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Abstract: A chemical investigation into endozoic fungus Aspergillus niger L14 derived from the
marine sponge of Reniera japonica collected off Xinghai Bay (China) resulted in the isolation of two
dimeric naphtho-γ-pyrones, fonsecinone A (1) and isoaurasperone A (2). Through a combination of
ECD spectra and X-ray diffraction analysis, the chiral axes of compounds 1 and 2 were unambigu-
ously determined as Rα-configurations. Bioassay results indicated that these substances exhibited
remarkably inhibitory effects on human pathogens Helicobacter pylori G27 and 159 with MIC values
of ≤4 µg/mL, which are similar to those of the positive control, ampicillin sodium. To the best of our
knowledge, this is the first report on absolute configuration of 1 and crystallographic data of 2, as
well as their potent anti-H. pylori activities.

Keywords: Aspergillus niger; endozoic fungus; fonsecinone A; aurasperone A; anti Helicobacter pylori;
chiral axis

1. Introduction

Helicobacter pylori is one of the most serious pathogenic bacteria that threaten human
health, since it has infected approximately half of the world’s population [1]. Owing to
decreasing effectiveness of existing antibiotic-based therapies, there is an urgent need to
develop new antibiotics for the treatment of H. pylori infection [2]. As we know, most
therapeutic agents currently available on the market and drug leads in clinical trial are
originally derived from terrestrial microorganisms. [3] Recently, a growing body of evidence
suggests that marine sponge-derived microbes are one of the more prolific sources of
bioactive secondary metabolites for the development of new medicines [4–7]. Among
these microorganisms, fungi in particular can produce a large number of compounds with
significant bioactivities [8]. As one of the most common and important filamentous fungi
in nature, Aspergillus niger possesses great potential to produce a remarkable array of
substances of biomedical and agricultural relevance, as well as food enzymes [9–11]. Our
previous bioassay of endozoic microbes from a specimen (MNP-2016) of Reniera japonica
collected off Xinghai Bay (China) led to the isolation of one fungus, A. niger L14, with
strong antimicrobial effects [12]. In order to extract novel bioactive compounds from this
strain, fermentation and chemical investigation were carried out in this work. Herein, we
report the isolation, structural elucidation and anti-Helicobacter pylori effects of two dimeric
naphtho-γ-pyrones, namely fonsecinone A (1) and isoaurasperone A (2) (Figure 1). As a
structurally unique metabolite, compound 1 was first isolated from A. fonsecaeus in 1984 [13],
as well as from A. aculeatus [14], A. fumigatus [15] and Pleurotus ostreatus [16] more recently,
while compound 2 was obtained from A. niger in 1979 for the first time and it exhibited
cytotoxic and mycotoxic properties [17]. However, the compounds’ stereochemistry has
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not yet been determined. Therefore, the present work focus on the assignment of absolute
configurations of compounds 1 and 2 by a combination of ECD spectra and single crystal
X-ray diffraction analysis, as well as on the discovery of their potent anti-H. pylori effects.
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Figure 1. Chemical structures of compounds 1 and 2 from Aspergillus niger L14.

2. Results and Discussion
2.1. Planar Structures of Compounds 1 and 2

Through a semi-preparative HPLC technique, compounds 1 and 2 were, respec-
tively, separated as yellow amorphous powder from an ethyl acetate extract of a solid
fermented rice of strain L14. The pseudo-molecular-ion peaks at m/z 571 ([M + H]+) and 593
([M + Na]+) in their ESI-MS spectra suggested that 1 and 2 are isomeric (Supplementary
Figures S1 and S2). On basis of their similar 1H and 13C NMR spectra [18] (Supplementary
Figures S3–S6), their molecular formulas are deduced as C32H26O10. By further careful
comparison of their 1H and 13C NMR spectral data with the literature (Table 1), compounds
1 and 2 were identified as fonsecinone A [14] and isoaurasperone A [19], respectively,
which are dimeric naphtho-γ-pyrone analogs.

