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Background: Hypoxia is associated with a poorer clinical outcome and resistance to

chemotherapy in solid tumors; identifying hypoxic-related colorectal cancer (CRC) and

revealing its mechanism are important. The aim of this study was to assess hypoxia

signature for predicting prognosis and analyze relevant mechanism.

Methods: Patients without chemotherapy were selected for the identification of hypoxia-

related genes (HRGs). A total of six independent datasets that included 1,877 CRC

patients were divided into a training cohort and two validation cohorts. Functional

annotation and analysis were performed to reveal relevant mechanism.

Results: A 12-gene signature was derived, which was prognostic for stage II/III CRC

patients in two validation cohorts [TCGA, n = 509, hazard ratio (HR) = 2.14, 95%

confidence interval (CI) = 1.18 – 3.89, P = 0.01; metavalidation, n = 590, HR = 2.46,

95% CI = 1.59 – 3.81, P < 0.001]. High hypoxic risk was correlated with worse

prognosis in CRC patients without adjuvant chemotherapy (HR = 5.1, 95% CI = 2.51

– 10.35, P < 0.001). After integration with clinical characteristics, hypoxia-related

gene signature (HRGS) remained as an independent prognostic factor in multivariate

analysis. Furthermore, enrichment analysis found that antitumor immune response was

suppressed in the high hypoxic group.

Conclusions: HRGS is a promising system for estimating disease-free survival of

stage II/III CRC patients. Hypoxia tumor microenvironment may be via inhibiting immune

response to promote chemoresistance in stage II/III CRC patients.

Keywords: hypoxia-related gene signature, immunosuppression, chemoresistance, colorectal cancer, biomarker

INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer type in men (10.9% of all cancers)
and the second in women (9.5% of all cancers) worldwide (1). Currently, the therapeutic
treatment for individual patients is mainly based on the TNM staging (2). However, for stages
II and III CRC patients, the current staging method cannot provide indications of how and
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when to use chemotherapy, neither is the possible effectiveness
of chemotherapy. As a result, chemotherapy frequently leads to
diverse unpredictable responses due to risk factors such as T
stage, tumor differentiation, and microsatellite instability (MSI)
status (3–5). A previous study has shown that some stage II CRC
patients have worse prognosis, whereas some stage III patients are
overtreated (6). Therefore, investigating new reliable biomarkers
can help to choose the appropriate therapy at the right time for
CRC patients.

Hypoxia is a common microenvironmental condition found
in most solid tumors and is associated with poor prognosis
(7–9). Hypoxia-inducible factors can be activated under the
hypoxia condition in the cellular environment. Evidence has
shown that these factors can promote the tumor invasion and
metastasis (10–12). Furthermore, recent studies have found
that the hypoxic tumor microenvironment could affect the
chemotherapy efficiency to CRC patients (13, 14). Therefore, it
is important to identify prognostic hypoxia-inducible factors that
could help to choose the appropriate therapy against the CRC.

Currently, hypoxic gene signatures are found to have
prognostic and predictive effects for diverse cancers including
head and neck, bladder, soft tissue sarcoma, and cervical cancers,
which allow clinicians to coordinate the therapeutic agent use
for patients with most benefit (7, 8, 15–18). In this study, we
analyzed hypoxia-related genes from large amounts of CRC
transcriptional data and created a hypoxia-related gene signature
(HRGS) for CRC prognosis. The prognostic prediction value
of the HRGS was systematically validated in a metavalidation
cohort. In addition, we demonstrated a relevant mechanism
underlying the poor survival outcome of the high hypoxic risk
CRC patients at stage II/III, and this finding may help to detect
out new therapeutic target for CRC patients. This would help
improve therapeutic strategy for CRC patients.

MATERIALS AND METHODS

Patients (Data Source)
This meta-analysis study used the gene expression data of
frozen CRC tumor tissue samples from six public cohorts.
To be included in the study, patients needed to meet the
following inclusion criterion: patients with pathologic diagnosed
as CRC. The exclusion criterion was patients without survival
information. In total, data of 1,877 patients, including 309
CRC patients without adjuvant chemotherapy, were used. The
two largest individual datasets, CIT/GSE39582 and The Cancer
Genome Atlas (TCGA) CRC cohort, were used for training
and independent validation. The remaining four microarray
datasets (GSE14333, GSE17536, GSE37892, and GSE33113)
obtained from the Gene Expression Omnibus (GEO) database
were merged as a metavalidation cohort. Data of the TCGA
CRC cohort were downloaded from Broad GDAC Firehose
(http://gdac.broadinstitute.org/), and transcripts per million
of level 3 RNA-Seq data in log2 scale were used for the
analysis. Other datasets were obtained in processed format
from GEO database through R using the Bioconductor package
“GEOquery.” The batch effects were corrected using “combat”
algorithm implemented in the R package “sva,” and z scores
of each gene were used for the following analyses. The staging

classification in each dataset was based on pathologic stage. Data
were collected from September 27 to December 26, 2018.

Construction and Validation of HRGS
The Molecular Signatures Database (MSigDB) is one of the
most widely used and comprehensive databases of gene sets
for performing gene set enrichment analysis (GSEA) (19–21).
We created a list of hypoxia-related genes (HRGs) including
all gene sets found in MSigDB (version 6.2) with the keyword
“hypoxia.” In order to construct a prognostic HRGS, we assessed
the association between all HRGs found in this meta-analysis
and the patients’ disease-free survival (DFS) in GSE39582 dataset
using the log-rank test with 1,000 times randomization (80%
proportion of samples each time). HRGs, which have frequently
been significantly associated with the patients’ DFS, were selected
as candidates for the construction of HRGS. To minimize
the risk of overfitting, we applied a Cox proportional hazards
regression model combined with the least absolute shrinkage
and selection operator (LASSO) (glmnet, version 2.0-16). The
penalty parameter was estimated by 10-fold cross-validation
in the training dataset at 1 SE beyond the minimum partial
likelihood deviance.

