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Visual impairment, at different degrees, produce a reduction of patient wellness which

negatively impact in many aspects of working and social activities. Eye diseases can

have common cellular damages or dysfunctions (e.g., inflammation, oxidative stress,

neuronal degeneration), and can target several eye compartments, primarily cornea and

retina. Marine organisms exhibit high chemical diversity due to the wide range of marine

ecosystems where they live; thus, molecules of marine origin are gaining increasing

attention for the development of new mutation-independent therapeutic strategies,

to reduce the progression of retina pathologies having a multifactorial nature and

characterized by high genetic heterogeneity. This review aims to describe marine natural

products reported in the recent literature that showed promising therapeutic potential for

the development of new drugs to be used to contrast the progression of eye pathologies.

These natural compounds exhibited beneficial and protective properties on different

in vitro cell systems and on in vivo models, through different mechanisms of action,

including anti-inflammatory, antioxidant, antiangiogenic/vasoprotective or cytoprotective

effects. We report compounds produced by several marine source (e.g., sponges, algae,

shrimps) that can be administrated as food or with target-specific strategies. In addition,

we describe and discuss the uses of opsin family proteins from marine organisms for the

optimization of new optogenetic therapeutic strategies.

Keywords: marine natural products, opsins, retina diseases, mutation-independent, therapy, optogenetics

INTRODUCTION

The five senses include sight, taste, smell, hearing and touch. Severe visual impairment may results
in loss of independence, trauma and depression (Javitt et al., 2007); even a mild visual impairment
can lead to a significant reduction of the quality of life and emotional wellbeing of the affected
patient (Finger et al., 2011).

The sight depends on the capture and transformation of light stimuli into electrochemical
potential, and on the modulation and transmission of it to the brain, to interpret what
we see. Light passes through the front of the eye, the cornea, to the lens which help
to focus the light rays onto the back of the eye, specifically onto the retina. The retina
comprises five major neuronal cell classes forming circuits that work in parallel, and
in combination, to produce a complex visual output (Hoon et al., 2014). The outer
retina is composed by photoreceptors and by the retina pigmented epithelium (RPE);
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the latter exerts several important functions of visual cycle and
gives metabolic support to photoreceptors. Photoreceptors are a
neuronal cell type able to convert the light energy into membrane
potential changes, in a process called phototransduction.
Photoreceptors synapse onto interneurons, that in turn contact
retinal ganglion cells (RGCs) and amacrine cells. RGC axons,
forming the optic nerve, transfer the action potential to higher
visual centers in the brain (Hoon et al., 2014).

Pathologies of the neural retina represent some of the most
common causes of visual impairment and blindness (Pascolini
and Mariotti, 2012). Retina inherited disorders include retinitis
pigmentosa (RP), Leber congenital amaurosis and macular
dystrophies which affect the outer retina; and Leber’s hereditary
optic neuropathy, dominant optic atrophy, which affect the inner
retina, mainly RGCs. They are the most important causes of
vision impairment in the working-age population and display
high genetic heterogeneity, with more than 250 causative genes.
In addition, among the major causes of blindness, it is also
possible to find multifactorial disorders associated with multiple
genes effects together with the influence of environmental
factors, such as glaucoma, age-related macular degeneration
(AMD), and diabetic retinopathy (DR) (Flaxman et al., 2017;
Bourne et al., 2018). Degeneration and death of RPE and/or
photoreceptor cells, and RGCs are the common landmarks of
these diseases, although the underlying molecular and cellular
events are still poorly understood. However, commonly altered
processes, such as mitochondrial dysfunction, inflammation
and microglia activation that exacerbate disease progression,
represent hallmarks of retinal cell death process. The high
genetic heterogeneity and the multifactorial nature of some
of eye diseases, pose significant problems to the development
of gene/mutation-specific therapeutic strategies that can be
applied to a significant fraction of patients. For these reasons,
mutation-independent therapeutic strategies, acting on common
pathways that underly retinal damage, are gaining interest as
complementary/alternative approaches for slowing down the
progression of retinal diseases (Carrella et al., 2020).

