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Gaze-contingent displays have been widely used in vision
research and virtual reality applications. Due to data
transmission, image processing, and display preparation,
the time delay between the eye tracker and the monitor
update may lead to a misalignment between the eye
position and the image manipulation during eye
movements. We propose a method to reduce the
misalignment using a Taylor series to predict the saccadic
eye movement. The proposed method was evaluated
using two large datasets including 219,335 human
saccades (collected with an EyeLink 1000 system, 95%
range from 18 to 328) and 21,844 monkey saccades
(collected with a scleral search coil, 95% range from 18 to
98). When assuming a 10-ms time delay, the prediction of
saccade movements using the proposed method could
reduce the misalignment greater than the state-of-the-
art methods. The average error was about 0.938 for
human saccades and 0.268 for monkey saccades. Our
results suggest that this proposed saccade prediction
method will create more accurate gaze-contingent
displays.

Introduction

A saccade is a rapid ballistic eye movement between
gaze fixations (Liversedge & Findlay, 2000). During
typical viewing of a scene, saccadic eye movements are
used to align the fovea with different regions of the

visual scene to gather the highest resolution informa-
tion about objects of interest (Bahill & Stark, 1979).
Saccadic eye movements play an important role in
exploring the visual scene that helps construct percep-
tual representations of environments, and reflect
underlying visual attention (Baloh, Sills, Kumley, &
Honrubia, 1975; Rayner, 1978; Remington, 1980).

Visual perception can be manipulated using a
methodology called a gaze-contingent display (GCD)
that updates the system’s display depending on the
gaze, i.e., head and eye movements (Duchowski,
Cournia, & Murphy, 2004; Reder, 1973). The general
process of a GCD is first to detect the gaze direction
using an eye tracker, and then to manipulate the image
on the display synchronously according to the gaze
direction (Aguilar & Castet, 2011; Han, Saunders,
Woods, & Luo, 2013; Santini, Redner, Iovin, & Rucci,
2007). GCD paradigms have been used in a variety of
applications, including vision science research (Loschky
& McConkie, 2002; Pidcoe & Wetzel, 2006; Rayner,
2014; Zang, Jia, Müller, & Shi, 2015), virtual reality
(Sheldon, Abegg, Sekunova, & Barton, 2012; Wade et
al., 2016), video transmission (Duchowski et al., 2004),
and driving simulators (Reingold, Loschky, McConkie,
& Stampe, 2003).

In vision science research, GCDs have been used to
control the visual information presented to observers
(Duchowski et al., 2004; Perry & Geisler, 2002; Rayner,
2014). For instance, GCDs have been used extensively
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in the study of reading (Rayner, 1998, 2014; Sheldon et
al., 2012). With the help of GCDs, vision loss such as
central vision loss, hemianopia, and tunnel vision
(Mathôt, Melmi, & Castet, 2015; Pidcoe & Wetzel,
2006; Sheldon et al., 2012) can be simulated with
normally sighted observers. This type of stimulus
manipulation in studies is also used to understand
cognitive load in driving (Gaspar et al., 2016), visual
search strategies (Zang et al., 2015), and scene
perception (Loschky & McConkie, 2002; Reingold et
al., 2003).

In engineering applications, GCD methodology can
speed up image processing and transmission by
increasing compression of information that would be in
peripheral vision and thus not resolvable by the user
(Duchowski et al., 2004; Rayner, 2014). Fletcher and
Zelinsky (2009) used the GCD technique to develop a
prototype driver assistance system that alerted the
driver when the driver failed to fixate on objects of
interest (e.g., road signs). Wade et al. (2016) monitored
gaze patterns in a virtual reality driving simulator and
participants with Autism Spectrum Disorder were
alerted to gaze behavior that was not appropriate for
the driving situation. Moreover, GCD systems can
assist in the provision of haptic feedback during
minimally-invasive surgery (Mylonas et al., 2012). In all
GCD systems, the spatial and temporal alignment of
gaze location and displayed stimulus is crucial. A
misalignment is almost inevitable during eye move-
ments due to the time delay between the eye tracker and
the display update, which arises from image processing,
data transmission, and display refreshing. The updating
delay varies greatly, depending on the equipment and
software, ranging from 12 to 40 ms in one study that
compared seven displays using software updating
(Saunders & Woods, 2014) and as short as 10 ms with
dedicated hardware updating (Santini et al., 2007).
Since saccades are fast and frequent, even a small time
delay may result in a large misalignment. Even though
a saccadic eye movement is brief, intrasaccadic
perception has been reported in many studies (Camp-
bell & Wurtz, 1978; Castet, 2009; Castet & Masson,
2000; Garcı́a-Pérez & Peli, 2001; Mathôt et al., 2015).
Perhaps more important may be the failure of the
stimulus to be correctly placed at the time that the
saccade ends (lands). This misalignment may allow the
viewer a brief glimpse of the displaying areas that are
meant to be masked or altered. Even if the glimpse is
less than 10 ms, it could affect the perception
significantly (Bodelón, Fallah, & Reynolds, 2007;
McConkie & Loschky, 2002).