In order to separate patients into low- or high-risk groups,
the optimal HRGS cutoff was determined by a time-dependent
receiver operating characteristic (ROC) curve (survival ROC,
version 1.0.3) at 5 years in the training dataset. The Kaplan–
Meier estimation method was used to estimate the ROC curve.
The predictive value of HRGS that corresponded to the shortest
distance between the ROC curve and the point representing both
the 100% true positive rate and 0% false-positive rate was selected
as the cutoff value.

The prognostic value of the HRGS was assessed in stage
II/III CRC patients and patients with all stages in the
training and independent validation cohorts in univariate
analyses, respectively. The prognostic value of HRGS was also
examined with available clinical and pathologic variables in
multivariate analyses.

Functional Annotation and Analysis
To investigate the biological characteristic of the HRGS,
we conducted enrichment analysis for differentially expressed
genes between hypoxic risk groups in TCGA CRC dataset
using the R package “gProfileR.” The biological pathways
of interest were further analyzed by GSEA in R using the
Bioconductor package “HTSanalyzeR.” (22) In addition, we
estimated the proportion of infiltrated immune cells and
stromal cells within the tumor tissues using the ESTIMATE
(Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data) (23). The proportion of different
types of immune cells such as lymphocytes, monocytes, and
neutrophils and necrosis percentage were calculated using
CIBERSORT (24).

Statistical Analysis
Statistical analysis was conducted using SPSS (version 22.0.0,
IBM SPSS Statistics, IBM Corp., Armonk, NY) and R software
(version 3.5.1; http://www.Rproject.org). Means with standard
deviations or medians with interquartile ranges were calculated
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FIGURE 1 | Establishment and verification of HRGS. A schematic flowchart of study design and analysis steps (A). The optimal lambda in the LASSO model was

chosen, and the lowest standard 5-fold crossvalidation was used. By using the minimum standard and the minimum standard of 1 SE (1 – SE standard), a vertical line

was drawn at the optimal value (B). Twelve hypoxia-related genes selected in LASSO COX regression (C).

TABLE 1 | Twelve-Gene hypoxia signature.

Gene Function Frequency in resampling Average P-value Coefficient

TNFAIP8 TNF-α-induced protein 967 0.011 −0.006

ORAI3 Calcium release–activated modulator 999 0.003 0.052

MINPP1 Multiple inositol-polyphosphate phosphatase 1 1,000 0.001 −0.079

MBTD1 MBT domain containing 972 0.009 −0.023

TRAF3 TNF receptor–associated factor 958 0.012 −0.087

CYB5R3 Cytochrome b5 reductase 957 0.013 0.005

ZBTB44 Zinc finger and BTB domain containing 992 0.005 −0.050

CASP6 Caspase 6 998 0.003 −0.019

DTX3L Deltex E3 ubiquitin ligase 3L 969 0.012 −0.003

FAM117B Family with sequence similarity 117 member B 979 0.008 −0.059

PRELID2 PRELI domain containing 993 0.004 −0.023

IRF1 Interferon regulatory factor 1 992 0.007 −0.070

for continuous values, whereas frequencies were determined
for categorical values. The significance between two different
groups composed of continuous values was examined using the
Student t test. Univariate analysis of the association of HRGS
and other clinical pathologic factors with DFS was conducted
using log-rank test. Multivariate analysis was conducted for the
factors with a p < 0.01 in the univariate analysis, using the
Cox proportional hazards regression model. The C-index was
calculated with survcomp (version 1.32.0). A P < 0.05 was
considered statistically significant.

RESULTS

Discovery and Training of the HRGS
According to the CIT gene microarray dataset (GSE39582), a
total of 309 eligible CRC patients without chemotherapy were
enrolled in the analysis as a discovery cohort. Among 3,444
HRGs selected from MSigDB, 3,184 HRGs were detected in
the meta-analysis in this study. Filtering based on conditions
that the median absolute deviation is >0.5 and expression
level is greater than the total median expression level, 1,636
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TABLE 2 | Univariate and multivariate analyses of HRGS and clinical and pathologic factors with DFS of stage II/III patients in training cohorts (CIT/GSE39582).