In recent years, marine resources have become increasingly
interesting for the treatment and prevention of retinal diseases
(Krueger et al., 2021). Marine environment offers a huge
chemical diversity of bioactive molecules that can be used
in medical, cosmetic, nutritional and other biotechnological
products (Krueger et al., 2021), with at least half of them
comprising human health potential applications. The Earth’s
surface is covered by over 70% of water, that hosts the greatest
diversity of organisms. The world register of marine species
currently counts 240.210 accepted marine species, accounting
for the 90% of the world’s living biomass (Arrieta et al., 2010).
This rich biodiversity, not yet fully explored, offers a promising
biotechnological potential and a multitude of new treatments to
be discovered and developed.

A number of marine natural products (NPs) have been
described to exert neuroprotective effects in the context
of neurodegenerative diseases (Choi and Choi, 2015;
Brillatz et al., 2018), and several studies highlighted marine
resources with a strong potential in prevention or slowing of
retinal diseases by exerting anti-inflammatory, antioxidant,

antiangiogenic/vasoprotective, and cytoprotective activities, or
ameliorating retinal function (Krueger et al., 2021). Marine
resources, which can be processed as food, with beneficial effect
on the prevention or progression of retinal diseases has already
been described in several studies (Broadhead et al., 2015; Dow
et al., 2018; Eggersdorfer and Wyss, 2018; Rinninella et al., 2018;
Wong et al., 2018; Chapman et al., 2019) and reviewed recently
(Krueger et al., 2021). However, although the consumption
of fish is considered to be safe, some adverse health impacts
remain with certain fish and shellfish containing chemicals or
illness-causing microorganisms due to ocean pollution. Another
important aspect for the dietary use of marine resources is that
they could not reach the intended target tissue, or exert their
effects through unwanted systemic ways. A possible approach
to overcome these issues could be the exploitation of marine
organisms to produce natural by-products useful in therapeutic
intervention for retinal diseases.

In this review, we focused our attention on the growing
interest in processing and utilizing by-products from marine
species, evaluating their contribution to improve retinal function
and health, considering not only marine compounds that can
be assumed by food ingestion (as in Krueger et al., 2021) but
also including other administration strategies. Moreover, we
also highlighted the recent advances in optogenetic therapeutic
strategies that exploit the Adeno-Associated-Viral (AAV) vector
to express in neuronal cells opsin proteins to restore electrical
response of the retina to light stimuli.

MARINE COMPOUNDS BIOACTIVITIES ON
RETINA DISEASES

NPs from various marine organisms have been shown
bioactivities in modulating specific biochemical pathways
involved in the pathogenesis and progression of different ocular
diseases, thus suggesting new lead compounds for possible
therapeutic applications (Table 1 and Figure 1). Krueger et al.
reviewed the marine-derived components of diet/food with
beneficial effects on the development of retinal diseases, with
antioxidant, anti-inflammatory, antiangiogenic, vasoprotective
and cytoprotective effects (i.e., mainly fish oil, algal oil, fucoidan
and sulfated fucan) (Krueger et al., 2021).

Reactive oxygen species (ROS), being the major inducers
of RPE cell dysregulation, are known to be involved in the
progression of various retinal disease pathogenesis, including
AMD (Park et al., 2019; Chen et al., 2021). Park et al. showed
that a phlorotannin compound isolated from the brown alga
Ishige okamurae Yendo, named diphlorethohydroxycarmalol
(DPHC), known for its strong antioxidant capacity, was able
to protect RPE-derived cell line (ARPE-19) against H2O2-
induced DNA damage and apoptosis. DPHC acted as ROS
scavenger and inhibited the mitochondrial-dependent apoptotic
pathway, suggesting a possible therapeutic application in the
AMD prevention (Park et al., 2019).

The orange-colored carotenoid fucoxanthin, synthesized
by some brown seaweeds (e.g., Hijikia fusiformis, Laminaria
japonica and Sargassum fulvellum), was previously reported
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TABLE 1 | Marine derived compounds which have shown activity for human eye pathologies compromising sight.

