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Background: Necroptosis, a type of programmed cell death, has been

implicated in a variety of cancer-related biological processes. However, the

roles of necroptosis-related genes in thyroid cancer yet remain unknown.

Methods: A necroptosis-related gene signature was constructed using the least

absolute shrinkage and selection operator (LASSO) regression analysis and Cox

regression analysis. The predictive value of the prognostic signature was validated in

an internal cohort. Additionally, the single-sample gene set enrichment analysis

(ssGSEA) was used to examine the relationships between necroptosis and immune

cells, immunological functions, and immune checkpoints. Next, themodeled genes

expressions were validated in 96 pairs of clinical tumor and normal tissue samples.

Finally, the effects ofmodeled genes on PTC cells were studied by RNA interference

approaches in vitro.

Results: In this study, the risk signature of seven necroptosis-related genes was

created to predict the prognosis of papillary thyroid cancer (PTC) patients, and all

patientswere divided into high- and low-risk groups. Patients in the high-risk group

fared worse in terms of overall survival than those in the low-risk group. The area

under the curve (AUC) of the receiving operating characteristic (ROC) curves

proved the predictive capability of created signature. The risk score was found

to be an independent risk factor for prognosis inmultivariate Cox analysis. The low-

risk group showed increased immune cell infiltration and immunological activity,

implying that they might respond better to immune checkpoint inhibitor

medication. Next, GEO database and qRT-PCR in 96 pairs of matched

tumorous and non-tumorous tissues were used to validate the expression of

the seven modeled genes in PTCs, and the results were compatible with TCGA

database. Finally, overexpression of IPMK, KLF9, SPATA2 could significantly inhibit

the proliferation, invasion and migration of PTC cells.

Conclusion: The created necroptosis associated risk signature has the potential

to have prognostic capability in PTC for patient outcome. The findings of this

study could pave the way for further research into the link between necroptosis

and tumor immunotherapy.
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Background

Thyroid cancer is becoming more common in the world. One

key explanation is the improved detection of small papillary thyroid

cancers (PTCs) using imaging technologies such as ultrasonography

(US) has advanced and become more widely used (Sugitani et al.,

2021). Aside from PTC, there are three more kinds of thyroid

cancer: follicular thyroid cancer (FTC), medullary thyroid cancer

(MTC), and anaplastic thyroid cancer (ATC). PTC is the most

frequent kind, accounting for more than 80% of all pathological

types (Kitahara and Sosa, 2016; Lim et al., 2017; Ito et al., 2018).

Although PTC has an overall excellent prognosis, aggressive PTC

variants such as the tall cell (TC) and diffuse sclerosing (DS) variants

are on the rise and are associated with more aggressive pathologic

characteristics that can lead to a poor prognosis or even recurrence

in certain patients (Albareda et al., 1998; Carling et al., 2007; Feng

et al., 2018). Therefore, searching for new prognostic markers is

crucial for the diagnosis, prognosis, and treatment of PTC patients.

Necroptosis, discovered and described in 2005, is a programmed

form of necrotic cell death that is distinct from apoptosis, ferroptosis,

and pyroptosis (Degterev et al., 2005). It is a caspase-independent and

regulated necrotic cell death mechanism that is mechanistically and

morphologically identical to apoptosis and necrosis (Christofferson

and Yuan, 2010). Necroptosis is regulated by molecules that are also

known to govern apoptosis, but it is dependent on the creation of the

necrosome, which consists of receptor-interacting serine/threonine-

protein kinase 1 (RIPK1) and RIPK3, which activates the

pseudokinase mixed lineage kinase (MLKL). MLKL then mediates

the release of intracellular materials, which results in the execution of

the necroptotic program (Pasparakis and Vandenabeele, 2015; Gong

et al., 2019). Necroptosis is not only crucial in the development and

progression of numerous immune system disorders and viral

infections, but it also plays an important role in cancer biology

regulation, including oncogenesis, cancer metastasis, cancer

immunity, and cancer subtypes (Stoll et al., 2017; Seehawer et al.,

2018). Some dual effects of necroptosis on cancer have been

demonstrated as a combination of apoptosis and necrosis. Several

articles have reported that necroptosis can trigger inflammatory

responses and reportedly promotes cancer metastasis and

immunosuppression as a necrotic cell death modality (Seifert

et al., 2016; Strilic et al., 2016). Necroptosis is viewed as a barrier

that can limit tumor formation when apoptosis is disrupted. As a

result, necroptosis has been described as both a friend and a foe of

cancer. The expression of necroptosis factors in cancer, as well as

their impact on cancer prognosis, is likewise complex. Multiple

studies have discovered that numerous important components in

necroptotic signaling pathways are downregulated in a variety of

malignancies, implying that cancer cells may avoid necroptosis to

survive. RIPK3 is downregulated in a variety of malignancies,

including breast cancer, colorectal cancer, and melanoma (Feng

et al., 2015; Geserick et al., 2015; Koo et al., 2015). Furthermore,

decreased RIPK3 expression has been observed to independently

predict lower overall survival in colorectal cancer and breast cancer

(Feng et al., 2015; Koo et al., 2015). It has also been observed that

RIPK1 expression is downregulated in head and neck squamous cell

carcinoma, which is associated with disease progression (McCormick

et al., 2016). These findings imply that the necrosis pathway has an

anti-cancer effect in cancer. However, it does not appear that

necroptotic factors are downregulated in all malignancies. These

variables have been identified to be elevated in various malignancies,

and their overexpression is positively connected with tumor growth.