Characteristic Univariate Multivariate

HR (95% CI) P-value HR (95% CI) P-value

HRGS 2.81(1.82–4.35) <0.001 2.70(1.67–4.36) <0.001

Age 1.01(1.00–1.02) 0.20

Gender 1.25(0.88–1.77) 0.21

TNM stage 1.95(1.38–2.75) <0.001 1.48(1.03–2.14) 0.035

Tumor location 1.14(0.80–1.62) 0.46

MMR status 1.98(1.04–3.77) 0.04

CIMP status 0.67(0.38–1.19) 0.17

CIN status 1.60(0.89–2.89) 0.11

TP53 mutation 1.33(0.89–2.01) 0.17

KRAS mutation 1.58(1.11–2.24) 0.01

BRAF mutation 0.74(0.36–1.51) 0.40

HRGs remained. Then, the HRGs were used as candidates to
construct HRGS and stage II/III CRC patients in GSE39582
as training cohort. The association between these genes and
patients’ DFS were assessed using 1,000 times randomization of
Cox univariate regression model, and choosing 95% repeatable
genes, 40 HRGs were selected. Using LASSO Cox regression
in stage II/III patients, 12 prognostic HRGs were selected
to construct the HRGS (Figure 1). We used satisfactory RFS
cutoff at 5 years in a time-dependent ROC curve analysis
to train HRGS for stratifying high and low hypoxic risk
groups (Supplementary Figure 1A). The prognosis correlation
coefficient of each gene in HRGS was determined (Table 1),
and the related risk score calculation model was defined
(Supplementary Figures 1B,C). As expected, GSEA showed that
the hypoxia pathways were enriched in the high hypoxic risk
patients fromGSE39582, confirming that theHRGSwas hypoxic-
related signature (Supplementary Figure 1D). Using stage II/III
CRC patients in the CIT dataset (n = 469) as training dataset,
more recurrence cases were arranged in the hypoxia high-risk
group than in the low-risk group (Figures 2A,D; P < 0.001).
Furthermore, this trend was confirmed in TCGACRC cohort and
Meta-validation cohort (Figures 2B,C,E,F).

Validating the HRGS Prognostic Capability
in TCGA and Metavalidation Cohort
To validate the prognostic power of HRGS, the TCGA dataset
(n = 624) and the metavalidation cohort (n = 687) composed
of GSE17536, GSE33113, GSE37892, and GSE14333 were used.
All datasets include the transcriptional data and prognostic
information. No significant difference was observed among
the three cohorts regarding the clinical and pathologic factors
(Table 2, Supplementary Tables 1, 2). To evaluate the HRGS
signature, we compared the nomogram with or without HRGS
in R and analyzed the area under the curve (AUC) of the
ROC curve. The AUC of nomogram with HRGS was 0.61,
which was better than the nomogram without HRGS 0.56
(Supplementary Figures 2A,B). Decision curve analysis (DCA)
was conducted to determine the clinical usefulness of the
predicted nomogram by quantifying the net benefits at different

threshold. As expected, addition of HRGS improved the DCA
in patients of GSE39582, TCGA, and metavalidation cohorts
(Supplementary Figure 2C).

Using the same risk score calculation model, stage II/III CRC
patients were divided into low and high hypoxic risk groups.
Statistical differences of the DFS score were detected between
these two risk groups in the training cohort [hazard ratio (HR)
= 2.81, 95% confidence interval (CI) = 1.82–4.35, P < 0.001],
validation (HR = 2.14, 95% CI = 1.18–3.89, P = 0.01), and
metavalidation cohort (HR = 2.46, 95% CI = 1.59–3.81, P <

0.001) (Figures 2D–F). To further validate its clinical prognostic
value, HRGS was compared with Oncotype DX, a commercially
available diagnostic test that estimates the recurrence risk of the
breast cancer (Supplementary Table 3). The result showed that
HRGS has a better C-index in the training cohort (0.73 vs. 0.60),
TCGA cohort (0.69 vs. 0.51), and the metavalidation cohort (0.72
vs. 0.67).

Furthermore, the HRGS test showed satisfactory prognostic
value to evaluate patents’ DFS in all-stage CRC cohort
(CSE39582 cohort, HR = 2.30, 95% CI = 1.60–3.30, P <

0.001; TCGA cohort, HR = 2.10, 95% CI = 1.30–3.39,
P = 0.01; metavalidation cohort, HR = 2.43, 95% CI =

1.59–3.70, P < 0.001) (Supplementary Figures 3D–F) and
had a prognostic value to evaluate patents’ overall survival
(Supplementary Figures 3G–I).

HRGS Predicts Benefit From
Chemotherapy in Stage II/III CRC Patients
Univariate and multivariate analyses were applied to determine
if the age, sex, tumor stage, tumor location, pathologic
gene status, and HRGS were associated with CRC patients’
outcomes. Univariate analysis data showed that high HRGS was
significantly associated with worse prognosis in the training
cohort (HR = 2.81, 95% CI = 1.82 – 4.35, P < 0.001, Table 2),
TCGA cohort (HR = 2.11, 95% CI = 1.16–3.83, P = 0.01,
Supplementary Table 2), and metavalidation cohort (HR= 2.46,
95% CI = 1.49 – 3.81, P < 0.001, Supplementary Table 2). In
addition, multivariate analysis revealed that HRGS could be an
independent prognostic factor in the (CSE39582 cohort, HR =
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FIGURE 2 | The outcome of low and high hypoxic risk in stage II/III CRC patients. The disease-free and recurrence patients in the different hypoxic risk groups of

training cohort (A), TCGA cohort (B), and metavalidation cohort (C). Kaplan–Meier curves comparing patients with low or high hypoxic risk in training cohort (D),

TCGA cohort, (E) and metavalidation cohort (F). P values were calculated using log-rank tests. HR, hazard ratio.

2.70, 95% CI= 1.67–4.36, P < 0.001, Table 2; TCGA cohort, HR
= 2.02, 95% CI= 1.11–3.68, P= 0.02; metavalidation cohort, HR
= 2.12, 95% CI= 1.36–3.29, P < 0.001, Supplementary Table 2).