Organism Compound Mechanism of action Pathology References

Brown alga Ishige

okamurae

Diphlorethohydroxycarmalol ROS scavenger

(tested at 25, 50, 75 and 100µM for 24 h)

AMD Park et al., 2019

Present in brown

seaweeds

Fucoxanthin Antioxidant in vitro (tested at 1, 5, 10µM for

24 h) and in vivo (tested at 0.1, 1, 10 mg/kg

oral administration)

AMD Chen et al., 2021

Brown alga

Laminaria japonica

Fucoxanthin In vitro: inhibited the overexpression of vascular

endothelial growth factor, improved phagocytic

function and cleared ROS (tested at 20, 40, 60,

80, 100µg/mL for 24 h) In vivo: retina

protection against photoinduced damage

(tested at 100 µg/kg/day)

Light-induced

retinal damage

Liu et al., 2016

Brown algae and

marine

invertebrates

Fucoidan Protective effect on the EMT of RPE cells

(tested at 50, 60, 70, 80, 90, 100µg/mL for

48 h) and experimental in vivo PVR (tested at

2,000µg/mL intravitrous administration);

reduction of diabetic retinal neovascularization

and damage, antioxidant, prevent renal fibrosis

and slowing down the progression of diabetic

nephropathy

PVR Yang et al., 2013;

Chen et al., 2015;

Li et al., 2015;

Zhang et al., 2018

Coral Cladiella

australis

4-

(phenylsulfanyl) butan-

2-one

(4-PSB-2)

Anti-inflammatory in ARPE-19 cells (dissolved

in DMSO and medium to 1, 25, 50, 100, and

200µM)

AMD Varinthra et al.,

2020

Coral Cladiella

australis

4-PSB-2 anti-inflammatory and anti-apoptois (tested at 5

mg/kg in 0.2mL phosphate-buffered saline by

subcutaneous injection)

Optic nerve crush

in rat model

Chien et al., 2016

Shrimp

Litopenaeus

vannamei

Heparin-like

compound

Potent antiangiogenic and anti-inflammatory

activities in ARPE-19 cells (90, 900,

9,000 ng/mL in 200 µL/well) and rats (4.5, 45,

450 ng of heparinoid in 5 µL of balanced salt

solution intravitreous)

AMD Dreyfuss et al.,

2010

Sponges

Poecillatra

wondoensis and

Jaspis sp.

Modified

wondonin marine

natural product

antiangiogenic activity (single intravitreal

injection at 3 µg/µL)

Diabetic retinopathy

(choroidal

neovascularization

and

oxygen-induced

retinopathymouse)

Kim et al., 2021

Organism and species name fromwhich the compounds have been extracted, as well as mechanism of action and active concentrations are reported as well. AMD stands for age-related

macular degeneration, EMT for epithelial-mesenchymal transition, ROS for reactive oxygen species, and PVR stands for proliferative vitreoretinopathy.

as antioxidant, anti-inflammatory, anticancer and antimicrobial
compound (Lourenço-Lopes et al., 2021). Liu et al. tested
fucoxanthin effect on in vitro and in vivo models of visible
light-induced retinal damage. The compound inhibited the
overexpression of vascular-endothelial-growth-factor (VEGF),
improved phagocytic function and ROS clearance in ARPE-19
cells. In vivo experiments also showed retina protection against
photo-induced damage (Liu et al., 2016). Recently, Chen and
co-workers (Chen et al., 2021) showed that fucoxanthin can
protect ARPE-19 cells in a sodium iodate (NaIO3)-induced AMD
animal model. They also showed in vitro protective activity of
fucoxanthin on ARPE-19 cells, with inhibition of cell death and
ROS generation, reduction of malondialdehyde concentrations
and increase in the mitochondrial metabolic rate.

Fucoidan, a marine compound known for its antioxidant,
anti-inflammatory and anticancer properties, reduces diabetic

retinal neovascularization and damage through the inhibition
of hypoxia-inducible factor-1α and VEGF (Yang et al., 2013),
normalizes ROS in RPE cells (Li et al., 2015), blocks epithelial-
mesenchymal transition (EMT) by regulating the ERK1/2, Akt,
p38, and Smad3 pathways, preventing renal fibrosis and slowing
down the progression of diabetic nephropathy (Chen et al., 2015).
Zhang and collaborators tested fucoidan on EMT of RPE cells
ARPE-19, evaluating the possible effects on the development
of proliferative vitreoretinopathy (PVR), a severe complication
of rhegmatogenous retinal detachment (Zhang et al., 2018),
probably due to EMT of RPE. Their data showed that fucoidan
was able to reverse the transforming growth factor (TGF)-β1-
induced EMT, increase the expression of α-smooth muscle actin
(α-SMA) and fibronectin, decrease E-cadherin, suppress the up-
regulation of phosphorylated Smad2/3 in RPE cells, as well as
inhibit the migration and contraction of these cells. Authors
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FIGURE 1 | Natural products from various marine organisms have shown promising activities in amelioration of light perception and visual functionality. Schematic

