, Hielscher, power: 100%, cycle: 1) in an ice bath at 10 ◦C.

2.3.2. Nanomicelles of [223Ra]RaCl2 Co-Loaded with [198Au]AuNPs

A mass of 1 mg/mL of [223Ra]RaCl2 (~3.7 MBq) was weighed and added to the micellar
dispersion of Pluronic F127. The system was gently stirred using a magnetic bar (Magnetic
Stirrer, IKA, C-MAG HS-7) for 5 min and then processed for 3 min using an ultrasonic
processor (UP100H, Hielscher, power: 100%, cycle: 1) in an ice bath at 10 ◦C. Then, a mass
of 500 µg of [198Au]AuNPs (~1.85 MBq) was added and ultrasonicated for more than 2 min
using an ultrasonic processor (UP100H, Hielscher, power: 100%, cycle: 1) in an ice bath at
10 ◦C.

The dispersion of polymeric nanomicelles containing [223Ra]RaCl2 and [198Au]AuNPs
was stored in an amber flask for further analysis, in refrigeration (2–8 ◦C).

2.4. Characterization
2.4.1. Particle Size

The particle size, size distribution, and polydispersity index (PDI) of the [198Au]AuNPs,
127-Pluronic-[223Ra]RaCl2 nanomicelles, and nanomicelles of [223Ra]RaCl2 co-loaded with
[198Au]AuNPs were determined by dynamic light scattering (DLS), using Zetasizer Nano
ZS (Malvern Instruments, Malvern, UK). Measurements were performed in triplicate at
25 ◦C, and the laser incidence angle in relation to the sample was 173◦ using a 12 mm2

quartz cuvette. The mean ± standard deviation (SD) was assessed.

2.4.2. Atomic Force Microscopy

The AFM analysis was performed using a Multimode 8 microscope (Bruker, Santa Bar-
bara, CA, USA). The following three central characterizations were conducted: [198Au]AuNPs,
127-Pluronic-[223Ra]RaCl2 nanomicelles, and nanomicelles of [223Ra]RaCl2 co-loaded with
[198Au]AuNPs. ScanAsyst-Air probes (Bruker, Santa Barbara, CA, USA) were used for
these measurements, with a nominal tip ratio of 2 nm and a nominal spring constant of
0.4 N/m. However, the actual spring constant was calibrated by the thermal noise method.
A drop of all sample solutions was deposited in freshly cleaved mica. The scanning mode
used was PeakForce Tapping Quantitative Nanomechanics (QNM), with a resolution of
256 × 256 lines per scan and a scan frequency of 0.5 Hz.
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2.5. In Vitro Cytotoxicity
2.5.1. Cell Culture

The SaOS-2 cells, a human osteosarcoma cell line, were plated in a density of
1 × 104 cells/well for 24h. The cells were maintained in a DMEM/D-glucose (high glucose)
medium, supplemented with 10% FBS, penicillin (0.5 U/mL), and streptomycin (0.5 mg/mL).
The cells were incubated at 37 ◦C in a humidified atmosphere of 5% CO2. The cells were
grown to confluence in 75 cm2 culture flasks and were detached by brief treatment with
trypsin (0.1%)/EDTA (0.01%).

2.5.2. Proliferation Assay

The SaOS-2 cells (1 × 104 cells/well) were seeded and allowed to attach for 24 h.
The cells were divided into the following three groups: pure [223Ra]RaCl2, 127-Pluronic-
[223Ra]RaCl2+[198Au]AuNPs nanomicelles, and 127-Pluronic-[223Ra]RaCl2 nanomicelles,
in the following three distinct activities: C1: 37 kBq, C2: 18.5 kBq, and C3: 4.44 kBq. The
radioactivity ratio of 223Ra to 198Au in the co-loaded nanomicelles is 8.4. After 24 h, the
cells were washed, and the number of attached cells was determined using the MTT assay.

2.5.3. Statistical Analysis

Statistical analysis of the data was performed using the GraphPad Prism 7.3 software
(GraphPad Software, San Diego, CA, USA). The differences between the means of the two
groups were compared using the one-way ANOVA test and confirmed by the Bonferroni
post-test. The results are presented as means ± standard deviation (S.D.). The values of
* p < 0.05, ** p < 0.01, *** p < 0.005, and **** p < 0.0001 will be considered statistically significant.