In glioblastoma, for example, the RIPK1 expression is overexpressed

in around 30% of cases (grade IV) which leads to a worse prognosis

(Park et al., 2009). A recent study has attempted to discover new

necroptosis-related signatures in some cancers. Based on necroptosis-

related genes, a predictive signature for pancreatic adenocarcinoma

was created (Wu et al., 2022). Necroptosis-related genes also play an

essential role in tumor immunity in prostate cancer and can be used

to predict the prognosis of prostate adenocarcinoma (Li et al., 2021).

In stomach adenocarcinoma, a necroptosis-related prognostic

signature and a lncRNA SNHG1/miR-21-5p/TLR4 regulatory axis

were discovered (Wang and Liu, 2021). However, the prognostic

significance of necroptosis-related genes in PTC remains unknown.

Therefore, this study aimed to construct a novel prognostic

signature for PTC by detecting the expression and prognostic

value of necroptosis-related genes (NRGs) and evaluation of their

prognostic value from many aspects. Additionally, a thorough

analysis of the link between the signature and the tumor immune

microenvironment (TIME) using an external validation via the

Gene Expression Omnibus (GEO) database was also conducted.

Finally, we performed qRT-PCR and cell functional assays to

validate the expression and function of the NRGs.

Methods

A workflow diagram is shown in Supplementary Figure S1.

Datasets and preprocessing

The Cancer Genome Atlas (TCGA) database (https://portal.

gdc.cancer.gov/) was used to obtain the gene expression profiles

of thyroid cancer (THCA) (510 tumor and 58 normal samples).

Clinical data from TCGA were also retrieved, including age,

gender, clinical stage, and survival. Additionally, the raw data of

gene expression profiles (N = 197) were extracted, processed, and

normalized in batches using the “sva” and “limma” packages in R
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language (version 4.1.2) from seven GEO series [GSE6004 (N =

14), GSE33630 (N = 49), GSE3467 (N = 9), GSE35570 (N = 65),

GSE29265 (N = 20), GSE60542 (N = 33), and GSE3678 (N = 7)].

To reduce the statistical bias, the clinical data with missing

follow-up or fewer than 30 days of follow-up were eliminated.

Finally, 498 tumor samples were received with RNA expression

data and clinical data, which were randomly divided into the

training and test sets with no significant variations in clinical

characteristics (Table 1). Furthermore, 67 NRGs were obtained

from previous reviews (Additional Files 1).

Differential gene expression analysis

The “limma” package in R was employed to identify

differentially expressed genes (DEGs) in all tumor and

adjacent normal tissues, based on FDR < 0.05.

Construction of the protein-protein
interaction network and functional
enrichment of DEGs

A protein-protein interaction (PPI) network was constructed

to investigate the DEG interactions using the Search Tool for the

Retrieval of Interacting Genes/Proteins (STRING) database

(http://www.string-db.org/). For PPI study, the minimum

required interaction score was set at 0.9 (The highest

confidence). Then, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis using

Metascape (https://metascape.org), a comprehensive tool for

gene functional analysis was conducted.

Consensus clustering based on DEGs

Tumor samples were clustered into distinct subgroups based

on necroptosis-related DEGs using R software

“ConsensusClusterPlus.” To investigate the overall survival of

subgroups, the “survival” and “survminer” packages were

employed. The “limma” and “heatmap” packages were used to

create a heatmap illustrating the differential expression and

association between NRGs and clinical characteristics within

each subgroup.

Construction of necroptosis-related
prognostic signature

A training set to identify prognostic DEGs was used to create

a risk signature for prognosis. The test set and total set were

utilized to validate the predictive potential of created signature.

Using the “glmnet” package, the prognostic significance of each

DEG was determined using univariate Cox regression analysis.

To avoid omissions, we established a cut-off value p < 0.2. To

avoid model overfitting, the least absolute shrinkage and

selection operator (LASSO) penalized Cox proportional

hazards regression to identify additional important prognostic

genes for overall survival (OS) was used. Then, the detected genes

were combined into a multivariate Cox regression model, and the

TABLE 1 The clinical characteristics in training, test, and total sets.

Variables Group Training set
(N = 249)

Test set
(N = 249)

Total set
(N = 498)

p value

Age(year) ≤60 196 (78.71%) 190 (76.31%) 386 (77.51%) 0.520

>60 53 (21.29%) 59 (23.69%) 112 (22.49%)

Gender, n (%) Male 62 (24.90%) 73 (29.32%) 135 (27.11%) 0.267

Female 187 (75.10%) 176 (70.68%) 363 (72.89%)

Stage, n (%) Stage I-II 164 (65.86%) 167 (67.07%) 331 (66.47%) 0.362

Stage III-IV 83 (33.33%) 82 (32.93%) 165 (33.13%)

Unknown 2 (0.80%) 0 (0.00%) 2 (0.40%)

T, n (%) T1-2 143 (57.43%) 161 (64.66%) 304 (61.04%) 0.252

T3-4 105 (42.17%) 87 (34.94%) 192 (38.55%)

Tx/unknown 1 (0.40%) 1 (0.40%) 2 (0.40%)

M, n (%) M0 152 (61.04%) 130 (52.21%) 282 (56.63%) 0.112

M1 5 (2.01%) 4 (1.61%) 9 (1.81%)

Mx/unknown 92 (36.95%) 115 (46.18%) 207 (41.57%)

N, n (%) N0 105 (42.17%) 123 (49.40%) 228 (45.78%) 0.206

N1 115 (46.18%) 105 (42.17%) 220 (44.18%)

Nx/unknown 29 (11.65%) 21 (8.43%) 50 (10.04%)
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risk scores for each sample were generated using the following

formula: risk score = esum (each necroptosis-related gene

expression level × corresponding coefficient). Samples were

categorized into high- and low-risk categories based on the

computed median risk score. To assess predictive capacity,

Kaplan–Meier survival curves were examined using the

“survival” and “survminer” packages, and receiver operating

characteristic (ROC) curves were created using the “timeROC”

package. The “stats” package was used to perform principal

component analysis (PCA). Finally, univariate and

multivariate Cox regression analysis was done to determine

whether the risk classification derived from the risk signature

is an independent prognostic factor.

