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ABSTRACT

Motivation: Epistatic Miniarray Profiles (EMAP) has enabled the
mapping of large-scale genetic interaction networks; however, the
quantitative information gained from EMAP cannot be fully exploited
since the data are usually interpreted as a discrete network based on
an arbitrary hard threshold. To address such limitations, we adopted
a mixture modeling procedure to construct a probabilistic genetic
interaction network and then implemented a Bayesian approach to
identify densely interacting modules in the probabilistic network.
Results: Mixture modeling has been demonstrated as an effective
soft-threshold technique of EMAP measures. The Bayesian approach
was applied to an EMAP dataset studying the early secretory
pathway in Saccharomyces cerevisiae. Twenty-seven modules were
identified, and 14 of those were enriched by gold standard functional
gene sets. We also conducted a detailed comparison with state-of-
the-art algorithms, hierarchical cluster and Markov clustering. The
experimental results show that the Bayesian approach outperforms
others in efficiently recovering biologically significant modules.
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1 INTRODUCTION
With the recent advances in high-throughput technologies,
researchers can now acquire data on molecular networks with
unprecedented speed. As a result, enormous insight is gained with
respect to cellular functions at a systems level (Costanzo et al., 2010;
Lee et al., 2004; Uetz et al., 2000). Computational methodologies
have been developed to analyze data and extract information on
molecular networks, such as protein interaction networks (Collins
et al., 2007a; Shachar et al., 2008; Sharan et al., 2005a, b; Yosef
et al., 2009), transcriptional regulatory networks (Lee et al., 2002)
and genetic interaction networks (Bandyopadhyay et al., 2008;
Costanzo et al., 2010; Kelley and Ideker, 2005; Schuldiner et al.,
2005).

Genetic interactions refer to the phenomenon whereby the
mutation of one gene affects the phenotype associated with the
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mutation of another gene. In budding yeast, such interactions can
be measured on a genome-wide scale (Collins et al., 2007b; Fiedler
et al., 2009; Schuldiner et al., 2005; Wilmes et al., 2008) using
the Epistatic Miniarray Profile (EMAP) platform. In EMAP, double
deletion strains are systematically constructed by crossing a query
strain, which carries a mutation of one gene, with a library of test
strains, each one carrying a mutation of a second gene. The double
mutant strains of different query genes are grown on plates for a
predetermined period of time. Then the colony size of the double
mutant strains is measured, and the extent to which a specific double
mutation deviates from other double mutation strains of the same
query gene is derived. Generally, one can assign an S score to
each pair of genes. While a negative S score indicates a synthetic
sick/lethal interaction, a positive S score indicates an alleviating
interaction (Collins et al., 2006). So far, several studies have been
carried out in Saccharomyces cerevisiae (Collins et al., 2007b;
Fiedler et al., 2009; Schuldiner et al., 2005; Wilmes et al., 2008) and
S.pombe (Roguev et al., 2008). These large-scale datasets shed light
on cellular organization and gene functions, and they are especially
effective in revealing protein complexes and modules participating
in common pathways.

EMAP studies generally benefit from the following: (i) genome-
scale study makes it possible to evaluate the extent of similarity
between the genetic interaction profiles of two genes in an unbiased
manner. (ii) Quantitative output makes it possible to detect subtle
interactions. Current approaches in analyzing EMAP data often
choose an arbitrary cutoff to determine whether an EMAP measure
indicates a genetic interaction (Fiedler et al., 2009) and thus
outputs a binary genetic interaction network. Hierarchical cluster
analysis is another methodology commonly used in analyzing
EMAP data, using the correlation between genetic interaction
profiles as a measure of functional association. Cluster analysis has
been proven efficient in predicting biological pathways and protein
complexes (Schuldiner et al., 2005). Nevertheless, assigning a hard
threshold loses too much EMAP quantitative information, while the
simple clustering method, although effective for the most dominant
pathways and protein complexes, is too stringent for pathways of
moderate phenotypic effect.

Cellular functions and processes are carried out in a series of
interacting events, and genes participating in the same biological
process tend to interact with each other. Therefore, identifying gene
modules composed of densely interacting gene sets is of great
interest. Computational approaches predicting modules in physical
protein interaction (PPI) networks have been successful in revealing
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biological pathways and protein complexes (Brohee et al., 2006;
Scott et al., 2006; Sharan et al., 2005a, b). However, the current
methodologies in analyzing genetic interaction networks do not
efficiently address the important issue of module identification.