representation of marine organisms, such as marine algae, shrimp, sponges and corals, are reported in upper part of the figure. Some marine natural products derived

from these representative organisms are reported as example: fucoxanthin, 4-(phenylsulfanyl)butan-2-one (4-PSB-2), diphlorethohydroxycarmalol (DPHC) and

trans-membrane structure of opsin proteins are graphically represented. The administration of these marine products to the targeted tissue (the eye) could result in

amelioration of light perception and visual functionality.

also tested intravitrous administration of fucoidan in an in vivo
rabbit PVR model, which arrested progression of experimental
PVR in rabbit eyes and suppressed formation of α-SMA-positive
epiretinal membranes.

The 4-(phenylsulfanyl)butan-2-one (4-PSB-2) is a synthetic
precursor of soft coral Cladiella australis-derived compound
austrasulfone. This compound showed anti-inflammatory
activity by decreasing the tumor necrosis factor alpha,
cyclooxygenase-2 and inducible nitric oxide synthase expression,
via the nuclear factor-kappaB (NF-κB) signaling on in vitro
model of AMD (ARPE-19 cells treated with Aβ1−42 oligomer)
(Varinthra et al., 2020). Chien et al. (2016) also tested 4-PSB-2
in a rat model subjected to optic nerve crush, revealing an
anti-inflammatory and anti-apoptosis effect of this marine
compound, able to preserve the visual function in vivo.

A heparin-like isolated from a marine shrimp (Litopenaeus
vannamei) showed potent antiangiogenic and anti-inflammatory
activities in ARPE-19 cells and in rats (intravitreous
administration). In this study, the compound blocked endothelial
cell proliferation, reduced the choroidal neovascularization area
and decreased the levels of VEGF and TGF-β1 in the choroidal

tissue (Dreyfuss et al., 2010). The authors suggested the heparin-
like compound as candidate drug for treating neovascular AMD
and other angioproliferative diseases.

Astaxanthin is widely produced by marine microorganisms
such as the bacterium Agrobacterium aurantiacum, the
green microalga Chlorella zofingiensis and the red yeast
Xanthophyllomyces dendrorhous. Astaxanthin was found to
decrease retina inflammation and oxidative stress levels in
streptozotocin-induced diabetic rats, leading to a reduced
activity of NF-κB (Yeh et al., 2016; Galasso et al., 2018).

Wondonins are imidazole compounds biosynthesised
by two-sponge association (Poecillastra wondoensis and
Jaspis sp., Shin et al., 2001). Recently, Kim et al. analyzing
various wondonin modified compounds identified one
which suppressed angiopoietin-2 expression induced
by high glucose levels in retinal cells and had in vivo
antiangiogenic activity in mouse model of DR (choroidal
neovascularization and oxygen-induced retinopathy),
suggesting the potential therapeutic application of this
marine compound to treat this retinal disease (Kim et al.,
2021).
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MICROBIAL OPSINS AS PROMISING
TOOLS—RESTORING VISION USING
OPTOGENETICS