Functional enrichment and GSEA
enrichment analyses

DEGs were found between high- and low-risk groups using

FDR < 0.05 and |log2FC| ≥ 0.585. According to DEGs, the

“clusterProfiler” package in R to conduct GO and KEGG

enrichment studies and the “ggplot2” tool to create pictures was

used, while GSEA 4.2.1 was used to discover related functions and

pathway variations in theHallmark gene set “h.all.v7.4.symbols.gmt.”

Analysis of tumor microenvironment and
immune checkpoints

We started by calculating the scores for 16 immune

infiltrating cells and 13 immune-related activities in each

sample in both high- and low-risk groups using single-sample

Gene Set Enrichment Analysis (ssGSEA) and R package “GSVA.”

Then, using the Estimation of STromal and Immune cells in

MAlignant Tumor tissues using Expression data (ESTIMATE)

program in conjunction with the “estimate” package, the

immune-score, stromal-score, and ESTIMATES-score of each

sample were determined. Finally, the differences in the scores

mentioned above between the two groups were compared. Using

the “ggpubr” package, the immune checkpoint activation

between high- and low-risk groups was also compared.

The same formula to divide the normalized GEO data into

high and low-risk groups based on the median risk score was

used. The methods described above are used to externally

validate the link between the signature and TIME.

Mutation analysis

We also obtained the mutation data of THCA patients from

the TCGA database (https://portal.gdc.cancer.gov/). The

“maftools” package was used to further analyzed the mutation

data (Mayakonda et al., 2018).We calculated the tumor mutation

burden (TMB) of each sample using the following formula: (total

mutation ÷ total covered bases) × 10̂6 (Li et al., 2020).

Cell culture and construction of
transfected cell lines

K1 cell line was purchased from the European Collection of

Authenticated Cell Culture (ECACC, UK) and K1 cells were

maintained in Dulbecco’s modified eagle’s medium (DMEM):

Ham’s F12: MCDB 105 (2:1:1) and 2 mM glutamine

supplemented with 10% FBS. TPC-1 cell line was purchased

from the Chinese Academy of Sciences and TPC1 cells were

maintained in DMEM with 15% FBS. All cells were cultured at

37°C, in a humidified atmosphere with 5% CO2. Recombinant

lentivirus--containing genomes encoding human full-length

IPMK, KLF9, SPATA2 (LV-IPMK, LV-KLF9, LV-SPATA2) and

a negative control sequence (LV-NC) (GENECHEM, Shanghai,

China) were used to generate three types of NRGs-overexpressed

cell lines and negative controls (NC). K1 and TPC1 cells were

infected with either LV-IPMK or LV-KLF9 or LV-SPATA2 or LV-

NC plus 5 μg/ml polybrene (GENECHEM, Shanghai, China). The

expression levels of the corresponding genes in each type of gene

overexpressing cell line were confirmed by qRT-PCR.

Quantitative PCR

The First Affiliated Hospital of China Medical University

provided 96 pairs of matched tumorous and non-tumorous

tissue specimens of PTC. The following table summarizes the

clinicopathological characteristics of 96 PTC patients treated at

our hospital (Table 2). Total RNA from tissue samples and fresh

cultured cells was extracted using RNAiso (Takara, Dalian, China),

and then reverse transcribed into cDNA using the QuantiTect

Reverse Transcription Kit (Takara, Shiga, Japan). To validate

gene expression, quantitative real-time PCR (qRT-PCR) analysis

was done using TB-Green (Takara, Shiga, Japan), and the level of

GAPDH served as an internal reference. The comparative Ct (2−ΔΔCt)

method was used to calculate the relative expression. The following

primer sequences are available (Table 3).

Cell proliferation assay

Cell proliferation was assessed using the cell counting kit-8

(CCK-8, Dojindo, Japan) assay according to the manufacturer’s

protocol. Briefly, 3,000 cells/well were placed into 96-well plate.

An aliquot of 10 μl CCK-8 solution was added to each well. After

4 h of incubation at 37°C and 5% CO2, the incubation was

terminated. Then, the absorbance at 450 nm was measured

using a spectrophotometer at 0, 24, 48, and 72 h. For each

group, data from five wells were pooled.
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Cell migration and invasion detection

Each group’s cell concentration was adjusted to 5 × 104 cells/ml

with serum-free media after 24 h of transfection. The Transwell

chamber was filled with 200 μl of cell suspension in the upper

chamber and 500 μl of media supplemented with 10% FBS in the

lower chamber. The cells were cultured for 12 h for the migration

assay and 36 h for the invasion assay, after which they were fixed with

4% paraformaldehyde and stained with 0.5% crystal violet. The

invasive cells were then counted in five different visual areas using

an inverted microscope at ×100 magnification. Experiments were

performed in triplicate.