With the goal of identifying modules in genetic interaction
networks, we extended the Bayesian method (Sharan et al., 2005a, b)
to genetic interaction networks. This framework has already been
demonstrated as an efficient algorithm to identify modules in PPI
networks. However, the major difficulty in applying it to EMAP
lies in the lack of a probabilistic score assigned to each interaction.
To solve this problem, we applied a Gaussian mixture distribution
to model the distribution of EMAP output, and, as a result, each
interaction is weighted by posterior probability. We also conducted
a detailed evaluation of our method, comparing it with gold standard
functional gene sets. In addition, we compare our method with
other state-of-the-art algorithms, including hierarchical cluster (HC)
analysis (Collins et al., 2006) and Markov Clustering (MCL) (van
Dongen et al., 2000). The experimental results show that our method
recovers functional gene sets, and significantly outperforms the other
two algorithms.

In addition to identifying modules in the genetic interaction
network, another major contribution of our work is the use of
a mixture model. Instead of arbitrarily choosing a threshold, the
mixture model uses a soft threshold, which takes advantage of
the quantitative nature of EMAP data to make further inference.
The framework of mapping EMAP output into a probabilistic genetic
interaction network through mixture modeling and identifying
modules in the derived network can be easily applied to other EMAP
datasets.

2 MATERIALS AND METHODS

2.1 Materials
The test datasets in this study are EMAP profiles of the early secretory
pathway (ESP) (Schuldiner et al., 2005) and phosphorylation network
(Fiedler et al., 2009) of the budding yeast. The ESP dataset consists
of 424 genes with about 80 000 genetic interaction measurements. The
phosphorylation dataset consists of 483 genes, with about 100 000 genetic
interactions measurements.

For the ESP EMAP dataset, gold standard functional gene sets are defined
by GO terms (Ashburner et al., 2000), KEGG pathways (Kanehisa and Goto,
2000) and MIPS protein complexes (Mewes et al., 2008).

For the phosphorylation EMAP dataset, a benchmark dataset with true
genetic interactions is defined by merging interactions from the following
two sources:

• Phosphorylation datasets from the literature, including kinase-substrate
and phosphatase-substrate gene pairs and kinase-kinase, kinase-
phosphatase and phosphatase-phosphatase gene pairs that share
common substrates (Fiedler et al., 2009);

• MIPS small-scale interaction datasets (Mewes et al., 2008).

The MIPS small-scale interaction datasets are included in order to form
an unbiased benchmark dataset. The numbers of interactions in each dataset
are listed in Supplementary Table S1.

2.2 The Bayesian approach to identify modules
Given an interaction network in which the interaction of every two genes
is weighted by a probability (see Section 2.3), the goal of our method is to
identify modules in such network. The problem is formulated as follows (see
Supplementary Table S6 for the notation table).

Let V be a set of genes, and genes in the set are denoted as lower
case letters. Assume that genes in a module interact in pairs and that such
interactions are independent of each other. Given that V is a module, the
likelihood of the observed S scores in V is defined (Equation 1).

P(S scores | Module)=
∏

(a,b)∈V×V

P(Sab | Module) (1)

Applying the law of total probability, the probability of observing an
interaction with score Sab in a module, P(Sab | Module) , can be derived
(Equation 2), where Tab means that interaction (a, b) truly exists, while Fab

means the opposite. The distribution of S scores only depends on whether or
not an interaction is true (Equation 3). Thus, P(Sab | Module) is simplified
to Equation 4.

P(Sab | Module) =P(Sab | Tab,Module)P(Tab | Module)

+P(Sab | Fab,Module)P(Fab | Module) (2)

P(Sab | Tab,Module) = P(Sab | Tab)

P(Sab | Fab,Module) = P(Sab | Fab) (3)

P(Sab | Module) =P(Sab | Tab)P(Tab | Module)

+P(Sab | Fab)P(Fab | Module) (4)

Since genes in a module are functionally related, they are likely to
interact in the genetic interaction network. In another word, the probability
that the interaction (a, b) exist when a and b belong to the same module,
P(Tab | Module), should be large. P(Tab | Module) is set to 0.95 in our
method.

