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Enhancers are non-coding regulatory elements that are distant from their target gene. Their characterization still
remains elusive especially due to challenges in achieving a comprehensive pairing of enhancers and target genes.
A number of computational biology solutions have beenproposed to address this problem leveraging the increas-
ing availability of functional genomics data and the improved mechanistic understanding of enhancer action.
In this reviewwe focus on computationalmethods for genome-wide definition of enhancer-target genepairs.We
outline the different classes of methods, as well as their main advantages and limitations. The types of informa-
tion integrated by each method, along with details on their applicability are presented and discussed. We espe-
cially highlight the technical challenges that are still unresolved and hamper the effective achievement of a
satisfactory and comprehensive solution.
We expect this field will keep evolving in the coming years due to the ever-growing availability of data and in-
creasing insights into enhancers crucial role in regulating genome functionality.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
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1. Introduction

Enhancers are distal regulatory elements with a crucial role in con-
trolling the expression of genes [1,2]. From many point of views they
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are analogous to promoters [3], but they are located at a larger distance
from the transcription start site (TSS) of the gene they regulate. En-
hancers act through the binding of transcription factors just like pro-
moters. However, elucidating the function of enhancers remains more
elusive for multiple reasons.

1) The relative location of the enhancer with respect to its target genes
can be greatly variable. Enhancers can be present in the vicinity of
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their target genes but do not necessarily regulate the closest one.
They can also be downstreamof their target or act across intervening
genes to reach their targets [1,4]. Enhancer-target genes (ETG)
pairing is further complicated by the fact that one enhancer can in
principle act onmultiple genes, or one gene can be regulated bymul-
tiple enhancers.

2) Enhancers do not have a specific sequence motif or structure for
their univocal genome-wide identification. Indeed, a combination
of transcription factors can bind to enhancers [5–7], then interacting
with other proteins (for example mediator [8]) to initiate transcrip-
tion of its target gene. This complicates even more the definition of
which genomic regions can in fact act as enhancers.

3) The activity of enhancers is extremely cell type-specific. In fact, en-
hancers are the single genomic feature most variable across tissues
and cell types in terms of their activation [9]. While a specific gene
may be active in multiple cell types, its activation can be triggered
by distinct enhancers in different tissues [10]. As such, this further
complicates the definition of a comprehensive set of enhancers, as
well as the definition of their target genes.

Among these three challenges, the definition of enhancers-target
gene pairs has been gaining growing attention in the field of computa-
tional biology and genomics, owing to the increasing availability of
genome-wide experimental data that can be exploited to address this
problem [11]. Indeed high-throughput genome-wide methodologies
to examine transcription factors (TFs) binding, core histone modifica-
tions and RNA polymerase II (Pol2) association has drastically altered
the perception of how regulatory sequences are distributed inmamma-
lian genomes. With the efforts of large epigenomics consortia like
ENCODE [12] and Roadmap Epigenomics [9], genome-wide chromatin
mark profiles are available across various cell types.

The regulatory proteins bound at enhancers and those boundat their
target gene promoters must get in close physical proximity to regulate
their target genes. Physical interaction of enhancers and their distant
target genes are facilitated by the formation of loops in chromatin,
with the collaboration of various architectural proteins such asmediator
or cohesin complexes [5,13]. Thus, one key characteristic feature that
can be exploited in refining ETGpairs is their localizationwithin specific
chromatin 3D structures, such as topological domains (TADs) [14,15].
The development of new experimental techniques fostered progress
in this field by enabling better genome-wide characterization of chro-
matin architecture. In particular, a number of genomic approaches
based on high-throughput sequencing technologies have been derived
from chromosome conformation capture (3C) [16]. Namely, the 3C-
derived technologies such as Hi-C [17], ChIA-PET [18] and capture Hi-
C [19,20] have added more resources to this repertoire of knowledge,
while achieving higher and higher resolution over the years [21,22], as
reviewed in [23].

Even though enhancers were first described in the ‘80s [24], the re-
cent rise in interest in enhancers has been spurred not only by the grow-
ing availability of epigenomics and chromatin architecture data, but also
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Fig. 1. Timeline of the enhancer-target gene pairing algorithms. The main methods described
publication over the years (horizontal axis).
by the increased awareness of their important role as key players in
gene regulation and cell identity definition [25]. A growing body of ev-
idence is also corroborating the crucial effect of germline non-coding
variants in the general population [26], where disease-associated SNPs
are often located in enhancers [27]. Likewise, the role of enhancers in
diseases is more and more evident from literature on cancer genomics,
where the importance of non-coding mutations has been under-
estimated so far [28]. Similarly other genetic diseases are associated
with mutations in chromatin modifying enzymes acting on enhancers
[29] or ETG pairing being rewired due to structural variations in the ge-
nome [30,31]. The recent increase in evidence to the role of enhancer
disruption in genetic diseases and cancer [32–34] led to a surge in stud-
ies on enhancer-target gene association.

Several computational solutions have been proposed to identify ETG
pairs over the past few years (Fig. 1). The increasing number of publica-
tions is evidence for the growing interest in this problem and need for
bioinformatics solutions.We expect evenmoremethods to be proposed
in the coming years, as the number, size and complexity of available
functional genomics data used to define enhancers and their targets is
rapidly growing.