To examine whether HRGS could predict the effect of
adjuvant chemotherapy for CRC patients, we separated the non–
chemotherapy-treated and the chemotherapy-treated group into
high and low hypoxia groups using HRGS test and analyzed the
prognosis data of these patient groups. In CRC patients without
adjuvant chemotherapy, the DFS of the high hypoxia group was
worse than that of the low hypoxia group in both the training
(HR = 5.10, 95% CI = 2.51–10.35, P < 0.001, Figure 3A) and

TCGA cohorts (HR = 2.54, 95% CI = 1.03–6.30, P = 0.037,
Figure 3D). In patients who received adjuvant chemotherapy,
no significant difference in DFS was found between the two
groups (Figures 3B,E; P > 0.05). Moreover, the DFS of the high
hypoxia group without chemotherapy treatment had a similar
outcome as compared with the chemotherapy-treated patients
(Figures 3C,F; P > 0.05).

Functional Annotation of the HRGS
To explore the possible underlying mechanisms responsible
for the worse outcome of DFS in the high hypoxic risk
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FIGURE 3 | Kaplan–Meier plots for validations of the 12-gene hypoxia signature in chemotherapy and non-chemotherapy cohorts (A–F).

patients, enrichment analysis of differentially expressed genes
was conducted by identifying several overrepresented biological
processes in the Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG). Interestingly, the most valuable
biological processes were found to be associated with immune
system response (Figure 4A). To further evaluate the role of
genes corresponding to the HRGS, GSEA was performed in
TCGA CRC cohort and found that the hypoxia environment was
statistically related to interferon α (IFN-α), IFN-γ, interleukin 6
(IL-6), and IL-2 (Figure 4B), which are important components of
the immune response network.

ESTIMATE algorithm was used to further validate the
immune system response between different hypoxic risk patients.
A lower stromal score (P < 0.001), immune score (P <

0.001), and ESTIMATE score (P < 0.001) were found in
the high hypoxic risk group (Supplementary Figures 4A,B).
Further analysis of the specific immune cell types were identified
using CIBERSORT, lower percentages of CD4T cells, and M1
macrophages, whereas higher percentages of regulatory T cells
and M2 macrophages were detected in the high hypoxia group
(Figures 4C,D). To investigate whether the HRGS can predict
the prognosis of immunotherapy, we evaluated HRGS in a
cohort of patients with programmed cell death (PD-1) blockade
treatment (25). The results show that high hypoxic risk patients
have a tendency for worse prognosis after immunotherapy but
cannot reach statistical significance (Supplementary Figure 5A).

In addition, high-risk group patients have a lower score of
T-effector cell infiltration score (IMmotion150 Teff signature),
immune infiltration (Javelin signature), and Merck18, which are
consistent with our results (Supplementary Figure 5B).

To investigate the therapeutic strategy for high hypoxic risk
patients, we analyzed the half maximal inhibitory concentration
(IC50) of different drugs in the Pharmacogenomics database
Genomics of Drug Sensitivity in Cancer (GDSC) with HRGS.
Using the same risk score calculation model, all cell lines in
the GDSC were divided into low and high hypoxic risk groups
and analyzed the IC50 of different drugs. A total of five drugs
have statistical significance: AZ6102, fulvestrant, irinotecan,
temozolomide, and topotecan (Supplementary Figure 5C). As
expected, high hypoxic risk group cells were more resistant
to the traditional chemotherapeutic drugs, such as fulvestrant,
irinotecan, temozolomide, and topotecan. Interestingly, high
hypoxic risk group cells were more sensitive to AZ6102, a
selective TNKS1/2 inhibitor.

DISCUSSION

Current cancer-related clinical trials have not included the
hypoxia status as a variable factor despite large variability of
tumor microenvironment due to the hypoxia status (26–29).
Although hypoxia tumor microenvironment has been shown to
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FIGURE 4 | Functional annotation of the HRGS. Enrichment analysis of the differentially expressed genes between risk groups in GO and KEGG (A). GSEA showed

IFN-α, IFN-γ, IL-6, and IL-2 were depressed in the high hypoxic risk patients (B). Immune cells were assessed based on data from TCGA (C). CD4T cells and M1

macrophages were depressed while T cells and M2 macrophages were enriched in the high hypoxia group (D,E). P values comparing hypoxia high- and low-risk

groups were calculated with t tests.

affect the chemotherapy outcome in various cancer types (14, 30–
32), there is no tool that could distinguish the high/low hypoxia
risk and predict prognostic response to chemotherapy in CRC.
In this study, we selected various HRGs to create an HRGS for
CRC patients. The data suggested that theHRGS can stratify stage
II/III CRC patients into subgroups with different DFS at a 5-
year follow-up duration. Moreover, HRGS test showed a better
C-index outcome as compared with the existing prognostic tool,
Oncotype DX. These results indicate that the HRGS test could
be an effective prognostic tool to distinguish the hypoxia status
among CRC patients.

Current TNM stage classification could not efficiently separate
the patient group for whom chemotherapy was effective within
stage II CRC patients. Studies have shown that chemotherapy-
treated patients have >5% improvement in the 5-year survival
rate (2, 33), and the treatment did not reduce the recurrence
risk (34–36). A more efficient selection method is required
to determine the patient group for whom chemotherapy was
effective within stage II CRC patients. A hypoxia gene signature–
based test may be a potential candidate, as it is known that
the hypoxia microenvironment could promote tumor invasion
and metastasis (10, 11, 37), and HRGS could effectively select
patients for individual-based treatment in other cancer types
(7, 8). However, the predictive potential of HRGS for the disease
prognosis and the chemotherapy outcome in CRC patients has
not been examined yet. In this study, we identified high and
low hypoxic risk groups within CRC patients using HRGS.