Results

Identification of necroptosis-related DEGs

A total of 50 differentially expressed genes between 510 tumors

and 58 adjacent nontumor tissues were identified. Out of

67 necroptosis-related genes, 21 were upregulated and 29 were

downregulated in tumors. A heatmap was drawn for showing the

50 genes expression levels (Figure 1A). A PPI network was

constructed to show the relationships among all necroptosis-

related genes (Figure 1B). GO and KEGG analysis were used to

investigate the potential roles of these DEGs, where GO enrichment

analysis revealed that these necroptosis-related DEGs are mostly

engaged in programmed necrotic cell death, transcription factor

activity regulation, and cytokine response. According to KEGG

analysis, these genes were primarily involved in cancer and

apoptotic pathways (Figure 1C).

Tumor classification based on DEGs

To investigate the association between necroptosis-related

DEGs and PTC subtypes, consensus clustering analysis on the

50 DEGs using the “ConsensusClusterPlus” program was

performed. The letter “k” denoted the number of clusters.

When k was adjusted to 2, intragroup correlations were

TABLE 2 The clinicopathological features of PTC (N = 96).

Clinical variables Group Sample (N = 96) Percentage (%)

Age (year), n (%) ≤60 87 90.63

>60 9 9.37

Gender, n (%) Female 77 80.21

Male 19 19.79

Stage, n (%) Stage I-II 79 82.29

Stage III-IV 17 17.71

Unknown 0 0.00

T, n (%) T1-2 66 68.75

T3-4 30 31.25

Tx/unknown 0 0.00

M, n (%) M0 92 95.83

M1 4 4.17

Mx/unknown 0 0.00

N, n (%) N0 28 29.17

N1 68 70.83

Nx/unknown 0 0.00

TABLE 3 Premier sequences for qRT-PCR analysis.

Premier Sequences (59–39)

IPMK-F GTGCTTGGCATGAGGGTTTATC

IPMK-R TGGCAGCAACAGCATCTTTTC

CDKN2A-F GCGGAAGGTCCCTCAGAAATG

CDKN2A-R GCCAGCTTGCGATAACCAAA

SPATA2-F GACTTATTTCGGAAGTACGTGC

SPATA2-R GATCAGCCGGAATCGATAAAAG

KLF9-F GTGTCTGGTTTCCATTTCGAAC

KLF9-R GATCCCATATCCTCATCTGGAC

TNFRSF1B-F CGGCTCAGAGAATACTATGACC

TNFRSF1B-R ACAGAAGACTTTTGCATGTTGG

FAS-F GTACACAGACAAAGCCCATTTT

FAS-R TTTGGTTTACATCTGCACTTGG

AXL-F AGATTTATGACTATCTGCGCCA

AXL-R TGACATAGAGGATTTCGTCAGG

GAPDH-F GTCTCCTCTGACTTCAACAGCG

GAPDH-R ACCACCCTGTTGCTGTAGCCAA
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highest while the intergroup correlations were lowest, showing

that the 498 PTC patients were classified into two clusters

(Figure 2A), C1 (N = 361) and C2 (N = 137). Additionally,

the principal component analysis demonstrated that these

patients can be classified into two distinct groups (Figure 2B).

However, survival analysis revealed no statistically significant

difference in OS between the two clusters (Figure 2C). Following

that, a heatmap was created to depict the association between

clusters, gene expression profiles, and clinical characteristics

(Figure 2D), however, it was discovered that there are

minimal clinical distinctions between the two clusters.

Development of a prognostic gene model
and evaluation of predictive effect

The models were constructed using the train set. To begin, a

univariate Cox regression analysis was used to find survival-

related genes. The results indicated that 16 genes in the training

set satisfying a threshold with a p < 0.2 were associated with

survival (Figure 2E). More precisely, 12 genes (MAPK8, IPMK,

CYLD, AXL, ID1, CDKN2A, BCL2, ATRX, SPATA2, KLF9,

BNIP3, and BCL2L11) were detrimental with HR > 1,

whereas four genes (FADD, FAS, TNFRSF1B, and MPG) were

protective with HR < 1. The overfitting was reduced by using

LASSO Cox regression on the optimum λ value and identified

13 genes (FADD, FAS, IPMK, TNFRSF1B, CYLD, AXL, ID1,

CDKN2A, MPG, SPATA2, KLF9, BNIP3, and BCL2L11) that

were substantially linked with prognosis (Figures 2F,G). Further

study of these genes using multivariate Cox regression analysis

resulted in the construction of a prognostic signature consisting

of seven necroptosis-related genes. For each sample, a risk score

was calculated using the following formula: Risk score =

FAS*(−1.172) + IPMK*(2.540) +TNFRSF1B*(−0.975) +

AXL*(1.536) + CDKN2A*(1.650) + SPATA2*(4.148) +

KLF9*(2.003). The patients were classified in the training set

into high- and low-risk groups based on their risk score median

value and then ranked and assessed their risk score distributions

(Figure 3A). Additionally, the survival status of each sample in

the training set was visualized using dot plots and discovered that

all deceased patients were concentrated in the high-risk group

(Figure 3B). A heatmap was created to depict the differential

expression of the seven prognostic genes between the two groups

(Figure 3C). Survival analysis revealed that patients with high-

risk scores had a significantly worse outcome than those with

low-risk scores (p = 0.002) (Figure 3D). ROC analysis was utilized

to determine the sensitivity and specificity of created prognostic

signature, and the areas under the curve (AUC) were found to be

0.834 at 1 year, 0.938 at 3 years, and 0.960 at 5 years, respectively

(Figure 3E). The PCA revealed that patients with varying risks

were dispersed in two directions (Figure 3F).