2.2. Stereochemistry of Compounds 1 and 2

The elucidation of stereogenicity or chirality of natural products plays a key role in
the characterization of their structure features and biological properties [20]. In order to
determine absolute configurations of compounds 1 and 2, ECD and single crystal X-ray
diffraction analysis were conducted. As shown in Figure 2, ECD spectra of compounds
1 and 2 had very similar cotton effects, which one valley at 280 nm and a peak at 270
nm were respectively shown in the first negative and the positive cotton effect regions
while the last elliptical valley was apparent at 220 nm in the negative cotton effect region.
Moreover, their ECD spectra are completely contrary to those of S-configured aurasperones
A–C [21]. Therefore, the absolute configurations of chiral axes in compounds 1 and 2 were
unambiguously identified as Ra. Single crystals of 1 and 2 were successfully obtained from
a mixture of chloroform and ethanol, and their crystallographic data were deposited at
CCDC (Nos. 2064113 and 2064114, Figure 3). Through X-ray crystallographic analysis
using Cu Kα radiation, the absolute configuration of chiral axes in 1 and 2 were verified as
Ra with a GOOF2 of 1.023 and 1.042, respectively. To the best of our knowledge, ours is the
first report on the absolute configuration of compound 1 and the crystallographic data of
compound 2.
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Figure 2. Experimental ECD spectra of compounds 1 and 2.

Table 1. 13C and 1H NMR spectral data for compounds 1 and 2.

Compound 1 2

Position δC
a δH

b δC
a δH

b

2 167.6 167.7
3 110.8 6.32 (1H, s) 107.6 6.06 (1H, s)
4 183.1 184.7
4a 109.5 104.9
5 156.8 162.1
5a / 111.6
6 106.2 7.04 (1H, s) 158.7
6a 140.9 /
7 101.7 6.97 (1H, s) 117.8
8 160.2 160.3
9 117.3 101.5 6.97 (1H, s)
9a / 140.8
10 157.1 101.4 7.16 (1H, s)

10a 108.1 153.5
10 b 155.2 /
2-Me 20.7 2.48 (3H, s) 21 2.42 (3H, s)
5-OH 12.82 (1H, s)

6-OMe / 62.2 3.46 (3H, s)

8-OMe 56.1
3.78 (3H, s)

56.1 3.79 (3H, s)3.43 (3H, s)

10-OMe 61.2
3.78 (3H, s)

/ 3.43 (3H, s)3.43 (3H, s)
2′ 167 167.8
3′ 107.5 5.99 (1H, s) 107.4 5.98 (1H, s)
4′ 184.7 184.6

4′a 104.4 104.4
5′ 163 162.9

5′a 108.8 108.7
6′ 161.3 161.2
7′ 97.1 6.42 (1H, d) 97 6.42 (1H, s)
8′ 161.8 161.5
9′ 96.5 6.19 (1H, d) 96.7 6.21 (1H, s)

9′a 140.8 140.7
10′ 105.2 105.3

10′a 151 151
2′-Me 20.8 2.12 (3H, s) 20.8 2.12 (3H, s)
5′-OH 15.23 (1H, s)

6′-OMe 56.4 4.02 (3H, s) 56.4 4.03 (3H, s)
8′-OMe 55.3 3.61 (3H, s) 55.3 3.62 (3H, s)

a: in CDCl3, 150 MHz; b: in CDCl3, 600 MHz.
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Figure 3. ORTEP drawings of compounds 1 and 2.

Crystal data for 1 is as follows: C34H34O12 (Mr = 634.61 g/mol): triclinic, space group P-1
(no. 2), a = 8.0417 (7) Å, b = 11.9593 (10) Å, c = 17.1410 (15) Å, α = 97.364 (6)◦,
β = 100.693 (6)◦, γ = 104.037 (5)◦, V = 1545.4 (2) Å3, Z = 2, T = 173.01 K, µ(GaKα) = 0.558 mm−1,
Dcalc = 1.364 g/cm3, 15,365 reflections were measured (7.458◦ ≤ 2Θ ≤ 110.172◦), 5733 unique
(Rint = 0.0733, Rsigma = 0.0843), which were used in all calculations. The final R1 was 0.0956
(I > 2σ(I)) and wR2 was 0.3083 for all data. Each molecule of fonsecinone A (1) was co-
crystallized with a water molecule and an ethanol molecule (Supplementary Tables S1–S4).