Over the last decades optogenetics gained growing notability

representing a revolutionary application in neurosciences. In the

last years, the use of optogenetics as possible therapeutic tool has

attracted increasing attention, particularly in view of its utility
for vision recovery in retinal blindness (Simon et al., 2020).
This technique exploits viral delivery systems, mainly based

on AAVs, to achieve the expression of opsins genes targeting
survived neuronal subpopulation to neurodegeneration, such as

interneurons (bipolar and amacrine cells) and RGCs, enabling
rapid optical control of membrane potential of light-insensitive
cells and the recovery of light responses (Deisseroth, 2015; Simon

et al., 2020). Opsins are retinal-binding, seven-transmembrane
proteins that function as light-responsive ion pumps or sensory

receptors. Notably, there are two distinct families of opsin genes:
microbial opsins, typically found in prokaryotes, algae, and fungi;

and animal opsins, present only in higher eukaryotes (Terakita,
2005; Simon et al., 2020). The latter subtype primarily functions

as G protein-coupled receptors and has emerged more recently
as candidates to restore vision. Microbial opsins, in contrast,
have been extensively investigating over the past decade even

leading to two clinical trials already ongoing for RP patients
(NCT02556736; NCT03326336). Theymay vary in their chemical

properties, functioning as light-driven ion pumps, light-gated ion
channels, photosensors, and light-regulated enzymes. Broadly,
microbial opsins stimulated with the appropriate wavelength
of light, exploit energy to directly convert light to modify
electrochemical potential, leading to reversible activation or
inhibition of a neural cell (Zhang et al., 2011). Many different
microbial opsins have been identified to date and most of them
have been found in aquatic environment, drawing from various
marine microbial species, and then re-engineered or adapted for
mammalian expression.

The microbial opsins firstly described and used in
optogenetics are the channelrhodopsin-1 (ChR1) and
channelrhodopsin-2 (ChR2). ChRs are blue light-activated
nonspecific cation channels, both identified in Chlamydomonas
reinhardtii, a single-cell green alga, widely found in soil and
fresh water which enabling light-dependent depolarization
of different cell types (Harz and Hegemann, 1991; Nagel
et al., 2002, 2003). ChR-2 was the first opsin to be applied as
optogenetic tool. Ectopic expression of ChR2 in RGCs restored
light responses in photoreceptor deficient mice (Bi et al.,
2006). Other widely investigated microbial opsins derives from
archaea isolated from highly saline soda lakes. Halorhodopsin
from the archaea Natronomonas pharaonis (NpHR), is a
yellow light-driven inward chloride ions pump. An engineered
enhanced variant of halorhodopsin (eNpHR2.0) was recently
used to drive hyperpolarization of light-insensitive cones in
two murine models of RP (Busskamp et al., 2010). In contrast
to halorhodopsin, other well-studied archaea opsins, such as
bacteriorhodopsin (BR) and Arch-3 incorporate outward-
directed proton-pumps. Most properties of BR, are similar to

those of proteorhodopsins (PRs), found in marine proteobacteria
(Váró et al., 2003), and Acetabularia rhodopsin (AR), from the
giant unicellular marine alga Acetabularia acetabulum (former
A. mediterranea) (Tsunoda et al., 2006). A recently emerged class
of microbial opsins are light-activated enzymes that generate or
degrade the second messengers cyclic guanosine monophosphate
(cGMP) and cyclic adenosine monophosphate (cAMP).
Examples are the BeCyclop (also known as RhGC) identified in
the aquatic fungus Blastocladiella emersonii (Avelar et al., 2014;
Gao et al., 2015; Scheib et al., 2015) and the SrRhoPDE from
a marine species of protists, the Choanoflagellate Salpingoeca
rosetta, proven as blue light-activated phosphodiesterase,
degrading cGMP and cAMP (Lamarche et al., 2017; Yoshida
et al., 2017). The properties of these last opsins have stimulated
strong interest in order to expand the use of light stimuli for
controlling intracellular signaling and specific biochemical
events in cells, also by engineering non-opsin proteins able to
modulate general second messengers (Tian et al., 2020).