The high hypoxic risk group within non–chemotherapy-treated
CRC patients had a similar disease prognosis as compared to
the chemotherapy-treated CRC patients and had a significantly
worse prognosis as compared with low hypoxic risk group. These
results implied that high hypoxic risk related to tumor recurrence
and HRGS could help to determine the non–chemotherapy-
treated patients who could benefit from chemotherapy or other
adjuvant treatment.

To find a novel therapeutic strategy for high hypoxia risk
patients, it is important to understand the intrinsic mechanism
among hypoxia-related poor prognosis. Our previous study
showed that the hypoxia tumor microenvironment was
related to dysregulated cell cycle machinery and PI3K-AKT-
mTOR pathways (38). To date, a genome-wide mechanistic
analysis of how hypoxia tumor microenvironment induces
poor chemotherapy response is still lacking. Analysis of
an HRGS test identified that the hypoxia high-risk group
has significantly lower scores of stromal and immune cell
infiltrations than those observed in the hypoxia low-risk group.
Previous studies have postulated that tumor hypoxia reduces the
antitumor effect by suppressing the microenvironment immune
response (37, 39). A large number of immunosuppressive cells,
such as myeloid-derived suppressor cells, tumor-associated
macrophages, and T-regulatory cells, were found in the hypoxic
zones of the tumor (37, 40, 41). In line with these data, we also
found that the enriched T-regulatory cells and M2 macrophages,
but less amount of M1 macrophages in the high-hypoxic risk
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patients. These data suggest that hypoxia microenvironment
was probably associated with immune suppression and
enhanced tumor progression. As hypoxic microenvironment
could provide tumor resistant to immunotherapy (42, 43),
which has emerged as an effective therapy for CRC (44, 45),
HRGS may have the potential to predict the outcome of the
immunotherapy. Further studies will be required to verify
this hypothesis.

Despite the exciting finding in this study, some limitations to
the study should be noted. First, although we included as many
datasets as possible for validation of our HRGS, the results of this
study should be carefully evaluated because of the shortage of the
retrospective design. Second, gene expression signature is subject
to sampling bias caused by intratumor genetic heterogeneity
(46). Although we have reduced as many as possible cross-study
batch effects by constant ordering and excluding HRGs, their
complex nature implies that not all batch effects can be addressed.
To be more objective, further validation using prospective data
from multiple centers would be ideal and necessary before its
application in clinical practice.

In conclusion, the proposed prognostic HRGS is a
promising test system to estimate the DFS of stage II/III
CRC patients and to predict the possible beneficial effect
from the chemotherapy. Hypoxia tumor microenvironment
may promote chemoresistance in stage II/III CRC patients by
inhibiting the local immune response.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Institutional Review Board (IRB) of The
Sixth Affiliated Hospital of Sun Yat-sen University. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

Y-fC, Z-lY, M-yL, PL, X-jW, and FG contributed to study concept
and design, acquisition, analysis, interpretation of data, and
drafting of the manuscript. Y-fC, Z-lY, BZ, X-hL, Z-rC, M-yL,
and Y-xT contributed to data collections and manuscript review.
Y-fC, Z-lY, Y-fZ, and JK contributed to study concept and design,
analysis and interpretation of data, and critical revision of the
manuscript for important intellectual content. PL, X-jW and FG
supervised the study. All authors read and approved the final
manuscript.

FUNDING

This work was supported by National Key Clinical
Discipline, National Natural Science Foundation of
China (NSFC) (Nos. 81972212, 82002221, 82003197),
Guangdong Natural Science Foundation (No.
2017A030310517), Science and Technology Planning
Project of Guangdong Province (No. 2017B020226001),
and Fundamental Research Funds for the Central Universities
(No.17ykpy66).

ACKNOWLEDGMENTS

Thanks for the support and useful discussions with
other members of The Sixth Affiliated Hospital, Sun
Yat-sen University.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2021.686885/full#supplementary-material

Supplementary Figure 1 | Obtain the optimal cutoff at 5 years in a

time-dependent ROC curve analysis (A). The risk score calculation model was

defined: β is the prognosis correlation coefficient, and expr represents the

expression value of the corresponding gene (B). Heatmap of HRGs in the two

groups (C). GSEA showed hypoxia pathways were enriched in the high hypoxic

risk patients (D).

Supplementary Figure 2 | Nomogram for evaluation of HRGS. Development of

the nomogram based on the result of multivariate analysis (A). The receiver

operating characteristic (ROC) curve (B) and decision curve analysis (DCA) (C) of

nomogram with or without HRGS.

Supplementary Figure 3 | The clinical outcome of low and high hypoxic risk

groups in all-stage CRC patients. The disease-free and recurrence patients in the

different hypoxic risk groups of training cohort (A), TCGA cohort (B), and

metavalidation cohort (C). Kaplan–Meier curves comparing patients’ DFS with low

or high hypoxic risk in training cohort (D), TCGA cohort (E), and metavalidation

cohort (F). Kaplan–Meier curves comparing patients’ OS with low or high hypoxic

risk in training cohort (G), TCGA cohort (H), and metavalidation cohort (I). P

values were calculated using log-rank tests. HR, hazard ratio.

Supplementary Figure 4 | Functional annotation of the HRGS. Heatmap of

differentially expressed genes in the two groups (A). Analysis of ESTIMATE

algorithm to the TCGA dataset (B).

Supplementary Figure 5 | The overall survival of low and high hypoxic risk

groups in advanced clear cell renal cell carcinoma patients with PD-1 blockade

treatment (A). The score of T-effector cell infiltration score (IMmotion150 Teff

signature), immune infiltration (Javelin signature), and Merck18 in low and high

hypoxic risk group patients. The IC50 of AZ6102, fulvestrant, irinotecan,

temozolomide, and topotecan in low and high hypoxic risk group patients (C).