Following that, the predictive ability of prognostic signature

in the test and total sets was validated. The test and total sets were

separated into high- and low-risk groups, respectively, based on

FIGURE 1
Expression of the necroptosis-related genes in THCA (N = 498). (A) The heatmap showed the expression levels of 50 necroptosis-related DEGs
in normal and tumor samples; (B) PPI network indicated the interactions of the necroptosis-related genes; (C)GO and KEGG enrichment analysis of
necroptosis-related genes.
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the median risk score in the training set. The risk score

distribution, survival status, and expression of seven

necroptosis-related genes are provided below for each patient

in the test set and total set. In both the test and total sets, Kaplan-

Meier survival curves indicated that high-risk patients had a

shorter OS than low-risk patients. In the test set, the one-year

AUC was found to be 0.703, the three-year AUC was 0.656, and

the five-year AUC was 0.897, respectively. In the total set, the

AUC for the one-year was found to be 0.795, the AUC for the

3 years was 0.822, and the AUC for the 5 years was 0.902. PCA

verified the separation of patients into two clusters according to

their risk status (Supplementary Figures S2, S3).

Independent prognostic value of the risk
signature

The univariate Cox regression analysis revealed that the

factors affecting the prognosis were age, clinical stage, and

risk grouping (Figure 4A). After adjusting for other

confounding factors, it was discovered that age and risk

grouping were independent predictors of OS in patients with

PTC by multivariate Cox regression analysis (p < 0.001, p =

0.02223, respectively) (Figure 4B). Furthermore, the ROC curves

of risk grouping and other clinicopathological variables showed

that risk grouping had a higher prediction level, and its

prediction ability increased with time (Figures 4C–E).

Furthermore, survival analysis revealed that individuals with

high-risk had lower overall survival in all clinical subgroups

(Supplementary Figures S4A–L). The clinical significance of

these seven genes was investigated by determining the

correlations between the expression levels of them and the

clinicopathological characteristics of PTC. The expression

levels of TNFRSF1B correlated significantly with age (p <
0.001) (Supplementary Figure S5A). Compared with that in

non-extrathyroidal extension (ETE) cases, FAS expression was

upregulated in ETE cases (p < 0.01), and SPATA2 expression

showed the opposite trend (p < 0.001) (Supplementary Figures

S5B,C). The expression of CDKN2A positively correlated with T

stage (p < 0.001) (Supplementary Figure S5D). The expression of

SPATA2 was higher in patients without lymph node metastasis

(p < 0.001) (Supplementary Figure S5E). Patients with multifocal

cancer had increased KLF9 expression than with patients

unifocal cancer (p < 0.01) (Supplementary Figure S5F).

Functional analyses and gene set
enrichment analyses based on the risk
signature

A heatmap was created to depict the link between

predictive gene expression and clinical features (Figure 5A).

FIGURE 2
Tumor classification based on the necroptosis-related DEGs; Univariate Cox regression analysis and LASSO analysis. (A) 498 PTC patients were
grouped into two clusters according to the consensus clustering matrix (k = 2); (B) Principal Component Analysis (PCA) of RNA expression profile in
TCGA cohort; (C) Kaplan–Meier curves of overall survival (OS) in two clusters; (D) Heatmap and clinicopathologic features of the two clusters; (E)
Forest plot showing the result of univariate Cox regression analysis of OS, 16 genes with p < 0.2; (F) Cross-validation for tuning parameter
selection in LASSO regression (G) LASSO analysis of 16 prognostic pyroptosis-related genes.
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Then, using FDR < 0.05 and |log2FC| ≥ 0.585,

268 differentially expressed genes were identified in high-

and low-risk groups. Based on DEGs, GO, and KEGG analysis

was performed to further elucidate the putative biological

activities and pathways associated with the risk signature.

According to findings, these DEGs were primarily enriched in

cell adhesion, immune-related activities, and several

infections or immune-related pathways (Figures 5B,C). The

GSEA was used to examine the transcript messages of PTC

patients who were grouped by risk score into high- and low-

risk categories. In the low-risk group, biological pathways

such as interferon-alpha and gamma response, allograft

rejection, P53 pathway, inflammatory response, and IL6-

JAK-STAT3 signaling were enriched. (Figure 5D).

Comparison of the immune activity
among subgroups

The ssGSEA was used to compare the enrichment scores of

16 different types of immune cells and the activity of

13 immune-related functions in low- and high-risk groups.

The findings revealed that, except for CD8+ T cells, which did

not differ substantially between the two groups, other immune

cells infiltrate at a higher rate in the low-risk subgroup

(Figure 6A). Furthermore, the great majority of immune-

related pathways were activated more in the low-risk group

than in the high-risk group (Figure 6B). We analyzed each

immune activity in relation to the risk score in the TCGA

samples and found that the higher the risk score, the less active

the immune activity was (Supplementary Figures S6, S7). Each

sample’s immune-score, stromal-score, and ESTIMATES-

score were calculated to determine the estimated amount of

stromal and immune cells in the tumor sample. It was

observed that the low-risk group contained more immune

cells than the high-risk group, but the difference in stromal

cell composition between the two groups was not statistically

significant. Furthermore, ESTIMATES-score was greater in

the low-risk group, indicating reduced tumor purity

(Figure 6C). The potential differences in immune

checkpoint expression between the two groups were

investigated, and the results revealed that most immune

checkpoints were more expressed in the low-risk group

(Figure 6D). Similar outcomes were reached when

analyzing the immunological state of GEO cohort. The low-

risk group had more immune infiltration and immune

checkpoint expression than the high-risk group

(Supplementary Figure S8).