3. Results
3.1. Synthesis and Irradiation of Gold Nanoparticles (AuNPs)

Once synthesized, the AuNPs were irradiated under pre-established conditions, and
were then able to produce the [198Au]AuNPs. The gamma spectrum obtained with the
HPGe detector shows the specific range (412 KeV) of 198Au, as shown in Figure 1.
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Figure 1. Gamma spectrometry using an HPGe detector from the 198Au, corroborating the efficacy of
the irradiation process in forming [198Au]AuNPs.

3.2. Particle Size

The DLS analysis of [198Au]AuNPs showed the formation of very small nanoparticles
(13 nm) with very high monodisperse behavior, confirmed by the PDI (0.106) (Figure 2).
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3.3. Atomic Force Microscopy

The morphology of the [198Au]AuNPs was investigated by AFM (Figure 3). Figure 3A
shows an AFM height image of a cluster of [198Au] Au nanoparticles. The particles have
a homogeneous morphology, with the maximum height on the map reaching 19.7 nm,
in regions where the NPs are then superimposed, as evidenced in the three-dimensional
image (Figure 3B). The cross section shown in Figure 3C corresponds to the three NPs
marked with a dashed light blue line in Figure 3A. The diameters are 14.4 nm, 10.7 nm, and
13.1 nm, considering the horizontal distance taken from the width at the half-height of the
particle. These values follow the DLS results.
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3.4. Nanomicelles of [223Ra] RaCl2
3.4.1. Particle Size

The dynamic light scattering analysis of [223Ra]RaCl2 nanomicelles showed a mean
size of 149 nm, with a PDI of 0.0096 (±0.0002), corroborating the monodispersive value
(Figure 4).

Polymers 2022, 14, x  7 of 15 
 

 

 
Figure 3. Topographic AFM image of [198Au]AuNPs. (A) Heightmap of AuNPs cluster and (B) its 
respective three-dimensional visualization. (C) Cross section over the AuNPs in the corresponding 
region, highlighted in image (A) (dotted line in light blue). The particle diameter observed in the 
AFM measurements is compatible with the values observed in the DLS measurements. 

3.4. Nanomicelles of [223Ra] RaCl2 

3.4.1. Particle Size 
The dynamic light scattering analysis of [223Ra]RaCl2 nanomicelles showed a mean 

size of 149 nm, with a PDI of 0.0096 (±0.0002), corroborating the monodispersive value 
(Figure 4). 

 
Figure 4. Dynamic light scattering analysis of [223Ra]RaCl2 nanomicelles, showing a mean size of 149 
nm and a PDI of 0.0096 (±0.0002). 
Figure 4. Dynamic light scattering analysis of [223Ra]RaCl2 nanomicelles, showing a mean size of
149 nm and a PDI of 0.0096 (±0.0002).

3.4.2. Nanomicelles of [223Ra]RaCl2 Co-Loaded with [198Au]AuNPs

The DLS analysis of [223Ra]RaCl2 co-loaded with [198Au]AuNPs showed a larger size
than the pure [223Ra]RaCl2, due to the incorporation of [198Au]AuNPs. The mean diameter
was 296 nm. In addition, it was possible to observe an increase in the PDI value, probably
due to the intermicellar destabilization caused by alpha and beta emission, as shown in
Figure 5.
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Figure 5. Dynamic light scattering analysis of [223Ra]RaCl2 co-loaded with [198Au]AuNPs, showing
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3.5. Atomic Force Microscopy of Nanomicelles Systems

The analyses of the ultrastructure of pure nanomicelles (empty), [223Ra]RaCl2 nanomi-
celles, and [223Ra]RaCl2 co-loaded with [198Au]AuNPs nanomicelles were performed by
AFM, and compared with the 127-Pluronic blank nanomicelles sample (Figure 6). Figure 6A
shows a 127-Pluronic white nanomicelles film. Polymeric chain structures, with a diam-
eter of 263.4 ± 12.1 nm, are observed. The maximum film height is 359 nm. The three-
dimensional representation of Figure 6 is shown in Figure 6D–F, in which the absence of
globular structures is evident.
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Figure 6C shows the AFM height image of the [223Ra]RaCl2 co-loaded with [198Au]AuNPs
film. Once again, it is possible to observe globular structures, with a maximum height
of 1.225 µm. Such structures suggest the filling of 127-Pluronic nanomicelles with 223Ra
and 198Au. Depressions in the micellar film are also present in this sample (Figure 6F).
Since these holes are only observed in the 127-Pluronic-[223Ra] and [223Ra]RaCl2 co-loaded
with [198Au]AuNPs films, they can be promoted by emitting alpha and beta particles
from the radioactive nanomicelles. However, this emission is not able to destabilize the
nanomicelles clusters.