Supplementary Table 1 | Characteristics of II/III stage patients in training,

validation and meta-validation cohorts.

Supplementary Table 2 | Univariate and multivariate analysis of HRGs, clinical

and pathologic factors of II/III stage patients in validation cohorts.

Supplementary Table 3 | C-index for Hypoxic Risk compared with Oncotype DX

in three cohorts.

Supplementary Table 4 | Patients’ hypoxic risk stratification.

Frontiers in Medicine | www.frontiersin.org 8 June 2021 | Volume 8 | Article 686885

https://www.frontiersin.org/articles/10.3389/fmed.2021.686885/full#supplementary-material
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chen et al. Hypoxia Promote Chemoresistance via Immunosuppression

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer

statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide

for 36 cancers in 185 countries. CA Cancer J Clin. (2018) 68:394–424.

doi: 10.3322/caac.21492

2. Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rodel C, Cervantes A, et al.

Rectal cancer: ESMOClinical Practice Guidelines for diagnosis, treatment and

follow-up. Ann Oncol. (2017) 28:iv22–40. doi: 10.1093/annonc/mdx224

3. Dienstmann R, Salazar R, Tabernero J. Personalizing colon cancer adjuvant

therapy: selecting optimal treatments for individual patients. J Clin Oncol.

(2015) 33:1787–96. doi: 10.1200/JCO.2014.60.0213

4. Kopetz S, Tabernero J, Rosenberg R, Jiang ZQ, Moreno V, Bachleitner-

Hofmann T, et al. Genomic classifier ColoPrint predicts recurrence in stage

II colorectal cancer patients more accurately than clinical factors. Oncologist.

(2015) 20:127–33. doi: 10.1634/theoncologist.2014-0325

5. Provenzale D, Gupta S, Ahnen DJ, Bray T, Cannon JA, Cooper G, et al.

Genetic familial high-risk assessment colorectal version 1.2016, NCCN

clinical practice guidelines in oncology. J Natl Compr Canc Netw. (2016)

14:1010–30. doi: 10.6004/jnccn.2016.0108

6. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al.

Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. (2016)

66:271–89. doi: 10.3322/caac.21349

7. Toustrup K, Sorensen BS, Nordsmark M, Busk M, Wiuf C, Alsner J, et al.

Development of a hypoxia gene expression classifier with predictive impact

for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res.

(2011) 71:5923–31. doi: 10.1158/0008-5472.CAN-11-1182

8. Eustace A, Mani N, Span PN, Irlam JJ, Taylor J, Betts GN, et al. A 26-

gene hypoxia signature predicts benefit from hypoxia-modifying therapy in

laryngeal cancer but not bladder cancer. Clin Cancer Res. (2013) 19:4879–88.

doi: 10.1158/1078-0432.CCR-13-0542

9. Yang L, Roberts D, Takhar M, Erho N, Bibby BAS, Thiruthaneeswaran N,

et al. Development and validation of a 28-gene Hypoxia-related prognostic

signature for localized prostate cancer. EBioMedicine. (2018) 31:182–9.

doi: 10.1016/j.ebiom.2018.04.019

10. Zhang Q, Chen Y, Zhang B, Shi B, Weng W, Chen Z, et al. Hypoxia-

inducible factor-1α polymorphisms and risk of cancer metastasis a

meta-analysis. PLoS ONE. (2013) 8:e70961. doi: 10.1371/journal.pone.00

70961

11. Wang T, Gilkes DM, Takano N, Xiang L, Luo W, Bishop CJ. Hypoxia-

inducible factors and RAB22A mediate formation of microvesicles that

stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci U S A.

(2014) 111:E3234–42. doi: 10.1073/pnas.1410041111

12. Ka-Lun Kai A, Chan LK, Cheuk-Lam Lo R, Man-Fong Lee J, Chak-

Lui Wong C, Chun-Ming Wong J, et al. Down-regulation of TIMP2

by HIF-1α/miR-210/HIF-3α regulatory feedback circuit enhances cancer

metastasis in hepatocellular carcinoma. Hepatology. (2016) 64:473–87.

doi: 10.1002/hep.28577

13. Wen YA, Stevens PD, Gasser ML, Andrei R, Gao T. Downregulation

of PHLPP expression contributes to hypoxia-induced resistance to

chemotherapy in colon cancer cells. Mol Cell Biol. (2013) 33:4594–605.

doi: 10.1128/MCB.00695-13

14. Tang YA, Chen YF, Bao Y, Mahara S, Yatim S, Oguz G, et al. Hypoxic

tumor microenvironment activates GLI2 via HIF-1alpha and TGF-beta2 to

promote chemoresistance in colorectal cancer. Proc Natl Acad Sci U S A.