In this reviewwe focus on computationalmethods for genome-wide
definition of ETG pairs. We chiefly discuss how different types of geno-
mics data are leveraged to achieve this goal, as well as the limitations of
currently available solutions.

2. Genome-wide Definition of Enhancer Regions

The first practical problem for genome-wide characterization of ETG
pairs is actually defining the set of enhancers regions to be considered
for the cell type of interest. In spite of efforts by large epigenomic con-
sortia such as ENCODE and FANTOM for enhancer identification, the dy-
namic and cell type-specific nature of enhancer activity results in the
inability to create an exhaustive reference list of enhancers. Although,
some studies tried to identify enhancer sequence motifs [26,35,36],
there isn't a specific sequence motif that can be generally used for
genome-wide identification of enhancers, thus they are usually defined
using functional data.

Gene reporter assays in cultured cells is generally employed to iden-
tify if a selected sequence can act as an enhancer, but in vivo testing of
the reporter or in vivo editing of the enhancer in transgenic animals
are considered the definitive proof [37]. In recent years, high through-
put versions of gene reporter assays have successfully been adopted
for the genome-wide identification of non-coding regulatory sequences,
including STARR-sEq. [38] or massively parallel reporter assay (MPRA)
[39]. In this regard, it'sworthmentioningRAEdb [40], a recent collection
of data from high-throughput reporter assays, and the VISTA database
[41], a collection of experimentally validated enhancers, including
in vivo validated ones.

However, for a genome-wide definition, other types of functional ge-
nomics data are usually adopted, including epigenomics or transcripto-
mics data. As enhancer activity is frequently cell type specific, this
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approach has the limitation that multiple types of cells must be consid-
ered to obtain a comprehensive list. For example, the ENCODE consor-
tium estimated that the human genome comprises hundreds of
thousands of enhancers, based on the integrative analysis of 13 chroma-
tin marks across 147 cell types spanning 1640 data sets. It also included
119 transcription factors ChIP-seq and chromatin accessibility data for
its prediction [12].

2.1. Epigenomic Data for Defining Enhancers

Chromatin marks-based annotation of enhancer regions relies
on functional data correlated with enhancer activation such as binding
of transcription factors or other co-factors, specific histone post-
translational modifications or chromatin accessibility.

Namely, p300 is a histone acetyltransferase protein acting as tran-
scription co-activator, which is known to be bound at active enhancers
[42]. As such, ChIP-seq experiments targeting p300 have often been
used for genome-wide annotation of enhancers [43,44]. However, to ob-
tain a more comprehensive and unbiased list of enhancers, ChIP-seq
targeting specific histonemarks has been adopted as well. The presence
of chromatin marks such as high levels of histone H3 lysine 4 mono-
methylation (H3K4me1) accompanied by histone H3 lysine 27 acetyla-
tion (H3K27ac) is typically found in nucleosomes associatedwith active
enhancers [45–47]. H3K4me1 along with H3K4me3 is usually found
also at promoter regions, but the relative enrichment of the two
marks is expected to be different at enhancers and promoters [48–50].
The higher ratio of H3K4me1 over H3K4me3 ChIP-seq enrichment sig-
nal has been used to discriminate enhancers with respect to other TSS
proximal regulatory regions. Nevertheless, a number of reports in liter-
ature suggest that H3K4me1 can also be found in enhancerswhennot in
an active state in a specific cell type, sometimes annotated as “weak”
[51] or “poised” enhancers [52]. The latter sites may also be associated
with histone H3 lysine 27 tri-methylation (H3K27me3) [53]. Thus,
ChIP-seq for H3K27ac is usually preferred to focus on enhancers specif-
ically active in the cell type under investigation [52].

Active regulatory regions including enhancers and promoters are
generally characterized by chromatin with higher accessibility and are
depleted of nucleosomes [54]. Thus, genomics methods probing chro-
matin accessibility such as DNase-seq and ATAC-seq can be used as al-
ternative approaches for genome-wide identification of regulatory
elements. As these techniques do not rely on antibodies, they avoid
any potential issues related to specificity or immunoprecipitation effi-
ciency. DNase-seq is based on partial digestion with DNA nucleases
such as DNase I, that will cut more frequently in positions of higher ac-
cessibility that are not protected by histones or other DNA associated
proteins [55]. These regions of increased accessibility are also called
DNase hypersensitivity sites (DHS). ATAC-seq instead leverages differ-
ential sensitivity to transposase accessibility to identify open chromatin
regions [56]. ATAC-seqhas a shorter experimental protocol compared to
DNase-seq and can be applied on a smaller number of cells, thusmaking
it the technique of choice for rare cell populations. DNase-seq has been
used to pinpoint the exact binding site of TFs with a resolution of few
base pairs, if the coverage and data quality is high enough to perform
DNAse-seq footprinting analysis [57,58]. Footprinting in principle can
also be applied on ATAC-seqwith some specific adjustments in the anal-
ysis [59].