3.6. In Vitro Cytotoxicity

The cytotoxicity effect on human osteosarcoma of the nanosystems developed is
expressed in Figure 7. It is possible to observe a very potent effect, mainly in 127-Pluronic-
[223Ra]RaCl2+[198Au]AuNPs nanomicelles and 127-Pluronic-[223Ra]RaCl2 nanomicelles,
when compared with the pure [223Ra]RaCl2, demonstrating that the combination of alpha
and beta therapy increases the cytotoxicity effect.



Polymers 2022, 14, 1405 9 of 13Polymers 2022, 14, x  10 of 15 
 

 

 
Figure 7. In vitro cytotoxicity results in human osteosarcoma SaOS-2 cells exposed to different 
nanosystems, using three different activities (C1: 37 kBq, C2: 18.5 kBq, and C3: 4.44 kBq) for each of 
the following formulations: [223Ra]RaCl2+[198Au]AuNPs nanomicelles (in red), [223Ra]RaCl2 nanomi-
celles (in pink), and [223Ra]RaCl2 (in yellow). ** p < 0.01, *** p < 0.005. 

4. Discussion 
Radionuclide therapy is a safe and effective approach to treat primary cancers, as 

well as distant metastases. In this sense, beta- or alpha-emitting radionuclides have been 
primarily used [70]. However, there are a lack of radiopharmaceuticals that deliver sim-
ultaneous alpha and beta radiations, which would have remarkable potential for treating 
tumors. Alpha and beta particles have high energy in different magnitudes; consequently, 
they have different mean penetration ranges in tissue, for depositing their energies. 
Hence, alpha-/beta-labeled radiopharmaceuticals would combine the long-range crossfire 
effect of beta radiation with the DNA localization effect of alpha radiation, among other 
effects [1]. In addition, successful treatment would be reached using lower doses of alpha 
and beta emitters. 

Therefore, we designed and prepared a novel nanoradiopharmaceutical, containing 
[223Ra]RaCl2 co-loaded with [198Au]AuNPs into nanomicelles, for radionuclide therapy of 
bone cancer using alpha and beta radiations simultaneously. Here, to the best of our 
knowledge, we presented the first findings of combining alpha and beta therapy in the 
same formulation. In addition, we are the first to report the radiolabeling of nanomicelles 
with 223Ra for delivering alpha radiation into tumor cells. 

To fulfill our goal, the non-radioactive AuNPs were firstly fabricated using chemical 
synthesis. Through light scattering analysis, the AuNPs obtained a mean size of 13 nm 
and a PDI value of 0.106 (±0.089). Furthermore, the AFM analyses corroborated the DLS 
results, confirming the quality and homogeneity of our AuNPs. Then, the AuNPs were 
activated under neutron irradiation to obtain the [198Au]AuNPs, similar to previous re-
ports [11]. Biodistribution studies (Table S1–Supplemental Information) have shown high 
liver uptake of [198Au]AuNPs at 2 h and 6 h post-injection in healthy mice. After 24 h of 

Figure 7. In vitro cytotoxicity results in human osteosarcoma SaOS-2 cells exposed to different
nanosystems, using three different activities (C1: 37 kBq, C2: 18.5 kBq, and C3: 4.44 kBq) for each
of the following formulations: [223Ra]RaCl2+[198Au]AuNPs nanomicelles (in red), [223Ra]RaCl2
nanomicelles (in pink), and [223Ra]RaCl2 (in yellow). ** p < 0.01, *** p < 0.005.