The use of optogenetic system is rapidly evolving for the
devise of mutation-independent therapies because it ensures
a more sustained expression of the therapeutic agent and
usually requires a single administration, safeguarding patients’
welfare. Moreover, the appropriate combination of specific vector
serotypes and cell type specific promoters would limit transgene
expression only to the desired cells. The main strength of
this strategy relies on the possibility to obtain the therapeutic
agent expression avoiding repeated local injections, that may
cause endophthalmitis and retinal detachment. In addition, as
mentioned before, the optogenetic approach could be of benefit
especially for those patients that present an advanced stage of
retinal disease progression when all photoreceptors are lost.
Although the success of clinical trials and the recent approval
of LuxturnaTM (Ledford, 2017; Apte, 2018) are laying the bases
for a more widespread use of AAV strategies for the treatment
of retinal diseases, the use of optogenetic approaches is still in
its infancy in determining its effectiveness and safety. Several
pre-clinical trials, conducted in murine, canine, and simian
models, include different type of optogeneticmolecules expressed
alone or in combination and present different targeted cell
population. Despite the significant inroads made in recent years,
the ideal optogenetic molecule, vector and surgical approach
have yet to be established (Simunovic et al., 2019). Recently,
Sahel and co-worker reported the first results obtained by
exploiting optogenetic approach to restore visual activity in
human patient (Sahel et al., 2021). The first part of the clinical
trial (NCT03326336) was designed to evaluate the safety and
efficacy of optogenetic stimulation of human RGCs for patients
with advanced RP, that combines injection of an optogenetic
vector with wearing a medical device, namely light-stimulating
goggles. In this strategy, it was used a AAV vector (rAAV2.7m8)
containing the opsin ChrimsonR-tdTomato gene, an engineered
variant of ChR, with peak sensitivity around 590 nm (amber
light, safer and causes less pupil constriction), and the light-
stimulating goggles that capture images from the visual world
using a neuromorphic camera that detects changes in intensity
as distinct events. The goggles then transform the events into
monochromatic images and project them in real time as local
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595-nm light pulses onto the retina. The patient was subjected
to three visual tests at different time point in the subsequent year
post-treatment. The results highlight a partial recovery of retinal
functionality, suggesting a possible amelioration of quality of life
for blind patients, affected with advanced RP, upon optogenetic
treatment (Sahel et al., 2021).

CONCLUSIONS AND FUTURE
PERSPECTIVE

Visual impairment and loss of independence could lead to
several consequences, including depression (Javitt et al., 2007),
increased rate of suicide (Waern, 2002), and an impact on many
levels of society, often underestimated by the medical personal
(Chaudry et al., 2015). These diseases permanently affect the
patients’ quality of life and represent, from a socio-economic
perspective, a major economic burden for the healthcare system.
Most eye diseases that lead to the loss of vision are age-related
and the population of the planet is increasing and aging. For this
reason, the number of affected people is estimated to augment
profoundly by 2050 (Bourne et al., 2017). These observations
highlighted the increasing necessity to identify safe and effective
therapeutic strategy that could slow down the disease progression
and ameliorate the quality of patient’s life independently form the
etiology of the retinal disease.

In the last century, a series of NPs with the ability to regulate
physiological functions have been isolated and exploited from
plants, animals and microorganisms, showing a great potential
to be translated into clinical use (e.g., AstaPure R© EyeQ) (Khalifa
et al., 2019; Yin et al., 2019; Deng et al., 2020; Saide et al.,
2021b). It is not surprising that between 50 and 70% of today’s
small molecule-based therapeutics have originated from NPs
(Newman and Cragg, 2016), suggesting the pivotal role these
compounds play in modern medicine. Their applications have
underpinned fundamental advances in medical fields thanks to
their favorable safety and efficacy profiles observed in clinical

trials. The development of new and effective therapeutic agents
with low toxicity will help patients to achieve better therapeutic
results and will improve quality of life.

The marine NPs have been known for their structural
diversity, due to high biodiversity and genetic uniqueness of
marine organisms as well as severe competition for survival
in their habitat, which is often reflected in the chemistry and
bioactivity of marine NPs (Gribble, 2015). The number of marine
NPs is rapidly growing and hundreds patents associated with
marine organisms have been reported (Saide et al., 2021a).
However, apart from establishing associative effect of marine
compounds with reduced incidence of retinal diseases, major
efforts should be focused on elucidating the underlyingmolecular
mechanism, still insufficiently explained.

In conclusion, the marine organisms and their NPs could be
a very promising chemical pool to discover pharmacologically
active compounds with new structures and activities, and
novel marine microbial opsins with specific property useful
for optogenetic strategy. Future discovery and characterization
of marine organisms in deep-sea and other extreme marine
environments (Saide et al., 2021a), could give us novel
therapeutic tools to fight blindness, as well as other human
diseases whose progression presents similar dysregulated
molecular events (Figure 1).
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