Crystal data for 2 is as follows: C32H26O10, (Mr = 570.53 g/mol), monoclinic, space
group P21/c (no. 14), a = 11.7688 (5) Å, b = 13.7141 (7) Å, c = 17.5181 (8) Å, β = 109.295
(3)◦, V = 2668.6 (2) Å3, Z = 4, T = 193.0 K, µ(GaKα) = 0.570 mm−1, Dcalc = 1.420 g/cm3,
27,052 reflections were measured (6.924◦ ≤ 2Θ ≤ 110.078◦), 5071 unique (Rint = 0.0543,
Rsigma = 0.0381), which were used in all calculations. The final R1 was 0.0508 (I > 2σ(I)) and
wR2 was 0.1499 for all data. (Supplementary Tables S1, S5–S7).

CCDC Nos. 2064113 and 2064114 contain the supplementary crystallographic data
for this paper. These data are freely available via http://www.ccdc.cam.ac.uk/conts/
retrieving.html (accessed on 21 February 2021) or can be obtained from the CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk)

2.3. Antimicrobial Activity of Compounds 1 and 2

Bioassay results indicated that these bis-naphtho-γ-pyrones 1 and 2 exhibited potent
antimicrobial effects on human pathogen H. pylori G27 with minimum inhibitory concen-
tration (MIC) values of 2 µg/mL, as well as multi-drug resistant H. pylori 159 with MIC
values of 2 and 4 µg/mL, respectively (Table 2). It is noteworthy that several previous
reports suggested that compounds 1 and 2 had no significant bioactivity against pathogenic
microbes Alternaria solani, Bacillus cereus, B. subtilis, Escherichia coli, Pseudomonas fluorescens,
Trichophyton rubrum and Candida albican, and displayed a weak inhibitory effect on xanthine
oxidase and no cytotoxicities against the following panel of human cancer cell lines: A2780,
H1688, K562, M231, PC3, A549, MGC-803 and HL-60 [21–26]. Therefore, the present work
provides an important discovery suggesting that compounds 1 and 2 are potential new
drug candidates for the treatment of H. pylori infections.

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
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Table 2. In vitro anti-Helicobacter pylori effects of compounds 1 and 2.

Compound
MIC Value (µg/mL)

Strain G27 (S) Strain 159 (R)

1 2 2
2 2 4

MTZ 2 16
CLR 0.004 2
LVX 0.5 8

Note: Antimicrobial susceptibility breakpoints were determined according to EUCAST (European Committee on
Antimicrobial Susceptibility Testing) guidelines. S, drug susceptible; R, drug resistant; MTZ, metronidazole; CLR,
clarithromycin; LVX, levofloxacin.

2.4. Putative Biosynthetic Pathway of Compounds 1 and 2

Biosynthetically, naphtho-γ-pyrone monomers rubrofusarin B and flavasperone are
aromatic polyketides, which are formed by one acetyl-CoA and six malonyl-CoA through
assembly reaction catalyzed by polyketide synthase (PKS), followed by condensation,
cyclization, dehydration and methylation [15,27]. Compound 2 is the dimerization product
of two molecules of rubrofusarin B at C-7 and C-10, respectively, and it has been shown
to be catalyzed by the pre-anthraquinone-dimerizing cytochrome P450 (CYP) enzyme
encoded by the gene aunB [28] (Figure 4). Therefore, it is inferred that compound 1 is the
dimerization product of rubrofusarin B and flavasperone at C-10 and C-9, respectively.

Molecules 2021, 26, x FOR PEER REVIEW 5 of 8 

 

 

2.3. Antimicrobial Activity of Compounds 1 and 2 
Bioassay results indicated that these bis-naphtho-γ-pyrones 1 and 2 exhibited potent 

antimicrobial effects on human pathogen H. pylori G27 with minimum inhibitory concen-
tration (MIC) values of 2 μg/mL, as well as multi-drug resistant H. pylori 159 with MIC 
values of 2 and 4 μg/mL, respectively (Table 2). It is noteworthy that several previous 
reports suggested that compounds 1 and 2 had no significant bioactivity against patho-
genic microbes Alternaria solani, Bacillus cereus, B. subtilis, Escherichia coli, Pseudomonas flu-
orescens, Trichophyton rubrum and Candida albican, and displayed a weak inhibitory effect 
on xanthine oxidase and no cytotoxicities against the following panel of human cancer cell 
lines: A2780, H1688, K562, M231, PC3, A549, MGC-803 and HL-60 [21–26]. Therefore, the 
present work provides an important discovery suggesting that compounds 1 and 2 are 
potential new drug candidates for the treatment of H. pylori infections. 