The length and number of putative enhancers are largely affected by
the genomic features used to define them. For example, H3K27ac ChIP-
seq peaks called with MACS [60] by Roadmap Epigenomics consortium
may have sizes ranging between 100 bp to a few kb [61]. DNase-seq
peaks may have median size 2.7 kb if called by MACS whereas the
same type of data analyzed by the hotspot [62] algorithm yield peaks
with median length of 2.5 kb [63]. Both the size and number of en-
hancers defined in a given cell typewill be affected by themethodology
adopted. Depending on the experimental setting, in human samples we
may expect a number of distal ChIP-seq peaks in the order of few
thousands for p300, between 24,566 and 58,023 for H3K4me1 or
H3K27ac, and more than 80,000 for chromatin accessibility peaks [53].

While all of these features are generally associated to enhancers,
several epigenomics and transcriptomics datasets are combined in a
number of computational methods for the identification of enhancers,
as reviewed more extensively in [64]. These include, for example, CSI-
ANN [65] to define enhancers using cell type-specific data for multiple
histone modifications. CSI-ANN algorithm implements artificial neural
networks in a two-step process involving data transformation and fea-
tures extraction to identify chromatin signatures for identification of en-
hancers. Methods such as Segway [66] or chromHMM [67] classify
genomics regions by chromatin states based on segmentation of multi-
ple marks considered simultaneously. A similar approach to define
chromatin states, named RFECS [68], is based on a random forest classi-
fier to predict enhancers across different cell types. Instead, DEEP [69] is
an enhancer predictor approach incorporating both chromatin marks
and sequence features in its model.
2.2. Transcriptomic Data for Defining Enhancers

Recent advances in transcriptomics and genomics highlighted that
active enhancers produce enhancer-originating bi-directional non-
coding RNAs, also termed eRNAs, which are typically 0.5–2 kb in length
[70,71]. Moreover, eRNAs expression level is correlated with the func-
tional activity of the enhancer [72], thus enabling the use of eRNAs as
a marker for active enhancers in the genome, as reviewed in [73]. For
this purpose total RNA-seq can be used, although the experimental pro-
tocol must be tailored to make sure the short non-polyadenylated tran-
scripts are captured and sequenced. Even if such precautions are
considered, total RNA-seqwill mostly generate reads frommature tran-
scripts, thus leaving few reads tomeasure eRNAs. As such, a limited cov-
erage and power to detect eRNAs will be available.

For this reason, sequencing protocols for detecting nascent tran-
scripts are often used instead tomeasure eRNAs transcription. These in-
clude, among others, CAGE-sEq. [74–76], GRO-sEq. [77], GRO-cap [77],
5′GRO-sEq. [78], NET-SEq. [79], PRO-cap [80], PRO-SEq. [81], Start-sEq.
[82] and TT-SEq. [83]. Hereafter we focus only on CAGE-seq, as it has
been used in the ETG pairing methods reviewed here.

CAGE-seq is based on the detection of 5′-capped transcripts and it
has been systematically adopted by the FANTOM project, a large-scale
collaborative consortium, to map TSS of coding and non-coding genes,
as well as the location of enhancers [84,85]. CAGE allows high precision
in mapping the position of transcription start sites (TSS), but it has lim-
ited sensitivity, thus identifying only a subset of active enhancers in the
cell type analyzed. GRO-cap is more sensitive to detect activity at TSS
and eRNAs alike [86]. The enhancers identified by the FANTOM project
consortium using CAGE-seq were about 40,000 in total across 432 pri-
mary cell, 135 tissue and 241 cell line samples from human [87]. This
ismostly due to the fact that a large fraction of reads is actually originat-
ing fromTSS-proximal regions of annotated genes, rather than fromdis-
tal regulatory elements.

Despite the many technological advancements in genome-wide ex-
perimental techniques, the definition of enhancers based on functional
genomics data remains challenging because enhancers and promoters
have very similar characteristics [88]. In fact, regulatory regions are
often first defined based on functional data, then TSS proximal vs distal
regulatory elements are distinguished based on their distance from an-
notated promoters. This wide array of choices has implications in terms
of the size of enhancer regions, which can range from a few kb to few
base pairs, as well as the number of enhancers.

Likewise, promoter regions can be defined with different parame-
ters.While annotated TSSs are usually derived from reference databases
such as RefSEq. [89] or Ensembl [90], then arbitrary choices are made in
terms of the window to distinguish between promoter (TSS proximal)
and distal regulatory elements. The size of the TSS proximal regions



Fig. 2. Features used in ETG pairing tools. Thefigure summarizes themain types of features
used to define ETG pairs by the tools discussed in this review. For each feature, its
respective frequency (y-axis, number of methods) and first adoption by the tools
discussed in this review (x-axis, year) is reported. The size of each dot is also
proportional to the frequency (number of methods). The colors represent the category
of the data: genomic annotations independent to cell type (dark green); epigenomics
data (orange); transcriptomic data (mauve).
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considered to be promoters can be highly variable in the literature as
there is no consensus on this parameter either.

3. ETG Pairing Tools Over the Years

Over the past few years a variety of algorithms and bioinformatic
tools have been proposed for genome-wide definition of ETG pairs
(Fig. 1). To elucidate the complex relationship between distal regulatory
regions and their target genes, ETG prediction algorithms have emp-
loyed a number of different approaches. Due to the inherent complexity
of the problem, these methods are generally based on the integrative
analysis of multiple genomic features or functional data from genomics
techniques (Table 1).