The current best-practice is to update the display
image based on the eye position at a time as close as
possible to the next refresh (Aguilar & Castet, 2011),
but the efficiency of this method depends on the
updating delay of the display system. The impact of the

updating delay may be reduced by predicting the eye
position. Based on the assumption that the velocity
function is symmetrical, Anliker (1976) predicted the
saccade trajectories after peak velocity by mirroring the
data points before the peak velocity; however, later
studies showed that the velocity profile is skewed (Van
Opstal & Van Gisbergen, 1987). Even assuming that
the velocity profile is symmetrical, Anliker’s (1976)
method only works for less than half the duration of a
saccade. Komogortsev (2007) developed a model to
predict eye movements using a Kalman filter, assuming
the error terms have a Gaussian distribution. This
model is not applicable to saccades, since the prediction
error is strongly associated with the dynamic procedure
of saccades, which include large acceleration and
deceleration phases. Han et al. (2013) modeled the
trajectory of saccadic eye movements using a com-
pressed exponential model. However, they noted that
their 1D model did not do well with all saccades, as in a
2D space many saccades did not follow the classic
ballistic model. Indeed, two saccades of similar
trajectories may have much different eye movement
speed, which is crucial to predict the eye position. This
is evident in the noisy main sequence, the relationship
between saccade sizes versus peak speed.

To solve this problem, we propose a method that
predicts the eye position dynamically using a Taylor
series, without assuming any predefined eye movement
model. We validate our saccade-prediction method by
comparing it to other GCD updating methods. Our
method produced smaller errors between stimulus
placement and eye position than the state-of-the-art.
Note that the algorithm only attempts to predict the
eye movements given by the eye tracker and that the
position of gaze in the scene can only be predicted
within the accuracy limits imposed by the eye tracker
itself (Poletti & Rucci, 2016).

Method

The prediction method

The intent of gaze-position prediction is to estimate
the future eye position based on the past eye
movement. It is a common practice to decompose a
saccade into a horizontal component and a vertical
component, and then predict each component inde-
pendently (Sparks, 2002). But the horizontal or vertical
component of a curved saccade may not be monotonic
(Figure 1a), and such non-monotonic movement
(Figure 1b) is difficult to model. To avoid this problem,
we predict the moving distance and direction instead of
the horizontal and vertical components.
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Prediction of the moving distance

Moving distance prediction can be broadly catego-
rized into two groups: specific model regression and
universal fitting. For specific model regression, an eye
movement model must be assumed first. For instance,
Zhou, Chen, & Enderle (2009) used a high-order
differential equation derived from a plant model that
involved Voigt elements (a pair of viscosity and elasticity
elements in parallel) representing the ocular muscles,
while Han et al. (2013) used a compressed exponential
model to approximate the eye movement trajectory over
time. Not all saccades follow those assumed models
(Han et al., 2013), so model regression approaches
would fail sometimes. On the other hand, universal
fitting methods are supposed to fit arbitrary shapes of

trajectories (Komogortsev, 2007). These methods predict
eye movements in straight-forward ways, such as
polynomial fitting and Taylor series representation.

Figure 2a and b show the moving distance prediction
with 10 and 15 known positions, respectively. We can
see that polynomial regression is prone to large
deviation across curvature change points, because the
high degree polynomial terms have great influences to
the function. On the other hand, the prediction based
on the Taylor series seems to be relatively more robust.

Figure 1. A saccade example with nonmonotonic movement in

the horizontal direction. (a) A curved saccade. (b) The variation

of the saccade’s horizontal component over time. The red point

indicates the starting point.

Figure 2. An example of the moving distance prediction for one

saccade using polynomial functions of the fifth degree (red

circles) and Taylor series (red crosses) with (a) 10 known

positions and (b) 15 known positions. Filled blue circles are

known positions and open blue circles are future eye positions

(not known at the time of prediction) of this example saccade.