As a background model, we assume a gene set V is sampled in a random
network. A two-step sampling procedure is used to randomize the interaction
network:

(1) Choose a gene a with the probability 1
N , where N is the number of

genes in the network;

(2) Choose a second gene b with the probability proportional to the rank
of P(Tab | Sab) in P(Ta· | Sa·) in descending order, and add (a, b) to the
interaction network. P(Ta· | Sa·) is the probabilistic genetic interaction
profile of gene a.

According to the network sampling procedure, the probability that (a, b)
exists in the random network, P(Tab | Background), is proportional to iab +
iba. iab is the rank of P(Tab | Sab) in P(Ta· | Sa·), and iba is the rank of
P(Tab | Sab) in P(T·b | S·b).

The background model has two desired properties: (i) when (a, b) and
(c, d) have the same S score, the pair with lower rank in their corresponding
profiles is assigned a greater chance of appearing in the random network.
(ii) The distribution of the posterior probabilities of each gene in the random
network is kept consistent with the observed network. The likelihood is
similarly defined (Equation 5, Equation 6; B = Background).

P(S scores | B)=
∏

(a,b)∈V×V

P(Sab | B) (5)

P(Sab | B)

=P(Sab | Tab,B)P(Tab | B)+P(Sab | Fab,B)P(Fab | B)

=P(Sab | Tab)P(Tab | B)+P(Sab | Fab)P(Fab | B) (6)

The likelihood ratio of ‘Module’ and ‘Background’ can be computed by
summing over all pair-wise interactions in the module (Equation 7). It can
be computed if P(Sab | Tab) and P(Sab | Fab) are known (see Supplementary
Method 1), which are derived from mixture modeling (see Section 2.3).

loglikelihood ratio=
∑

(a,b)∈V×V

P(Sab | Module)

P(Sab | Background)
(7)

854



[10:37 3/3/2011 Bioinformatics-btr031.tex] Page: 855 853–859

Modular analysis of genetic interaction network

2.3 Mixture model
Genetic interaction between a pair of genes can be classified as positive,
negative and non-interacting. Therefore, the S scores in an EMAP experiment
are a mixture of three subpopulations: positive genetic interactions (S+),
negative genetic interactions (S−) and null interactions (S0). Assuming that
each subpopulation is a Gaussian distribution, the Gaussian mixture model
is applied to characterize the distribution of the S scores in an experiment
(Equation 8).

S =α−S− +α0S0 +α+S+ (8)

α−, α0 and α+ are the proportions of gene pairs of the particular interacting
type, and S∗ follows Gaussian distribution (Equation 9).

S∗ ∼N(µ∗,σ2∗ ) (9)

The parameters can be estimated through the EM algorithm. The posterior
probability that a pair of genes with S score s has a true negative or positive
genetic interaction can be derived (Equation 10).

P(+ | s)= α+φ(s,µ+,σ+)
α0φ(s,µ0,σ0)+α−φ(s,µ−,σ−)+α+φ(s,µ+,σ+)

P(− | s)= α−φ(s,µ−,σ−)
α0φ(s,µ0,σ0)+α−φ(s,µ−,σ−)+α+φ(s,µ+,σ+)

P(T | s)= P(+/− | s)=P(+ | s)+P(− | s) (10)

φ(s,µ,σ)= 1√
2πσ2

exp{− (s−µ)2

2σ2 }, which is the Gaussian density function.

2.4 Prediction of positive triplet motifs
To demonstrate the advantage of the posterior probability over S score, both
scores are applied to predict triplet motifs, and the results are compared. As
the simplest motifs in a genetic interaction network, triplet motifs with three
positive interactions tend to display genes that function in a series (Fiedler
et al., 2009). Fiedler et al. scored such a triplet with the product of the S
scores of each pair of genes (Equation 11).

Sab ∗ Sbc ∗ Sac (11)

To score a positive triplet motif composed of genes a, b and c, the sum
of the log posterior probabilities of each pair of genes is used (Equation 12),
assuming that interactions are independent of each other.

logP(+ | Sab)+logP(+ | Sbc)+logP(+ | Sac) (12)

All triplets with three positive S scores are scored, and the precision of
the two methods are compared (Equations 11 and 12). For each method, we
took the top-k triplets, and the precision is defined as the proportion of true
interactions in all interactions in top-k triplets. An interaction is regarded as
a true interaction if it is present in the benchmark dataset (see Section 2).