4. Discussion

Radionuclide therapy is a safe and effective approach to treat primary cancers, as
well as distant metastases. In this sense, beta- or alpha-emitting radionuclides have been
primarily used [70]. However, there are a lack of radiopharmaceuticals that deliver simul-
taneous alpha and beta radiations, which would have remarkable potential for treating
tumors. Alpha and beta particles have high energy in different magnitudes; consequently,
they have different mean penetration ranges in tissue, for depositing their energies. Hence,
alpha-/beta-labeled radiopharmaceuticals would combine the long-range crossfire effect
of beta radiation with the DNA localization effect of alpha radiation, among other ef-
fects [1]. In addition, successful treatment would be reached using lower doses of alpha
and beta emitters.

Therefore, we designed and prepared a novel nanoradiopharmaceutical, containing
[223Ra]RaCl2 co-loaded with [198Au]AuNPs into nanomicelles, for radionuclide therapy
of bone cancer using alpha and beta radiations simultaneously. Here, to the best of our
knowledge, we presented the first findings of combining alpha and beta therapy in the
same formulation. In addition, we are the first to report the radiolabeling of nanomicelles
with 223Ra for delivering alpha radiation into tumor cells.

To fulfill our goal, the non-radioactive AuNPs were firstly fabricated using chemical
synthesis. Through light scattering analysis, the AuNPs obtained a mean size of 13 nm
and a PDI value of 0.106 (±0.089). Furthermore, the AFM analyses corroborated the
DLS results, confirming the quality and homogeneity of our AuNPs. Then, the AuNPs
were activated under neutron irradiation to obtain the [198Au]AuNPs, similar to previous
reports [11]. Biodistribution studies (Table S1—Supplemental Information) have shown
high liver uptake of [198Au]AuNPs at 2 h and 6 h post-injection in healthy mice. After 24 h
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of intravenous injection, the liver uptake decreased, while accumulating in the kidneys,
suggesting renal clearance of [198Au]AuNPs.

Following this, the [223Ra]RaCl2 nanomicelles were prepared using a simple and fast
method. The DLS analysis of [223Ra]RaCl2 nanomicelles showed a mean size of 149 nm
and a PDI of 0.0096 (± 0.0002).

Finally, [223Ra]RaCl2 and [198Au]AuNPs were co-loaded into polymeric nanomicelles,
and the final dispersion was characterized by DLS and AFM techniques. The DLS analysis
revealed a mean size of 296 nm and a PDI value of 0.201 (±0.096). Moreover, the AFM
images showed globular structures and holes because of the emissions of alpha and beta
particles. Despite this, these emissions cannot destabilize the formed agglomerates, proving
the quality of the nanomicelles.

Next, the in vitro cytotoxicity of these alpha–beta nanomicelles (127-Pluronic-[223Ra]
RaCl2+[198Au]AuNPs) was evaluated in human osteosarcoma cells (SaOS-2). It was also
compared with the in vitro cytotoxicity of the following two formulations: [223Ra]RaCl2
and 127-Pluronic- [223Ra]RaCl2. The results showed that the three formulations could
kill SaOS-2 cells using three activities (37 kBq, 18.5 kBq, and 4.44 kBq). Nevertheless, the
127-Pluronic-[223Ra]RaCl2+[198Au]AuNPs formulation significantly increased cell death as
the radioactive activity increased (37 kBq), compared with other activities and formulations.
Hence, these findings are very promising. Radionuclide therapy has the advantage of
delivering a concentrated dose to target tumor tissues, while preserving the surrounding
healthy tissues, unlike the other current cancer therapies [19,39,67,71,72]. For the first
time, the simultaneous ability of alpha and beta radiations to kill cancer cells has been
demonstrated, using a low radioactive dose and obtaining high efficacy.

5. Conclusions

The combination of alpha and beta radiations in the same nanoprobe would represent
a very efficient tool for cancer treatment. Our in vitro findings are the first to demonstrate
the remarkable ability of alpha–beta nanoprobes to kill cancer cells using a low radioactive
dose. Future works should aim to evaluate the in vivo therapeutic effect and safe use of
our nanomicelles of [223Ra]RaCl2 co-loaded with [198Au]AuNPs in bone cancer-bearing
mice. Conversely, this work may lead to further studies involving the functionalization of
these alpha–beta nanoprobes for targeted radionuclide therapy beyond bone cancer.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14071405/s1, Table S1: Biodistribution data of [198Au]AuNPs
in healthy mice.
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