Table 2. In vitro anti-Helicobacter pylori effects of compounds 1 and 2. 

Compound 
MIC Value (μg/mL) 

Strain G27 (S) Strain 159 (R) 
1 2 2 
2 2 4 

MTZ 2 16 
CLR 0.004 2 
LVX 0.5 8 

Note: Antimicrobial susceptibility breakpoints were determined according to EUCAST (European 
Committee on Antimicrobial Susceptibility Testing) guidelines. S, drug susceptible; R, drug re-
sistant; MTZ, metronidazole; CLR, clarithromycin; LVX, levofloxacin. 

2.4. Putative Biosynthetic Pathway of Compounds 1 and 2 
Biosynthetically, naphtho-γ-pyrone monomers rubrofusarin B and flavasperone are 

aromatic polyketides, which are formed by one acetyl-CoA and six malonyl-CoA through 
assembly reaction catalyzed by polyketide synthase (PKS), followed by condensation, cy-
clization, dehydration and methylation [15,27]. Compound 2 is the dimerization product 
of two molecules of rubrofusarin B at C-7 and C-10, respectively, and it has been shown 
to be catalyzed by the pre-anthraquinone-dimerizing cytochrome P450 (CYP) enzyme en-
coded by the gene aunB [28] (Figure 4). Therefore, it is inferred that compound 1 is the 
dimerization product of rubrofusarin B and flavasperone at C-10 and C-9, respectively. 

 
Figure 4. Putative biosynthetic pathways of compounds 1 and 2. 

  

acetyl-CoA + 6 × malonyl-CoA

O

O OH O

O

1

rubrofusarin B

O

O O

OOH
flavasperone

+ 2

*

*
+

O

O OH O

O

rubrofusarin B

* CYP

Figure 4. Putative biosynthetic pathways of compounds 1 and 2.

3. Materials and Methods
3.1. General Experimental Procedures

NMR spectra were collected by Bruker Avance DRX600 spectrometer (Bruker, Fällande,
Switzerland) equipped with a 5 mm triple resonance (HCN) cold probe, using TMS as
an internal standard. ESI-MS and HR-ESI-MS data were obtained from an Agilent 6210
LC/TOF-MS spectrometer (Agilent Technologies, Santa Clara, CA, USA). A suitable crystal
was selected and measured on a Bruker APEX-II CCD diffractometer (Bruker, Fällande,
Switzerland). The structure was solved with the ShelXT structure solution program using
intrinsic phasing and refined with the ShelXL refinement package using least squares
minimization [29]. A high performance liquid chromatography (HPLC) system, Essentia
LC-16P apparatus (Shimadzu, Kyoto, Japan), equipped with a semi-preparative column
(Phenomenex Hydro-RP, 250 mm × 10 mm, 4 µm, Torrance, CA, USA), was used to purify
all compounds. Acetonitrile (Merck, Darmstadt, Germany) and H2O used in HPLC system
were chromatographic grade, and all other chemicals were analytical grade.
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3.2. Fungal Strain

Endozoic strain L14 was isolated from fresh specimens (MNP-2016) of Reniera japonica
collected at Xinghai Bay (Dalian, China), as described in the literature [11], and identified
as A. niger according to its morphological characteristics and molecular phylogeny based
on 18S rDNA gene sequence (GenBank accession No. MF093522).