The features considered have evolved with the availability of novel
technologies or improved knowledge of enhancer functional mecha-
nism (Fig. 2). The approach adopted by the earlier studies was to assign
the nearest gene as putative target of any given enhancer. More recent
ones have integrated diverse types of genomic data, information on
the chromatin 3D architecture, expression quantitative trait loci
(eQTLs) and eRNAs expression.

Despite themanymethodological differences, the ETGmethods pro-
posed so far can be grouped into four main groups: 1) Correlation-
based; 2) Supervised learning-based; 3) Regression-based and
4) methods based on other scores (Fig. 3).

3.1. Correlation-based Algorithms

The correlation-based ETG pairing algorithms originate on the ratio-
nale that the activity status of an enhancer and its target gene would be
correlated acrossmultiple cell types. As such, these algorithms rely on a
large panel of epigenomics or transcriptomic data covering multiple
conditions to estimate a quantitative score describing the enhancers
Table 1
Enhancer - Target Gene pairing methods. The table enlists the various ETG algorithms. Their gro
(SL), regression-based (R), score-based (S). Methodswithmixed features are specified (e.g. SL+
on each method and features adopted for ETG pairing are also listed.

Name Class Method details

Correlation-based methods
Thurman
et al.

C Pearson correlation

Shen et al. C Spearman correlation
PreSTIGE C* Shannon entropy to select cell type-specific patterns
ELMER C Inverse correlation

Supervised learning-based methods
Rodelsperger
et al.

SL Random forest

Ernst et al. SL Logistic regression
IM-PET SL Random forest

PETModule SL Random forest
TargetFinder SL Ensemble of boosted decision trees

McEnhancer SL Third-order interpolated Markov chain model in a semi-sup
learning setup via the expectation maximization algorithm

Regression-based methods
Andersson
et al.

C + R Pearson correlation, then linear models and lasso shrinkage

RIPPLE SL + R Random forest and group lasso
JEME R + SL Multiple linear regression and lasso shrinkage
FOCS R Ordinary least squares regression

Score-based methods
EpiTensor S Higher-order tensors decomposition
GeneHancer S Additive score with custom weights and data transformatio

each quantitative
PEGASUS S Score reflecting the evolutionary sequence and synteny

conservation
or genes activity status. The activity of enhancers for example could be
measured by ChIP-seq H3K4me1 and the activity of target genes by
Pol2 ChIP-seq as in Shen et al [91], where a panel of 19 mouse cell
types were analyzed. Thurman et al instead used DNase-seq read
uping into four main classes is specified: correlation-based (C), supervised learning-based
R or C+R). C* is for amethod conceptually related to correlation-based solutions. Details

Features

DNase-seq

ChIP-seq for Pol2 and H3K4me1
RNA-seq, ChIP-seq for H3K4me1
RNA-seq, DNA methylation

Distance, conserved synteny, gene ontology, protein-protein interactions

Gene expression (microarrays), ChIP-seq for 3 histone marks
Distance, conserved synteny, correlation between enhancer (CSI-ANN
score on 3 histone marks) and target promoter (RNA-seq) activity, TFs
binding (sequence motifs) and target promoter correlation
Distance, conserved synteny, DNase-seq
DNase-seq, FAIRE-seq, DNA methylation, RNA-seq, ChIP-seq for 32 histone
marks, in addition to TFs and architectural proteins

ervised Sequence motifs

DNase-seq

DNase-seq, RNA-seq, ChIP-seq for 8 histone marks and 15 TFs.
DNase-seq, RNA-seq, ChIP-seq for 3 histone marks
DNase-seq, CAGE-seq

DNase-seq, RNA-seq, ChIP-seq for 16 histone marks
ns for Distance, TFs co-expression, eRNAs, eQTLs, capture Hi-C

Conserved synteny and sequence conservation
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coverage at 1,454,901 distal DHS regions and correlated them to DNase-
seq signal at promoters across 79 cell types to identify target genes,
which were then validated using the 5C technique [92]. A slight varia-
tion over this approachwas adopted by the same authors in [93], by cor-
relating DNase-seq at distal regulatory regions with gene expression.
Instead, ELMER [94,95] identifies enhancers as distal regulatory ele-
ments with differentialmethylation pattern across a large compendium
of cancer samples.