FIGURE 3
Construction of risk signature in the train set (N = 249). (A) The distribution of risk score, (B) survival status, and (C) the expression of seven
necroptosis-related genes in high- and low-risk groups; (D) Kaplan–Meier curves for OS of THCA patients in high- and low-risk groups; (E) Time-
dependent ROC analysis, (F) PCA of TCGA cohort in the train set.
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The correlation between necroptosis-
related gene signature and mutation
profile

Gene mutation is one of the significant factors in thyroid

cancer tumorigenesis and development. We assessed the

association between the gene signature and mutation profile

in TCGA thyroid cancer samples. We found that the

mutation profiles were similar between low- and high-risk

groups, and the top three mutated genes were all BRAF,

NRAS, and HRAS (Supplementary Figures S9A,B). TMB was

not statistically different between high and low risk groups, but

was relatively higher in the low-risk group (Supplementary

Figure S9C).

The expression levels of seven prognostic
genes

Following that, qRT-PCR experiments were performed to

validate mRNA expression using 96 pairs of tumor and normal

tissues from PTC patients at ChinaMedical University. The qRT-

PCR results revealed that AXL (p = 0.0308), FAS (p = 0.0134),

TNFRSF1B (p = 0.0250), and CDKN2A (p = 0.0224) mRNA

expression were considerably greater in tumor tissues. In

contrast, tumor samples had lower levels of IPMK (p =

0.0010), SPATA2 (p = 0.0071), and KLF9 (p = 0.0002). The

expression of these genes was consistent with TCGA and GEO

datasets, which adds to the authenticity and confidence of our

developed signature (Figures 7A,B).

Overexpression of IPMK, KLF9, and
SPATA2 significantly inhibit the
proliferation, migration, and invasion of
PTC cells

We next wanted to further investigate the function of these

genes in PTC. By reviewing a large literature, we discovered that

the functions of FAS (Basolo et al., 2000; Mitsiades et al., 2006),

TNFRSF1B (Lan et al., 2018), AXL (Avilla et al., 2011), and

CDKN2A (Ferru et al., 2006; Han et al., 2020; Shi et al., 2021)

FIGURE 4
(A)Univariate andmultivariate, (B)Cox regression analyses; The time-dependent ROC to evaluate the prognostic power based on risk score and
clinical factors in (C) 1-year, (D) 3-years, (E) 5-years.
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have already been described in PTC as pro oncogenes, while the

functions of IPMK, KLF9, and SPATA2 are unknown in PTC.

Therefore, we chose IPMK, KLF9, and SPATA2 as research

subjects to demonstrate their roles in PTC cells. We first

overexpressed IPMK, KLF9 and SPATA2 using lentiviral

vectors in two cell lines, K1 and TPC1, respectively. qRT-PCR

assays revealed that IPMK, KLF9, and SPATA2 mRNA

expression levels were significantly overexpressed in K1 and

TPC1 cells (Figure 7C). Furthermore, the CCK-8 experiment

revealed that the IPMK, KLF9, and SPATA2 overexpressed cell

lines had lower proliferation ability than control cells (K1-NC

and TPC1-NC) (Figure 7E). The transwell assay suggested that

overexpression of IPMK, KLF9 and SPATA2 also inhibited cell

migration and invasion of K1 and TPC1 cells (Figure 7D).

Discussion

Thyroid cancer is the most frequent endocrine malignancy,

with PTC accounting for more than 85% of all follicular-derived

well-differentiated thyroid tumors (Wiltshire et al., 2016). Even

though most PTCs are well differentiated, with a low risk of local

invasion, recurrence, or metastasis (Cabanillas et al., 2016), some

patients with more advanced or aggressive variations frequently

exhibit heterogeneity with distinct clinical, pathological, and

molecular features (Póvoa et al., 2020; Chen et al., 2021a).

According to the most recent American Thyroid Association

(ATA) guidelines, these pathological subtypes confer an

intermediate risk of recurrence (Haugen et al., 2016), and

these variants are associated with higher rates of recurrence

and metastasis, as well as, in some cases, minimal efficacy of

radioiodine therapy and may have inferior survival (Lam et al.,

2005). Due to a lack of understanding of the natural history of

these more aggressive variants, treatment for these patients is

frequently inadequate or suboptimal. Therefore, carrying out risk

stratification management is critical for further optimizing the

diagnosis and treatment of PTC patients.

Necroptosis is a type of programmed cell death that can

address apoptosis resistance while also activating and enhancing

antitumor immunity in cancer treatment (Kowalski et al., 2017),

which can be triggered by cytokines, danger signals, or pathogen

infection (Linkermann and Green, 2014). After being induced,

complex upstream signals eventually converge on the activation

of RIPK3, which binds and directly phosphorylates MLKL, a

crucial effector of necroptosis and the pathway’s most

downstream component known to be necessary (Zhao et al.,

2012). In contrast to apoptosis, this type of cell death is

distinguished by plasma membrane permeabilization and the

production of damage-associated molecular patterns (DAMPs),

which have significant immunological effects (Pasparakis and

Vandenabeele, 2015). Necroptotic cells may supply antigens and

inflammatory cytokines to dendritic cells (DCs) for antigen

FIGURE 5
(A) Heatmap showing the connections between clinicopathologic factors and high- and low-risk groups; (B) Bar chart for GO enrichment of
DEGs between high- and low-risk; (C) Bubble graph for KEGG pathways of DEGs between high- and low-risk; (D) Gene set enrichment analysis
(GSEA) showed the significantly enriched hallmarks of tumor sets based on the risk signature in TCGA.
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cross-priming, which activates cytotoxic CD8+ T lymphocytes,

resulting in tumor cell eradication through the release of DAMPs

into the tissue milieu (Gong et al., 2019). However, necroptotic

cells may recruit immune inflammatory cells and induce

inflammation, which can promote tumor development by

boosting angiogenesis, cancer cell proliferation, and metastasis.