(2018) 115:E5990–9. doi: 10.1073/pnas.1801348115

15. Betts GN, Eustace A, Patiar S, Valentine HR, Irlam J, Ramachandran

A, et al. Prospective technical validation and assessment of intra-tumour

heterogeneity of a low density array hypoxia gene profile in head

and neck squamous cell carcinoma. Eur J Cancer. (2013) 49:156–65.

doi: 10.1016/j.ejca.2012.07.028

16. Fjeldbo CS, Julin CH, Lando M, Forsberg MF, Aarnes EK, Alsner J,

et al. Integrative analysis of DCE-MRI and gene expression profiles in

construction of a gene classifier for assessment of hypoxia-related risk

of chemoradiotherapy failure in cervical cancer. Clin Cancer Res. (2016)

22:4067–76. doi: 10.1158/1078-0432.CCR-15-2322

17. Ragnum HB, Vlatkovic L, Lie AK, Axcrona K, Julin CH, Frikstad KM,

et al. The tumour hypoxia marker pimonidazole reflects a transcriptional

programme associated with aggressive prostate cancer. Br J Cancer. (2015)

112:382–90. doi: 10.1038/bjc.2014.604

18. Yang L, Taylor J, Eustace A, Irlam JJ, Denley H, Hoskin PJ, et al. A gene

signature for selecting benefit from hypoxia modification of radiotherapy

for high-risk bladder cancer patients. Clin Cancer Res. (2017) 23:4761–8.

doi: 10.1158/1078-0432.CCR-17-0038

19. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette

MA, et al. Gene set enrichment analysis: a knowledge-based approach for

interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A.

(2005) 102:15545–50. doi: 10.1073/pnas.0506580102

20. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P,

Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics.

(2011) 27:1739–40. doi: 10.1093/bioinformatics/btr260

21. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P.

The Molecular Signatures Database (MSigDB) hallmark gene set collection.

Cell Syst. (2015) 1:417–25. doi: 10.1016/j.cels.2015.12.004

22. Wang X, Terfve C, Rose JC, Markowetz F. HTSanalyzeR: an R/Bioconductor

package for integrated network analysis of high-throughput screens.

Bioinformatics. (2011) 27:879–80. doi: 10.1093/bioinformatics/btr028

23. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-

Garcia W, et al. Inferring tumour purity and stromal and immune

cell admixture from expression data. Nat Commun. (2013) 4:2612.

doi: 10.1038/ncomms3612

24. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust

enumeration of cell subsets from tissue expression profiles. Nat Methods.

(2015) 12:453–7. doi: 10.1038/nmeth.3337

25. Braun DA, Hou Y, Bakouny Z, Ficial M, Sant’ Angelo M, Forman J, et al.

Interplay of somatic alterations and immune infiltration modulates response

to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat Med. (2020)

26:909–18. doi: 10.1038/s41591-020-0839-y

26. Sormendi S, Wielockx B. Hypoxia pathway proteins as central mediators of

metabolism in the tumor cells and their microenvironment. Front Immunol.

(2018) 9:40. doi: 10.3389/fimmu.2018.00040

27. Ge X, Pan MH, Wang L, Li W, Jiang C, He J, et al. Hypoxia-

mediatedmitochondria apoptosis inhibition induces temozolomide treatment

resistance through miR-26a/Bad/Bax axis. Cell Death Dis. (2018) 9:1128.

doi: 10.1038/s41419-018-1176-7

28. Moreno Roig E, Yaromina A, Houben R, Groot AJ, Dubois L, Vooijs

M. Prognostic role of hypoxia-inducible factor-2alpha tumor cell

expression in cancer patients: a meta-analysis. Front Oncol. (2018) 8:224.

doi: 10.3389/fonc.2018.00224

29. Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy,

chemotherapy and immunotherapy in cancer treatment. Int J Nanomed.

(2018) 13:6049–58. doi: 10.2147/IJN.S140462

30. Fotheringham S, Mozolowski GA, Murray EMA, Kerr DA. Challenges

and solutions in patient treatment strategies for stage II colon cancer.

Gastroenterol Rep. (2019) 7:151–61. doi: 10.1093/gastro/goz006

31. Cairns RA, Papandreou I, Sutphin PD, Denko NC. Metabolic targeting of

hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc

Natl Acad Sci U S A. (2007) 104:9445–50. doi: 10.1073/pnas.0611662104

32. Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL. Hypoxia-

inducible factors are required for chemotherapy resistance of breast

cancer stem cells. Proc Natl Acad Sci U S A. (2014) 111:E5429–38.

doi: 10.1073/pnas.1421438111

33. Lee MM, MacKinlay A, Semira C, Schieber C, Jimeno Yepes AJ, Lee B,

et al. Stage-based variation in the effect of primary tumor side on all stages

of colorectal cancer recurrence and survival. Clin Colorectal Cancer. (2018)

17:e569–77. doi: 10.1016/j.clcc.2018.05.008

34. Gunderson LL, Jessup JM, Sargent DJ, Greene FL, Stewart AK. Revised TN

categorization for colon cancer based on national survival outcomes data. J

Clin Oncol. (2010) 28:264–71. doi: 10.1200/JCO.2009.24.0952

35. Nazemalhosseini Mojarad E, Kashfi SM, Mirtalebi H, Taleghani

MY, Azimzadeh P, Savabkar S, et al. Low level of microsatellite

instability correlates with poor clinical prognosis in stage II colorectal

cancer patients. J Oncol. (2016) 2016:2196703. doi: 10.1155/2016/

2196703

36. Draht MX, Smits KM, Tournier B, Jooste V, Chapusot C, Carvalho B,

et al. Promoter CpG island methylation of RET predicts poor prognosis

Frontiers in Medicine | www.frontiersin.org 9 June 2021 | Volume 8 | Article 686885