The correlation-based approach assumes that enhancers activity
changes across cell-types, which is in fact expected based on literature
in this field, as a certain degree of variance in their activity scores is re-
quired to identify putative ETG pairs based on correlation. A key advan-
tage of the correlation-based approaches is that they can identify
multiple targets of an enhancer and can directly derive a quantitative
measure of the strength of association. Another advantage of these
methods is that correlation can be measured also between regulatory
elements and genes within a short distance from each other, thus po-
tentially achieving high spatial resolution in ETG pairing. However,
theremay be confounding correlation patterns in case enhancer regions
are defined at a resolution higher than that of the functional chromatin
mark data used to measure their activity.
Themajor limitation of correlation-basedmethods is the availability
of genomics data over a large panel of cells,with comparable quality and
resolution across all conditions. Moreover, using correlation of func-
tional genomics data across cell types for potential ETG pairs may over-
look the cell type and time specificity of such interactions, thus missing
relevant connections when extending to a new cell type or time point.
It's worth remarking that, even though eRNA expression provides a re-
liable estimation of enhancers activity, there are still open problems re-
lated to sensitivity in their detection [86]. Thus, there is not a complete
consensus about which epigenomic or transcriptomic data type is the
best solution to assess enhancers activity. Extending this uncertainty
to the next level of calling ETG pairs could then be problematic.
Correlation-based algorithms may also be confounded by enhancers
that are active only in one or few cell types, thus resulting in a high cor-
relation score actually based on a few data points with high signal.
While thismay cause some concerns about false positives, it is also a rel-
evant feature allowing the detection of cell specific elementswith single
data points of high activity. Finally, the correlation between individual
enhancers and target genes does not directly consider the fact that mul-
tiple enhancers can act on a gene in a cooperative fashion as the corre-
lation is measured independently for each ETG pair.
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Adifferent but conceptually related approach is adopted by the PreS-
TIGE method [96] which uses H3K4me1 ChIP-seq and RNA-seq to esti-
mate the activity of enhancers and target genes, respectively.
However, it does not measure correlation directly. Instead PreSTIGE fo-
cuses on selecting cell type-specific patterns both at enhancers and
genes based on Shannon entropy. Then ETG pairs are called if there's
also a match in the cell type where both enhancer and gene are active.
Thus, PreSTIGE is different from regular correlation-based methods as
it explicitly prioritizes cell type-specific patterns. PreSTIGE delineates
enhancer gene interactions focusing on enhancer with variants associ-
ated to specific diseases, as such this may be considered a limitation as
it does not aim to provide a comprehensive characterization of ETG
pairs.

Differently from all other correlation-based methods, ELMER looks
for patterns of inverse correlation between the methylation level at en-
hancers and the expression level at the closest 20 genes (10 upstream
and 10 downstream of each candidate differentially methylated en-
hancer). The significantly inverse correlation is identified based on a
non-parametric Mann-Whitney U test, for each enhancer-gene pair,
comparing the expression level in the cancer patients grouped bymeth-
ylation level in the enhancer (highest vs lowest 20% of patients by en-
hancer methylation level).

3.2. Supervised Learning-based Algorithms

Supervised learning (SL)-based algorithms leverage a selected set of
known true-positive ETG pairs to identify their associated patterns in
genomic annotations or functional data to build a machine learning
classifier (Table 1). The predictor will typically incorporate features de-
rived from epigenomics and transcriptomics data in the training set of
different cell types. In principle, the predictor would then be applicable
to call ETG pairs in other independent cell types.

The number and type of features used by individual prediction tools
are greatly variable (Table 1 and Fig. 2), but most of them take into ac-
count a combination of gene expression, chromatin accessibility (DHS)
and histone marks. Moreover, all of them are considering to some de-
gree the distance between enhancers and genes. Among the other SL-
based algorithms, IM-PET [97] uses a mixed approach as the features
considered include correlation of enhancer and promoter activity, i.e.
the idea at the core of correlation-based ETGpairingmethods. This actu-
ally implies that a panel of cell typeswould also be required to apply the
model on a completely independent set of cells. Indeed, in the original
publication the model is tested by cross validation.

In this group, McEnhancer uses a different solution as the predictor
of ETG pairs is based on sequence composition in sets of co-regulated
genes and enhancers [98]. The rationale behind this approach is that
co-regulated genes will share at least part of their regulators in terms
of transcription factors. As such, similar transcription factors binding
sites may be included in their enhancers. This was also the rationale un-
derlying earlier works on sequence motifs co-occurrence in cis-
regulatory regions, but centered on TSS surrounding windows and not
properly focusing on ETG pairing [99]. The rationale of focusing on se-
quence motifs for enhancers is also in line with results from methods
scoring the impact of SNPs on non-coding regulatory sequences in inde-
pendent studies [26].

A key advantage of SL-based methods is that, once the classifier is
trained, in principle it could predict ETG pairs in other cell types. How-
ever, given the very cell type-specific nature of distal regulatory ele-
ments, the reliability of the classifiers can vary greatly when applied
to different cell types, as shown by Cao et al. [100].

Themain limitation of thesemethods, is that the training of the clas-
sifier requires a set of known positive as well as negative interactions.
The SL-based tools proposed so far have used a variety of approaches
to define positive and negative sets of ETG pairs. An earlier approach
adopted by Ernst et al. was actually considering all enhancers up to
125 kb from the TSS [101]. Most of the methods listed in (Table 1)
rely instead on some type of chromatin conformation capture data to
define the true set of ETG pairs. Namely, IM-PET and JEME [100] use
ChIA-PET data, whereas PETModule [102] uses both Hi-C and ChIA-
PET data to define the true positive pairs. Instead TargetFinder [103]
uses only Hi-C to define the training set of true positives.