A study showed that human and murine tumor cells stimulate

endothelial cells to undergo programmed necrosis (necroptosis),

which facilitates tumor cell extravasation and metastasis.

RIPK1 inhibitor necrostatin-1 or endothelial-cell-specific

RIPK3 deletion inhibited tumor cell-induced endothelial

necroptosis, tumor cell extravasation, and metastasis in mice

(Strilic et al., 2016). As can be observed, the role of necrotic

apoptosis in tumors is extremely complex. The potential

significance of necroptosis-related genes in PTC, on the other

hand, is uncertain. As a result, an attempt was made to identify

potential diagnostic markers of necroptosis using targeted

immunotherapy to increase the survival of PTC patients and

to investigate the prognostic and diagnostic relevance of

necroptosis. This study’s findings imply that inducing

necroptosis with immunotherapy may be a viable treatment

strategy for improving patient outcomes.

In this work, we looked at the expression of 67 necroptosis-

related genes in PTC samples and adjacent samples and discovered

that 50 of them were expressed differently, where 21 of these genes

were upregulated, and 29 were downregulated. A consistent cluster

analysis on PTC samples was conducted based on NRG expression

and discovered that PTC samples can be separated into two

subgroups, implying that NRGs may be involved in PTC

subclassification. Following that, seven genes related to prognosis

(IPMK, AXL, CDKN2A, SPATA2, KLF9, FAS, and TNFRSF1B)

were obtained and constructed a seven genes prognostic risk

signature from NRGs using a series of processes such as

univariate Cox regression analysis, LASSO regression analysis,

and multivariate Cox regression analysis. Inositol polyphosphate

multikinase (IPMK) is a conserved enzyme that belongs to the

inositol phosphokinase 6-kinase family and plays a key role in the

phosphorylation of inositol phosphates (IPs) (Irvine and Schell,

2001; Otto et al., 2007). During necroptosis, IPMK is also required

for activated phospho-MLKL to oligomerize and relocate to the

plasma membrane. IPMK, in particular, may generate highly

phosphorylated IPs in cells from lowly phosphorylated

precursors, and highly phosphorylated IPs can influence

necroptosis by directly binding MLKL and controlling its

FIGURE 6
Comparison of ssGSEA scores in high- and low-risk groups in TCGA-THCA database (N = 498). (A) 16 immune cells and (B) 13 immune-related
functions between high- and low-risk groups; (C) The ESTIMATE scores of high- and low-risk groups; (D) Comparison of immune checkpoint
expression between high- and low-risk groups.
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FIGURE 7
Validation of gene expression and cell function assays. (A) The expression levels of IPMK, KLF9, SPATA2, AXL, CDKN2A, FAS, and TNFRSF1B
quantified using qRT-PCR analysis in 96 paired thyroid cancer tissues and no-tumorous samples; (B) The expression levels of IPMK, KLF9, SPATA2,
AXL, CDKN2A, FAS, and TNFRSF1B in GEO; (C) Expression level of IPMK, KLF9, and SPATA2 confirmed by qRT-PCR; (D) Transwell assays were used to
evaluate the migration and invasion in PTC cells after IPMK or KLF9 or SPATA2 overexpression or NC; (E) CCK-8 assay was used to evaluate the
proliferation after overexpression with the corresponding genes or NC in PTC cells. **p < 0.01; ***p < 0.001; ****p < 0.0001.
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function (Dovey et al., 2018). It was discovered that IPMK

expression was lower in PTC tumor tissues than in normal

tissues, but that high expression was linked with a poor

prognosis in PTC. AXL is a tyrosine kinase receptor that belongs

to TAM (TYRO3, AXL, and MER) receptor family. TAM family

regulates cell growth, survival, and proliferation (Lemke andRothlin,

2008; Lemke, 2013). AXL is frequently overexpressed in cancer,

which can increase the invasiveness and motility of the normally

non-invasive MCF-7 cell line (Zhang et al., 2008). AXL has been

demonstrated to boost the motility, invasion, proliferation, and

survival of breast cancer cells (Gjerdrum et al., 2010).

Importantly, a study evaluating transcriptome analysis of

941 cancer cell lines found that high AXL mRNA levels indicate

resistance to necroptosis while low RIPK3 mRNA levels predict

resistance to necroptosis (Najafov et al., 2018). AXL behaved as a

cancer-promoting gene in our sample validation due to its

overexpression in tumor tissues and its negative connection with

survival time. Although cyclin-dependent kinase inhibitor 2A

(CDKN2A) is frequently altered or deleted in a wide range of

cancers and is known to be an important tumor suppressor gene, a

study suggested that CDKN2A plays a key role in the formation and

progression of larynx squamous cell carcinoma (Sasiadek et al.,

2004). Furthermore, CDKN2A hypermethylation may be a risk

factor for a poor prognosis of pancreatic cancer (Xing et al., 2013).