As can be seen in this example, polynomial functions may

overfit the known positions, so that they may not predict the

moving distance well.
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This is largly because the higher the order of the Taylor
term, usually, the less the influence of the term.
Therefore, we choose to predict the moving distance
using a Taylor series. Based on Taylor’s theorem, the
moving distance at a sampling point can be represented
by the sum of the derivative terms at its previous
sampling point:

D tþ 1ð Þ ¼
X‘

n¼0

DðnÞ tð Þ
n!

ð1Þ

where D tð Þ indicates the moving distance at the time t,
D nð ÞðtÞ is the nth order derivative, and 1=n! is the weight
of the nth order derivative.

To use this model, the order of Taylor series needs to
be determined. Figure 3 shows the prediction errors for
up to 10 orders of derivatives based on the EyeLink
dataset (described below). The prediction error de-
creased as the number of derivatives increased, while
remaining almost the same with higher-order ð� 4Þ
derivatives included. This is because the weights of
higher order derivatives are very small, and the
residuals are almost noise. Therefore, the proposed
method only uses the first- to fourth-order derivatives,
and the moving distance D tþ 1ð Þ �D tð Þ can be
estimated as:

D tþ 1ð Þ �D tð Þ ¼
X4

n¼1

D nð Þ tð Þ
n!

ð2Þ

Prediction of the moving direction

The moving direction of a saccade changes smooth-
ly, so its first order derivative is almost constant over a

short time period and higher order derivatives are
approximately 0. The moving direction can be well
modeled using the first- and second-order derivatives:

A tþ 1ð Þ ¼
X2

n¼0

AðnÞ tð Þ
n!

ð3Þ

where A tð Þ indicates the moving direction.
Since the values of the derivatives are rather small,

measurement noise may have relatively large effects. To
overcome this problem, the proposed method estimates
the moving direction in three different time scales,
taking the average of the three scales to estimate the
moving direction:

A tþ 1ð Þ ¼ 1

3

X3

i¼1

X2

n¼0

A
ðnÞ
i tð Þ
n!

ð4Þ

where i indicates the time scale, and
A
ðnþ1Þ
i tð Þ ¼ ðA nð Þ

i tð Þ � A
nð Þ
i t� ið ÞÞ=i.

Combination of the moving distance and direction

After obtaining the moving distance and the moving
direction for each of the following DT milliseconds, we
predicted the eye position at tþDT using the dead-
reckoning procedure in each direction:

x tþDTð Þ ¼ x tð Þ

þ
XDT

i¼1
ðððD tþ ið Þ �D tþ i� 1ð ÞÞ

� cosðA tþ ið ÞÞÞ ð5Þ

y tþDTð Þ ¼ y tð Þ

þ
XDT

i¼1
ðððD tþ ið Þ �D tþ i� 1ð ÞÞ

� sinðA tþ ið ÞÞÞ ð6Þ
whereðxðtÞ; yðtÞÞ indicates the eye position at the time t.

Data smoothing

Unlike the regression methods such as Han et al.’s
(2013), which can automatically smooth random
noises, the method based on Taylor series is sensitive to
noises due to its derivative nature. So data smoothing is
essential in our method. There are two conflicting issues
need to be considered: (a) the time window of the
smoothing filter should be large enough to suppress
noise; and (b) the smoothing filter adds extra latency on
top of the tracker-to-display delay. To accommodate
the extra latency, our method has to start the prediction
earlier (i.e., with less updated data) than the other
methods.

Figure 3. Prediction errors with respect to the number of

derivatives. Prediction errors were calculated by using different

numbers of derivatives to estimate the moving distance.
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Our method filters the data using a 6th order
Butterworth low-pass filter, with the normalized cutoff
frequency of 0.005. To compensate for the delay caused
by the IIR filter, the filtering is applied in both forward
and backward directions. In real time systems, howev-
er, the last three filtered data points are not so reliable
because they will be updated when more eye movement
data becomes available. Therefore, in this study, our
method predicts 3 ms further into the future than other
methods. For the same reason, our prediction is reliable
only after more than six data points are available.

Note that the smoothing is not meant to calculate
the gaze ground truth, which can’t be known exactly,
and the purpose of data smoothing is to suppress noise
so that our method does not fail.