Even if it's commonly accepted that enhancers and target genes need
to come in close physical proximity to regulate transcription, the persis-
tence and frequency of such interactions are still a matter of investiga-
tion. A number of reports suggests that enhancer promoter loops may
be detectable also in cell types where the target gene is not active
[21], or proposed that interactions may precede the activation of target
genes [104–106]. As such, the detection of contacts with 3C derived
methods does not unambiguously prove the presence of an active regu-
latory interaction in a given cell type. These studies suggests that the
presence of a physical interaction between two regulatory regions
alone doesn't necessarily imply active transcription of the target gene
[107].

The definition of true negative sets of ETGpairs is complicated by the
need to rely on even more assumptions. Indeed, even if Hi-C or other
3C-derived methods do not have the statistical power to detect signifi-
cantly high interaction signal, this does not ensure that there's no con-
tact between two loci. The lack of strong Hi-C signal may be due to a
number of technical reasons [108]. Nevertheless, all the tools men-
tioned above build the negative set by selecting pairs of loci with dis-
tance distributions similar to true ETG pairs and ensuring they are not
detected as interaction in chromatin conformation capture data.

In conclusion, the SL-based algorithms are hampered by the lack of
comprehensive genome-wide definition of known true positive and
negative ETG pairs. As such, the selection of the training set is expected
to affect the performance of the algorithms.

3.3. Regression-based Algorithms

Regression-based methods work on the rationale that multiple en-
hancers can regulate a single gene, thus they use a combinatorial rather
than pair-wise approach for ETG pairing. Regression-based methods
identify significant relationships between enhancers and target genes,
while at the same time assessing the strength of impact of multiple en-
hancers on their target.

As the number of variables in the regression model grows quickly
with the addition of more candidate enhancers paired with each gene,
limiting the starting set of ETG candidates is crucial for the regression-
based methods.

In this category, JEME uses all enhancers within 1 Mb of each TSS as
the starting set of candidates. Then it uses multiple linear regression
coupled with lasso shrinkage to assess the errors terms in predicting
TSS activity based on the activity of all candidate enhancers considered
at once. JEME is actually a hybrid method as after the regression step a
random forest classifier is trained based on each cell type-specific data
to predict ETG pairs. The predictor is based on the cell type-specific
error terms estimated by regression models, the chromatin marks
data at enhancers, TSS and intervening window, as well as the distance
between enhancer and candidate target. The true positive set of ETG
pairs is defined based on ChIA-PET, Hi-C or eQTL data. As such JEME in-
corporates both features of regression and predictor-based methods.

Similarly, RIPPLE [109] is a SL-based approach that incorporates re-
gression methods for features selection. It trains cell type-specific ran-
dom forests on 5C data, i.e. chromatin loops, from Sanyal et al. [4] as
positive set and in addition uses an approach based onmulti-task learn-
ing and group lasso to perform joint feature selection across four cell
lines.

FOCS [110] instead can be considered only regression-based. It starts
by predicting each promoter activity based on k closest enhancers,
using ordinary least squares (OLS) regressionmodels. The activity of en-
hancers and promoters is initially estimated based on DNase-seq data
by ENCODE. Then FOCS is applied on alternative datasets including:
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DNase-seq data by Roadmap Epigenomic, CAGE-seq data by FANTOM5
and a custom compendium of publicly available GRO-seq datasets. The
regression models are trained on multiple cell types with leave-one-
out cross validation. The reliability of each prediction is tested against
the observed promoter activity in the left-out sample. Then, for refined
predictions, the full model is trained and elastic-net shrinkage is per-
formed to select the enhancers more relevant for regulating the
target gene.

An earlier regression-based approach was adopted by the FANTOM
project consortium as described in Andersson et al. [87]. In this case a
mixed solution was proposed as Pearson correlation was first used for
an initial selection of ETG pairs, then linear models and lasso shrinkage
were adopted to further select the most informative pairs. The correla-
tion is measured on CAGE-based estimations of enhancer and promoter
activity. The authors claim that using CAGE yields a higher fraction of
ETG pairs validated by ChIA-PET, as compared to correlation based on
DNase-seq. These solutions combine the advantages of correlation and
regression approaches, but still have the main limitation of regression
methods that is the need to limit ETG pairing to a pre-defined window
(500Kb from TSS in this case).

Regression-basedmethods have in principle the ability to determine
the relative influence of one or more predictor variables. Thus, multiple
enhancers that are candidate regulators of a given gene can be ranked to
select the most informative ones. The main limitations with these
methods are that they rely on some arbitrarily chosen parameters,
most notably the definition of the window or maximum number of en-
hancers considered around each TSS. They also generally need a large
compendiumof cell typeswith functional data used to build themodels.
Thus, they suffer from a combination of the limitations already discuss-
ed for correlation and SL-based methods.
3.4. Other Score-based Methods

A few algorithms have implemented other custom quantitative
scores to assign target genes to enhancers. The common idea underlying
these approaches is to use a single quantitative score to define the
strength of association between enhancers and target genes, taking
into account multiple types of information.

For example GeneHancer [111] uses a score accounting for eQTLS,
TF-target gene co-expression, eRNAs, capture Hi-C and genomic dis-
tance between enhancer and target gene. As these metrics have all dif-
ferent distributions and ranges of values they are combined together
with various data transformations and weights.