https://doi.org/10.3322/caac.21492
https://doi.org/10.1093/annonc/mdx224
https://doi.org/10.1200/JCO.2014.60.0213
https://doi.org/10.1634/theoncologist.2014-0325
https://doi.org/10.6004/jnccn.2016.0108
https://doi.org/10.3322/caac.21349
https://doi.org/10.1158/0008-5472.CAN-11-1182
https://doi.org/10.1158/1078-0432.CCR-13-0542
https://doi.org/10.1016/j.ebiom.2018.04.019
https://doi.org/10.1371/journal.pone.0070961
https://doi.org/10.1073/pnas.1410041111
https://doi.org/10.1002/hep.28577
https://doi.org/10.1128/MCB.00695-13
https://doi.org/10.1073/pnas.1801348115
https://doi.org/10.1016/j.ejca.2012.07.028
https://doi.org/10.1158/1078-0432.CCR-15-2322
https://doi.org/10.1038/bjc.2014.604
https://doi.org/10.1158/1078-0432.CCR-17-0038
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1093/bioinformatics/btr028
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/s41591-020-0839-y
https://doi.org/10.3389/fimmu.2018.00040
https://doi.org/10.1038/s41419-018-1176-7
https://doi.org/10.3389/fonc.2018.00224
https://doi.org/10.2147/IJN.S140462
https://doi.org/10.1093/gastro/goz006
https://doi.org/10.1073/pnas.0611662104
https://doi.org/10.1073/pnas.1421438111
https://doi.org/10.1016/j.clcc.2018.05.008
https://doi.org/10.1200/JCO.2009.24.0952
https://doi.org/10.1155/2016/2196703
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chen et al. Hypoxia Promote Chemoresistance via Immunosuppression

in stage II colorectal cancer patients. Mol Oncol. (2014) 8:679–88.

doi: 10.1016/j.molonc.2014.01.011

37. Terry S, Buart S, Chouaib S. Hypoxic stress-induced tumor and immune

plasticity, suppression, and impact on tumor heterogeneity. Front Immunol.

(2017) 8:1625. doi: 10.3389/fimmu.2017.01625

38. Zou YF, Rong YM, Tan YX, Xiao J, Yu ZL, Chen YF, et al. A signature of

hypoxia-related factors reveals functional dysregulation and robustly predicts

clinical outcomes in stage I/II colorectal cancer patients. Cancer Cell Int.

(2019) 19:243. doi: 10.1186/s12935-019-0964-1

39. Raggi F, Pelassa S, Pierobon D, Penco F, Gattorno M, Novelli F, et al.

Regulation of human macrophage M1-M2 polarization balance by hypoxia

and the triggering receptor expressed on myeloid cells-1. Front Immunol.

(2017) 8:1097. doi: 10.3389/fimmu.2017.01097

40. Zaeem Noman M, Hasmim M, Messai Y, Terry S, Kieda C, Janji

B, et al. Hypoxia: a key player in antitumor immune response.

A review in the theme: cellular responses to hypoxia. Am J

Physiol Cell Physiol. (2015) 309:C569–79. doi: 10.1152/ajpcell.00207.

2015

41. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of

the immune system. Nat Rev Immunol. (2009) 9:162–74. doi: 10.1038/nri2506

42. Scharping NE, Menk AV, Whetstone RD, Zeng X, Delgoffe GM.

Efficacy of PD-1 blockade is potentiated by metformin-induced

reduction of tumor hypoxia. Cancer Immunol Res. (2017) 5:9–16.

doi: 10.1158/2326-6066.CIR-16-0103

43. AiM, Budhani P, Sheng J, Balasubramanyam S, Bartkowiak T, Jaiswal AR, et al.

Tumor hypoxia drives immune suppression and immunotherapy resistance. J

ImmunoTher Cancer. (2015) 3:P392. doi: 10.1186/2051-1426-3-S2-P392

44. Li Y, Liang L, Dai W, Cai G, Xu Y, Li X, et al. Prognostic impact of programed

cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and

tumor infiltrating lymphocytes in colorectal cancer.Mol Cancer. (2016) 15:55.

doi: 10.1186/s12943-016-0539-x

45. LaFleur MW, Muroyama Y, Drake CG, Sharpe AH. Inhibitors of

the PD-1 pathway in tumor therapy. J Immunol. (2018) 200:375–83.

doi: 10.4049/jimmunol.1701044

46. Mimori K, Saito T, Niida A, Miyano S. Cancer evolution and heterogeneity.

Ann Gastroenterol Surg. (2018) 2:332–8. doi: 10.1002/ags3.12182

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Chen, Yu, Lv, Zheng, Tan, Ke, Liu, Cai, Zou, Lan, Wu and Gao.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Medicine | www.frontiersin.org 10 June 2021 | Volume 8 | Article 686885

https://doi.org/10.1016/j.molonc.2014.01.011
https://doi.org/10.3389/fimmu.2017.01625
https://doi.org/10.1186/s12935-019-0964-1
https://doi.org/10.3389/fimmu.2017.01097
https://doi.org/10.1152/ajpcell.00207.2015
https://doi.org/10.1038/nri2506
https://doi.org/10.1158/2326-6066.CIR-16-0103
https://doi.org/10.1186/2051-1426-3-S2-P392
https://doi.org/10.1186/s12943-016-0539-x
https://doi.org/10.4049/jimmunol.1701044
https://doi.org/10.1002/ags3.12182
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Genome-Wide Analysis Reveals Hypoxic Microenvironment Is Associated With Immunosuppression in Poor Survival of Stage II/III Colorectal Cancer Patients
	Introduction
	Materials and Methods
	Patients (Data Source)
	Construction and Validation of HRGS
	Functional Annotation and Analysis
	Statistical Analysis

	Results
	Discovery and Training of the HRGS
	Validating the HRGS Prognostic Capability in TCGA and Metavalidation Cohort
	HRGS Predicts Benefit From Chemotherapy in Stage II/III CRC Patients
	Functional Annotation of the HRGS

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