The flowchart of the proposed method

Figure 4 shows the flowchart for estimating the
(iþDT)th point after obtain the ith sampling point.
The proposed method first smooths the raw data using
Butterworth filter, then predicts the moving distance
and direction for each of the following milliseconds,
and finally estimates the eye position using a dead-
reckoning process.

Participants

Human subjects

Seventy five normally-sighted human subjects, me-
dian age: 49.3( 22–85) years; 38 male, 37 female)
participated in two related studies that were approved
by the Institutional Review Board of the Schepens Eye

Research Institute in accordance with the Code of
Ethics of the World Medical Association (Declaration
of Helsinki). Preliminary screening of the participants
included self-report of ocular health, measures of visual
acuity and contrast sensitivity for a 2.58 high letter
target and evaluation of fixation and central retinal
health using retinal photography (Nidek MP-1, Nidek
Technologies, Vigonza, Italy or Optos OCT/SLO,
Marlborough, MA). All the participants had visual
acuity of 20/25 or better, letter contrast sensitivity of
1.675 log units or better, and steady central fixation
with no evidence of retinal defects.

Macaques

Recordings included data from two awake rhesus
macaques (Macaca mulatta) studied at the Barrow
Neurological Institute (eye-tracking equipment by
Riverbend Instruments, Inc., Birmingham, AL). Stan-
dard sterile surgical techniques, recording procedures,
and animal care methods were approved by the
Institutional Animal Care and Use Committee at
Barrow Neurological Institute. Information about the
breeding, care, and maintenance of the macaques can
be found in previously reported studies that addressed
different experimental questions (Costela et al., 2015;
Costela et al., 2014). Prior to the eye movement
recordings, cranial head-post and scleral search-coil
implantation surgeries were conducted, under general
anesthesia using aseptic techniques, and with full
postoperative analgesia and antibiotic therapy. No
animals were sacrificed at the end of the experiments.
We followed the ARRIVE (Animal Research: Report-
ing of In Vivo Experiments) guidelines.

Apparatus

Video eye tracking

We collected eye data using an EyeLink 1000 eye
tracker (SR Research Ltd., Mississauga, Ontario,
Canada) at a 1000-Hz sampling rate while subjects
viewed a 27’’ display (60 3 34 cm) from 1 m for a
338 3 198 potential viewing area. A total of 219,335
saccades were identified from two studies. In the
first study, participants watched 40 to 46 of 206
thirty-second ‘‘Hollywood’’ video clips, which were
chosen to represent a range of genres and types of
depicted activities. The genres included nature
documentaries (e.g., BBC’s ‘‘Deep Blue,’’ ‘‘The
March of the Penguins’’), cartoons (e.g., Shrek,
Mulan), and dramas (e.g., Shakespeare in Love, Pay
it Forward). This group of participants (N ¼ 62)
contributed a total of 108,640 saccades to the
dataset. Participants viewing the 30-s clips were
instructed to watch the stimulus ‘‘normally, as you

Figure 4. Flowchart for estimating the (i þ DT)th points after

obtaining the ith sampling point. DT indicates the system delay

time. This method does not use all the filtered samples, because

the last n/2 filtered data points of the nth order Butterworth

filter are not reliable.
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would watch television or a movie program at
home.’’ At the end of each clip, the participant was
asked to describe the contents of the clip (Saunders,
Bex, & Woods, 2013). In the second study, fourteen
participants (one was also in the first study) watched
at least two of five different 30-min movie clips
(Bambi, Inside Job, Juno, Kpax, and Flash of
Genius), contributing 110,695 saccades.

Scleral search coil

Eye position was recorded monocularly at 1000 Hz
with a scleral search coil (Martinez-Conde, Macknik,
& Hubel, 2000, 2002; Robinson, 1963). Macaques
fixated their gaze on a small fixation target (0.58 of
visual angle, with a luminance of 24.3 cd/m2) on a
video monitor (Reference Calibrator V, 60–120-Hz
refresh rate; Barco) placed at a distance of 57 cm.
Fruit juice rewards were provided for every 1.5–2 s of
fixation. Eye movements exceeding a 28 3 28 fixation
window were recorded but not rewarded. A total of
21,844 saccades were identified with the scleral search
coil.