EpiTensor [112] instead combines together 16 chromatin marks,
RNA-seq and DNase-seq across 5 cell types by leveraging higher order
tensors decomposition, from which eigenlocus vectors are derived and
used to compute the “spatial association score”. This score basically ac-
counts for similarities in patterns of functional genomics data over dis-
tant genomic loci and is used to call associated peaks. While this score
is shown to have good concordance with Hi-C derived interactions for
enhancers-promoter pairs, the same score has lower area under the
curve (AUC) in a receiver operating characteristic (ROC) curve built on
other interactions called by Hi-C (e.g. promoter-exon). While these re-
sults confirm the method can call ETG pairs, the selective discrepancy
with other Hi-C interactions is not explained.

Conversely, PEGASUS [113,114] does not rely on any functional ge-
nomics data, as it completely relies instead on evolutionary conserva-
tion. Namely PEGASUS first defines regulatory elements based on
sequence conservation, then links them to target genes using a synteny
conservation score.

The major advantage of having a single quantitative score for
enhancer-gene pairing is that it enables a more flexible prioritization
of ETG pairs by adjusting a single threshold on the score. Moreover, all
the possible interactions of any enhancer or gene can be obtained. For
example, if an enhancer has the potential to regulate multiple genes,
or a gene is regulated by several enhancers, these multi-way relation-
ships can be explored and scored.

The main limitation of the score-based approaches is that they rely
on a number of assumptions and arbitrarily defined parameters or
weights to be able to combine a heterogenous set of information into
a single quantitative value.

4. Other Key Differences Between the Algorithms

ETG pairingmethods are different not only in the algorithmic details,
but also in thewaymultiple parameters and information are used to de-
fine enhancers and promoters. Somemethods are focused on single his-
tone modifications, e.g. PreSTIGE defines putative enhancers as
H3K4me1 enriched sites, whereas IM-PET uses a more sophisticated al-
gorithm (CSI-ANN) described above [65]. FOCS and Thurman et al. rely
instead on non-promoter DNase-seq peaks to define enhancers. Other
methods, such as TargetFinder or JEME, use chromatin states definitions
as obtained by Segway or chromHMM applied on data from ENCODE or
Roadmap Epigenomics consortia. RFECS [68] instead is adopted by
EpiTensor to define enhancers. Finally, GeneHancer uses an even more
mixed enhancer set based on ENCODE, Ensembl, FANTOM and VISTA
data [41].

As such, inmost cases the results coming fromdifferentmethods are
not directly comparable due to the differences in enhancer regions def-
inition itself.

Another key difference between the algorithms is the way true pos-
itive ETG pairs are defined. While this is a crucial feature especially for
SL-based methods, to some degree all of the articles in this field assess
the concordance with an expected true positive set. 3C and its high-
throughput derivatives including 5C, Hi-C, capture Hi-C and ChIA-PET
are used by many tools to define true positives, as detailed above, due
to the role of chromatin 3D organization in ETG interaction. eQTLs are
also a popular alternative to demonstrate a connection between a regu-
latory sequence and a gene expression, in particular using data from the
GTEx project is a popular choice [115]. However, all of these options
have different resolutions in defining functional or physical connections
between distant loci. Namely, due to the limited coverage, Hi-C data are
usually summarized at the level of genomic bins with sizes in the order
of few or several kb, thus larger than the enhancers definitions used by
many tools. Moreover, interactions which are just 1 or 2 bins apart can
hardly be resolved by Hi-C interactions calling algorithms, thus loosing
many possible true positive ETG pairs [116]. Conversely, eQTLs narrow
down the core of the regulatory region by restricting its range to the
SNPs contained in a linkage disequilibrium region. The linkage disequi-
librium region might actually extend up to a few thousand base pairs,
even if the reported eQTL SNPs cover one or few base pairs. This resolu-
tion is also not achievable for the ETG pairing tools which rely on func-
tional genomics techniques. For example, in ChIP-seq the ultimate
resolution limit is the chromatin fragmentation size, which is usually
in the order of a few hundred base pairs [117].

5. Applicability

While most of the ETG tools presented aim to be a generalizable ap-
proach, they have been developed using specific study models, which
may affect their applicability to other conditions. As summarized more
in details in Table 2, these may range from 4 cell lines (TargetFinder)
to as many as 935 cell and tissue types (JEME) or 2630 samples
(FOCS). Starting from a large collection of cell or tissue types for the
characterization of ETG is certainly a strength as it allows to capture
the cell type-specific nature of enhancers. However, the optimal num-
ber of cell types to be considered in the ETG pairs annotation is yet to
be determined.Moreover, the toolswere applied to different organisms,
including human, mouse, fruitfly and zebrafish, as detailed in (Table 2).
These different organisms also imply different genome sizes and



Table 2
Details onmethods applicability. The table lists details concerning eachmethod usability and applicability. Namely, the organisms, cell and tissue types used to develop the tools are spec-
ified, as well as details on the code availability.