CDKN2A expression differed considerably between tumor and

normal tissues in our investigation. It was more abundant in

tumors, and increased expression in malignancies is associated

with a poor prognosis. A genome-wide siRNA screen identified

Spermatogenesis-associated 2 (SPATA2) as a gene implicated in

necroptosis mediation (Hitomi et al., 2008). SPATA2 modulated

RIPK1 activation via altering its M1 ubiquitination. More particular,

SPATA2 deficiency can hasten the M1 ubiquitination of RIPK1,

resulting in necroptosis resistance (Wei et al., 2017). According to

research, increased SPATA2 expression is related to a poor

prognosis in various cancers, such as ovarian or cervical cancer

(Wieser et al., 2019; Wieser et al., 2020). We found high

SPATA2 expression in tumor tissues from patients with a

relatively poor prognosis. Kruppel-like factor 9 (KLF9), also

known as basic transcription element-binding protein 1, is a

transcriptional regulator involved in cellular adhesion,

differentiation, and proliferation. It is reported to be

downregulated in various cancers, including endometrial

carcinoma and colorectal cancer (Kang et al., 2008; Simmen

et al., 2008). Sadia et al. discovered that KLF9 expression was

significantly lower in cervical cancer patients compared to

healthy controls and that it was significantly lower in the

advanced tumor stage and distant metastatic groups compared to

the lower tumor stage and non-metastatic groups (Safi et al., 2021).

However, Chen et al. (2021b) discovered that KLF9 expression was

positively associated with acute myeloid leukemia. Consequently,

KLF9 may have a distinct role in various cancer types.

KLF9 appeared to be a cancer suppressor gene in our

investigation, as it was downregulated threefold in tumor tissues;

yet, it also contributed to patient survival shortening since it was

enriched in the high-risk group. Fas cell surface death receptor (FAS)

has been found to play a critical role in the physiological regulation

of programmed cell death as amember of TNF-receptor superfamily

and has been implicated in the pathogenesis of several malignancies

and immune system diseases (Vandenabeele et al., 2010). FAS

mRNA and protein expression levels were considerably lowered

in breast carcinoma, whereas high FAS expression implies a better

prognosis in breast cancer patients (Zhang et al., 2021). FAS was

demonstrated to be increased in tumor samples in our investigation,

and its high expression in PTC patients predicted better survival,

implying that FASmay be a tumor suppressor gene. Tumor necrosis

factor receptor-2 (TNFR2/TNFRSF1B) is a cell-surface receptor that

regulates cell survival and proliferation and is abundantly expressed

on the surface of many human tumors (Chen et al., 2007). Recently,

the possibility of targeting this receptor as a next-generation cancer

therapy method has emerged (Chen and Oppenheim, 2017;

Vanamee and Faustman, 2017). It was discovered that the gene

was more abundant in tumor tissues and that increased expression

was associated with a better prognosis. We performed cellular

functional assays on three genes not previously reported to

function in PTC, and we confirmed the overexpression of IPMK,

KLF9, or SPATA2 could inhibit the proliferation, migration, and

invasion of PTC cells.

The risk score for each PTC patient was estimated using the risk

signature and classified into high- and low-risk groups based on the

median value of all patient risk scores. Kaplan–Meier survival curves

revealed that high-risk patients had a shorter OS than low-risk

individuals. Additionally, the AUC of the receiver operating

characteristic curve demonstrated that the risk signature was

effective at predicting survival prognosis. Cox regression analysis,

both univariate and multivariate, established that the created risk

signature was an independent risk factor for prognosis. Through the

above analysis, it was proved that the signature has a good ability to

predict prognosis. Functional enrichment analysis was also

performed on differentially expressed genes across high- and

low-risk groups and discovered that these genes were primarily

involved in cell adhesion, immunological function, and pathogen

infection. GSEA revealed a high enrichment of immune-related

pathways in the low-risk categories. As a result, it is hypothesized

that necroptosis may be associated with the immunological

microenvironment of PTC. The calculated scores for immune

cell infiltration and immunological function in high- and low-

risk groups using ssGSEA revealed that the patients in the low-

risk group had a higher total immunological activity. Additionally,

ESTIMATE algorithmwas employed to estimate the tumor purity of

each sample. To be more precise, the greater the immune- and

stromal-scores, the less pure the tumor. This indicated that the high-

risk group has a higher tumor purity, which is frequently associated

with a poor prognosis (Yoshihara et al., 2013). Cancer

immunotherapy has experienced remarkable advances in recent

years and more and more potential immune checkpoints have been

found (Charoentong et al., 2017; van den Bulk et al., 2018). As a
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result, the degree of expression of common immune checkpoint

proteins in high- and low-risk groups was also investigated, which

revealed that the greatmajority of immune checkpoint proteins were

expressed at a higher level in the low-risk group, implying that

immunotherapy may be more successful for low-risk patients. TMB

can be used to predict the ability to respond to immunotherapy, with

higher TMB representing a higher likelihood of being

immunotherapy effective (Jardim et al., 2021). Although there

was no statistical difference in TMB between low- and high-risk

groups, the relatively high TMB of low-risk group represented its

better response to immunotherapy, which was consistent with our

previous conclusion.

Since there are few studies on the involvement of necroptosis in

thyroid cancer at the moment, this study gives some theoretical

foundations and research ideas for the way forward. However, this

research encountered certain limitations. To begin, due to a lack of

sample survival data in GEO database, the prediction ability of the

signature to prognosis is only internally validated in TCGAdatabase,

and hence were unable to obtain sufficient data from other sources

to externally validate the signature-prognosis association.

Furthermore, additional fundamental investigations are required

to study the relationship between the signature and the tumor

microenvironment. As a result, additional research is required to

substantiate the above-mentioned conclusion.

Conclusion

In general, this study revealed the expression and prognostic

value of NRGs in PTC and developed a risk prediction signature

of necroptosis-related genes. The created signature contributes to

prognostic prediction as well as immunotherapy evaluation in

PTC patients. These results may provide ideas for further

investigation of the role of necroptosis in PTC and guide

clinicians towards individualized treatments for PTC patients

with different clinical characteristics.
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