3.3. Fermentation and Extraction

First, strain L14 was cultured on potato dextrose agar (PDA) at 30 ◦C for 5 days.
Then, a balanced amount of fungal colony was transferred to the culture broth in a
500 mL Erlenmeyer flask containing 300 mL sterilized potato dextrose broth (PDB); it
was then shaken at 180 rpm for 3 days under 30 ◦C as seed broth. After that, the seed broth
was inoculated to a solid rice medium in a 1000 mL Erlenmeyer flask with sterilized rice
(160 g) and water (320 mL) and cultivated at 20 ◦C for 40 days. At the end of fermentation,
all fermented material was collected and extracted with the same volume of ethyl acetate
3 times. The organic layer was concentrated under vacuum at 38 ◦C to obtain crude extract
(approx. 50 g).

3.4. Isolation and Purification

The ethyl acetate extract was separated into six fractions, A-F, under a gradient condition
of CH3CN and H2O on a preparative HPLC column, according to our previous established
method [30]. Fraction D was further subjected to HPLC fractionation to generate fonsecinone
A (1) (159.4 mg, tR = 22.6 min) and isoaurasperone A (2) (156.3 mg, tR = 24.3 min) using a
semi-preparative C18 column under a gradient condition of mobile phase (CH3CN and
H2O) with a flow rate of 3.0 mL/min.

3.5. Antimicrobial Assay

Human pathogen stain H. pylori G27 was a clinically susceptible strain, while multi-
drug resistant clinical strain H. pylori 159 was obtained from a biopsy sample of a gastritis
patient. Isolation and identification of H. pylori 159 were used standard protocols on the ba-
sis of colony appearance, Gram staining and positive reactions in the rapid urease test [31].
Then, 10% fetal calf serum (FCS) brain heart infusion (BHI) (Becton Dickinson, Sparks
Glencoe, MD, USA) broth or 5% FCS Columbia blood agar (Oxoid, Basingstoke, UK), sup-
plemented with Dent selective supplement (Oxoid, Basingstoke, UK), was used for routine
culture of H. pylori strains. Incubation of strains was conducted under microaerophilic
conditions (10% CO2, 85% N2, and 5% O2 and 90% relative humidity) using a double-gas
CO2 incubator (Binder, model CB160, Germany) at 37 ◦C for 48 to 72 h. Three replicates
were performed for every antimicrobial assay.

Anti-H. pylori activities were carried out according to broth microdilution assay [32].
Briefly, two-fold serial dilutions of compounds were prepared in a 96-well microtiter plate
containing 100 µL of BHI broth containing 10% FCS. An overnight H. pylori liquid culture
was diluted in BHI broth and was inoculated into each well with a final concentration of
5 × 105 CFU/mL. After being incubated in a microaerophilic atmosphere at 37 ◦C for
2 days, the plates were examined visually. The MIC was determined to be the lowest
concentration with no turbidity in well. For quality control and comparative analysis,
the conventional antibiotics metronidazole (MTZ), clarithromycin (CLR) and levofloxacin
(LVX) were tested as positive control. All MIC assays were performed in triplicate at least.
Antimicrobial activity testing of each compound followed antimicrobial susceptibility
testing standards outlined by the document M07-A7 (Clinical and Laboratory Standards
Institute 2008) against strains G27 and Hp159.

Supplementary Materials: The following are available online, Figure S1: ESI-MS spectrum of
compound 1, Figure S2: ESI-MS spectrum of 2, Figure S3: 1H NMR spectrum (600 MHz, CDCl3) of
1, Figure S4: 13C NMR spectrum (150 MHz, CDCl3) of 1, Figure S5: 1H NMR spectrum (600 MHz,
CDCl3) of 2, Figure S6: 13C NMR spectrum (150 MHz, CDCl3) of 2, Figure S7: Crystallographic
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shape of 1 and 2, Table S1: Selected crystal data and refinement parameters for 1 and 2, Table S2:
Atomic coordinates (× 104) and equivalent isotropic displacement parameters (Å2 × 103) for 1, Table
S3: Bond lengths [Å] and angles [◦] for 1, Table S4: Hydrogen coordinates (× 104) and isotropic
displacement parameters (Å2 × 103) for 1, Table S5: Atomic coordinates (× 104) and equivalent
isotropic displacement parameters (Å2 × 103) for 2, Table S6: Bond lengths [Å] and angles [◦] for 2,
Table S7: Hydrogen coordinates (× 104) and isotropic displacement parameters (Å2 × 103) for 2.
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