Name Organism Samples Code availability

Rodelsperger et al. Mouse Embryonic mouse forebrain and limb –
Ernst et al. Human 9 cell lines –
Thurman et al. Human 125 cell lines –
Shen et al. Mouse 19 cell and tissue types –
PreSTIGE Human 12 cell lines Galaxy module
IM-PET Drosophila and

human
Drosophila and 12 human cell lines Galaxy module and archive with a collection of scripts for PERL,

Python, Java, R and others tools
Andersson et al. Human 432 primary cell, 135 tissue and 241 cell lines –
RIPPLE Human 4 cell lines Bitbucket repository with a collection of C++ programs and

MATLAB scripts (current version: 1.0)
ELMER Human 2841 TCGA samples Bioconductor version: Release (3.9) R package
PETModule Mouse and human 2 mouse cell lines and 8 human cell lines Archive with a collection of scripts for Python, Java and other tools
TargetFinder Human 4 cell lines GitHub repository with a collection of Python scripts
EpiTensor Human 5 cell lines Archive with a collection of scripts for Bash, R, MATLAB and other

tools (current version: v0.9)
JEME Human 935 human primary cell and tissue types GitHub repository with a collection of scripts for Bash, R and other

tools
GeneHancer Human Cell lines from multiple compendiums GeneCards web portal
McEnhancer Drosophila Drosophila embryo development stages GitHub repository with a collection of scripts for Bash, PERL, R,

Python, Java and others tools
PEGASUS Zebrafish and human Human embryonic stem cells and zebrafish developmental

stages
–

FOCS Human 2630 samples GitHub repository with a collection of scripts for R
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complexity of the ETG regulatory network, which may affect the
method's performance.

Another crucial practical consideration about the applicability of
each ETG method is related to the availability of a user-friendly imple-
mentation. To this end, some tools are implemented as a Galaxy mod-
ule, but in most cases an heterogenous set of scripts is shared directly
through a git-based source code repository or simply a compressed ar-
chive file (see Table 2 and Supplementary Table 1 for details).
GeneHancer instead has implemented its prediction in the GeneCards
web portal [118], where candidate enhancers and their annotations
are displayed on relevant GeneCard entries.

Finally, in term of applicability it's worth mentioning that just a few
tools discussed in this review performed an ad hoc experimental valida-
tion of the ETG pairs, whereas most of them relied on comparisons to
previously published data or tools to assess performances. Namely,
EpiTensor performed 3C-qPCR in IMR90 cell line to validate 14 ran-
domly selected pairs, of which they achieved a 93% validation rate.
IM-PET has also performed 3C-qPCR on 9 randomly selected predictions
in two cell types and achieved 81% validation rate. JEME selected three
genes (TERT, PSRC1 and RBM24) for its experimental validation, con-
firmed their corresponding enhancer activity using luciferase assay
Table 3
Pros and cons of ETG pairing approaches. Table summarizes the advantages and limitations of

Method Correlation Machine learning R

Pros 1. can identify multiple targets of an
enhancer

2. can directly derive a quantitative mea-
sure of the strength of association

3. correlation can be measured also
between regulatory elements and
genes within a short distance

1. once the classifier is trained,
in principle it could predict
ETG pairs in other cell types

1

Cons 1. they need genomics data over a large
panel of cells, with consistent quality
and resolution

2. may overlook the cell type and time
specificity of interactions, thus missing
relevant connections when extending
to a new cell type or condition

3. does not directly consider multiple
enhancers acting cooperatively on a
gene

1. the training of the classifier
requires a set of known posi-
tive as well as negative
interactions

2. hampered by the lack of
comprehensive genome--
wide definition of known
true positive and negative
ETG pairs

1

2

and showed the CRISPR-Cas9 deletion of the enhancers diminished
the transcriptional levels of the respective genes. McEnhancer went as
far as testing enhancers and target genes coordinated tissues specificity
in vivo in Drosophila embryos.

6. Summary and Outlook

In conclusion, a large number of computational biology solutions
have been proposed in the past few years to achieve a comprehensive
matching of enhancers and putative target genes. This surge in publica-
tions in thisfield has beenmotivated on onehandby the ever increasing
availability of functional genomics data that can be used for this pur-
pose, and on the other hand by an increased understanding of the cen-
tral role of distal regulatory elements in physiological and pathological
processes. For the same reasonswe expect a further increase in available
solutions for ETG pairing in the coming years.

Despite the variety in methodological solutions proposed so far by
literature in this field, a few crucial limitations hamper an effective
and complete genome-wide ETG pairing, as summarized in (Table 3)
for the four main classes of methods. There are two primary issues af-
fecting all methods: 1) the lack of a genome-wide exhaustive reference
the methodology.

egression Score based

. multiple enhancers that are
candidate regulators of a
given gene can be ranked to
select the most informative
ones

1. flexible prioritization of ETG pairs by adjusting
a single threshold on the score

2. all possible ETG pairs can be scored

. arbitrary chosen parameters
such as the window size or
maximum number of
enhancers around each TSS.

. they generally need a large
compendium of cell types
with functional data used to
build the models

1. they rely on a number of assumptions and
arbitrarily defined parameters or weights to be
able to combine a heterogenous set of infor-
mation into a single quantitative value
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list of all non-coding regions in a given organism genome that can act as
enhancers, and 2) the lack of a large set of experimentally validated true
positive and true negative ETG pairs to be used as reference gold stan-
dard for methods development and benchmarking. Reaching a consen-
sus on these two crucial aspects will be instrumental to advance the
field in the coming years.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.csbj.2019.06.012.
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