Saccade detection

Saccades were detected off-line using the method
described below, but the data used to test the
algorithms was the raw data of the saccades so
identified. For EyeLink data, blinks were identified
and removed using EyeLink’s online data parser.
Periods preceding and following the missing data
were removed if they exceeded a speed threshold of
308/s. Then, we interpolated over the removed blink
data by applying cubic splines. For saccade detection
in both datasets, the raw data was smoothed by
applying a 3rd Savinsky-Sgolay filter with a frame
size of 14. Without this smoothing, saccade detection
was much less reliable. For the scleral search coil
data, periods where the gaze followed a characteristic
nasalward and downward phase were considered
blink periods and ignored during saccade detection.
Speed was calculated as the first derivative of the eye
position with respect to time. The beginning of a
saccade was signaled when speed exceeded 308/s for
at least 10 ms. The end of a saccade was signaled
when speed went below 308/s. The saccades were
restricted to saccades (a) smaller than 408 as this was
approximately the maximum diagonal dimension of
the display; and (b) larger than 18 and 15 ms in
duration to exclude microsaccades. We imposed
additional restrictions regarding the initial (, 0.0758/
ms) and terminal velocity (,0.38/ms), as well as the
removal of saccades with a velocity at first quartile of
duration lower than 0.15 peak velocity. This thresh-

old removed those eye movements with uniform but
unrealistic low velocity profiles during their initial
phase, and which may have been pursuit eye
movement. The smoothed data of the saccades
identified using the above procedure was then
replaced with the raw data. The rationale for using
raw data is all that a real-time algorithm can expect
to have available and therefore realistic input.

The distribution of the saccade amplitudes is shown
in Figure 5. For the EyeLink dataset, 95% of the
saccade amplitudes were between 18 and 328. For the
scleral search coil dataset, 95% of the saccade
amplitudes were between 18 and 98.

Figure 5. The distribution of the saccade amplitude. (a) The

histogram of saccade numbers for the EyeLink data. The total

number of the EyeLink saccades is 219,335. The 95% CI of the

saccade amplitude range is [18, 328]. (b) The histogram of

saccade numbers for the scleral search coil data. The total

number of the scleral search coil saccades is 21,844. The 95% CI

of the saccade amplitude range is [18, 98].
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Results

The prediction performance was evaluated by
examining the difference (residual error) between the
predicted position and the measured position (raw
data). Although the raw data includes errors (noise and
systematic deviation) and the absolute ground truth is
unknown, we can use the raw data as the reference.
Correction of error in the raw data is outside of the
scope of this paper. In specific applications, error
correction can be implemented separately, and our
saccade prediction can still be applied.

To demonstrate the value of the proposed method,
the prediction performance was compared with Aguilar
and Castet’s (2011) method and Han et al.’s (2013)
method. We assumed that the system delay was 10 ms,
as was done by Han et al. Thus, the prediction was for
10 ms later than the latest position. Aguilar and
Castet’s method places the stimulus at the latest
position (i.e., where the gaze was 10 ms before). To
make the Taylor series based method fully work, our
method needs at least nþ 1 points if we need to use the
nth order derivatives. When there are few data points,
we could set the corresponding derivative as 0.
Therefore, prediction can be started very early.
However, Han et al.’s method needs at least six points
to calculate the parameters for their model (and they
used 10 points in their paper). For comparison here, we
adopted the requirement that at least six data points be
available before prediction commenced.

Histograms of residual errors of the three methods
for the EyeLink and scleral search coil datasets are
shown in Figure 6. Overall, the residual-error distri-
bution of the proposed method is located more towards
to the left (lower residual errors) than the other
methods, meaning it had fewer large errors. Specifi-
cally, for the EyeLink data, the median residual errors
of Aguilar and Castet’s method, Han et al.’s method,
and the proposed method were 1.418, 1.118, and 0.938,
respectively. For the scleral search coil data, the median
residual errors of Aguilar and Castet’s method, Han et
al.’s method, and the proposed method were 0.448,
0.388, and 0.268, respectively.

Figure 7 shows the average residual errors for
different saccade sizes. The residual errors of Aguilar
and Castet’s method and Han et al.’s method became
larger rapidly with the increasing of the saccade size.
For the EyeLink data, although Han et al.’s method
performed better than Aguilar and Castet’s method, its
residual errors were, on average, close to 38 for
saccades larger than 308. The residual errors of the
proposed method were, on average, less than 28 for all
the sizes. Similarly, the proposed method also per-
formed better than the other two methods with the
scleral search coil data.

Since the moving velocity and the rotation vary
considerably during a saccadic eye movement, the
accuracy of the prediction may change at different
stages. We therefore evaluated the distribution of the
residual errors as a function of the saccade amplitude
(x axis) and the proportion of saccade amplitude (y
axis), which is the saccadic displacement divided by the
saccade amplitude, and represents the progression of
saccades.

Figure 8 shows the prediction performance of the
three methods at different stages. For the EyeLink
data, the residual errors of Han et al.’s method were
smaller than Aguilar and Castet’s method between 20
and 40 ms after saccade onset. For the scleral search

Figure 6. The distribution of residual errors of eye position

updating with Aguilar and Castet’s (2011) method (blue), Han et

al.’s (2013) method (green), and the proposed method (yellow).

(a) The residual errors for the EyeLink data. (b) The residual

errors for the scleral search coil data.
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coil data, Han et al.’s method provided a small
improvement over Aguilar and Castet’s method, but
less than the benefit in EyeLink data, because the
saccades were shorter and thus there was less time to
make a prediction of the saccade trajectory. Compar-
atively, the residual errors of the proposed method were
much smaller than the other two methods across all
stages.

Finally, we tested the calculation time of the three
methods. The testing platform used Matlab R2013b, an
Intel (R) Core (TM) i7-4790 CPU at 3.6 GHz, and
Windows 7. The average time to predict an eye position
using these three methods was 0.007 ms for Aguilar and
Castet’s method, 0.46 ms for Han et al.’s method, and

0.45 ms for the proposed method. Since Aguilar and
Castet’s method does not need to compute a prediction,
its speed is much faster than the other two methods.
The most common refresh rates of monitors used in
GCDs are 60 Hz, 100 Hz, and 120 Hz, which imply that
the display systems refresh the screen each 16.7 ms, 10
ms, or 8.3 ms, respectively (however, note that system
updating latencies are considerably longer [Saunders &
Woods, 2014]). The calculation time of the proposed
method is far below that required for such displays.
Therefore, the proposed method can be used for real-
time applications in most cases.

Conclusions

In this paper, we have shown that the proposed
method outperformed the state-of-the-art methods in
predicting saccadic eye movements. The experiment
was conducted using two large datasets, which were
collected using different eye tracking systems (video-
image based EyeLink and scleral search coil). Since we
were able to achieve the lowest residual errors for a
wide range of saccades made by different species and
with two different eye-tracking systems, it seems that
the proposed method may be reliable and robust in
GCD applications.

We believe that an important reason for the Taylor
series-based method to work well is that it does not
predefine any saccadic movement model, but instead it
follows the real-time movement trend. As Han et al.
(2013) noted, although many eye movement plant
models have been proposed, most of them are not in an
elementary function form, or have too many parame-
ters to be useful in real-time prediction. Simple models
with only a few parameters, such as Han et al.’s method
compared in this paper, may not be able to precisely
model many saccades, especially those made in
complex conditions (e.g., watching movie, as in the
EyeLink data). Among the EyeLink data, we have
observed many saccades with drastic moving direction
changes. The most commonly studied cause of eye
movement change is distractors, attractors, and repel-
lers (van Zoest, Donk, & Van der Stigchel, 2012). We
have also noted curved saccades even with eye
movements between two simple stimuli with no other
stimuli visible. In the case of a distractor, the
distraction is independent from the obtained gaze
sampling data, so it is difficult to predict this kind of
movement change in a timely and accurate manner.
Therefore, methods based on predefined models can be
prone to systematic errors, unless accurate models are
used.

One drawback of the proposed method is that a low
pass filter is usually needed to suppress random noise,

Figure 7. The average residual errors with respect to the saccade

amplitude for Aguilar and Castet’s (2011) method (blue), Han et

al.’s (2013) method (green), and the proposed method (yellow).

(a) The residual errors for the EyeLink data. (b) The residual

errors for the scleral search coil data. The error bars indicate the

standard error of the mean.
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and the filter causes extra latency. If a given eye tracker
has too much noise and a high-order, low-pass filter
needs to be used, the proposed method would have to
accommodate a larger latency than Han’s method. Its
performance under such situations needs to be evalu-
ated in future studies. Similarly, low eye tracking data
frequencies can negatively impact the prediction
performance of the proposed method, because for a
given order of low pass filter, the lower the tracking
frequency, the longer the filter induced latency. Based
on our experiment, the proposed method had advan-
tages at 1000-Hz sampling rate. Its prediction perfor-
mance for lower sampling rates needs to be
investigated.
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