2.5 Module-grown algorithm: a heuristic optimization
of the log likelihood ratio

The goal is to identify modules that have the largest log likelihood
ratio. However, the searching space is prohibitively large. Instead, the
log likelihood ratio is optimized heuristically. Since modules must contain
dense submodules, we first identified all four-cliques in a degenerated
binary interaction network. Next, these four-cliques are greedily expanded
to modules with moderate size.

First, we defined a threshold T as the 5% upper quantile of the log
likelihood ratio of all edges in the genetic interaction network. The edges
whose log likelihood ratio does not pass the threshold are deleted. Next,
party nodes, with a degree no less than 50 in the derived discrete network,
were deleted from the network. In the resulting network, there are 168 four-
cliques, and these four-cliques are used as seeds to identify modules. Then,
the four-cliques are expanded into a module in a forward procedure. At each
iteration, the gene that adds the largest likelihood ratio to the current module
is selected as a candidate member. If the average log likelihood ratio (ALLR)
that the candidate gene adds is above the predefined threshold T , the gene is
appended to the module. The iteration stops if no genes can pass the threshold
or the module reaches the maximal size M. We set M to 10 in the current
study. Finally, 168 modules are predicted in the ESP dataset.

2.6 Remove redundancy in predicted modules
A rough inspection revealed that many genes are present in multiple modules,
thus causing redundancy in our prediction. We removed the redundancy
through a merging approach.

(1) Initial: suppose we have K modules.

(2) Iteration: compute the ALLR (Equation 13) achieved by merging each
two modules that share at least one gene. Then, merge the two modules
that have the largest ALLR if the corresponding ALLR passes the
threshold.

(3) Termination: the iteration terminates if no genes are shared across
modules, or the ALLR of merging any two modules is less than T.

ALLR(U,V )=
∑

(a,b)∈{U,V}×{U,V}

P(Sab | Module)

P(Sab | Background)
(13)

2.7 Enrichment analysis
The enrichment analysis is carried out as a hypergeometric test, and the FDR
level is set to 0.05 (see Supplementary Table S2).

2.8 Comparisons with other algorithms
The network clustering algorithms are evaluated by judging how well
the predicted clusters are mapped to the MIPS protein complex, KEGG
pathways and GO functional categories. Song et al. (2009) provided a
basic framework to compare network clustering algorithms. The evaluation
measures, including Jaccard measure, PR measure and semantic density
measure, are described briefly here.

Let G={G1,G2,...,Gn} be a set of annotated functional gene groups, and
let C ={C1,C2,...,Cm} be a set of predicted clusters. N is the total number
of genes in the network. The Jaccard similarity of two sets is defined in
Equation 14. The Jaccard measure between the predicted clusters and the
functional gene sets is defined in Equation 15, which is a weighted average
over the size of each cluster.

Jaccard(Ci,Gj)= |Ci ∩Gj|
Ci ∪Gj

(14)

Jaccard(C,G)=
∑m

i=1 |Ci|maxj Jaccard(Ci,Gj)

N
(15)

The precision-recall (PR) measure of two sets is defined in Equation 16.
The PR measure between C and G is similarly defined (Equation 17).

PR(Ci,Gj)= |Ci ∩Gj|
|Ci| ∗ |Ci ∩Gj|

|Gj| (16)

PR(C,G)=
∑m

i=1 |Ci|maxj PR(Ci,Gj)

N
(17)

Besides the Jaccard and PR measures, semantic density is defined to
consider the hierarchical nature of GO terms (see Supplementary Method 2).

3 RESULTS

3.1 Predicting modules in the genetic interaction
network

The extent of functional correspondence of any two genes in a
genetic interaction network can be characterized on two levels. First,
the genetic interactions of one gene against the library of genes in the
genome form a genetic interaction profile, and the similarity among
genetic interaction profiles is indicative of the partnership of the pair
of genes. Their similarity is measured as the Pearson correlation
coefficient (PCC) of the genetic interaction profiles (Collins et al.,
2006). Second, the discrepancy between the observed phenotype
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of the double mutation and the expected phenotype with regard to
each single mutant is reflected from the EMAP measures. PCCs have
been used as the similarity measure in cluster analysis (Schuldiner
et al., 2005), which clusters together genes participating in common
biological processes. Such clustering strategies tend to find groups
of genes that act in a consistent manner across the entire library. This
may be true for protein complexes, but it is not always applicable to
genes in common pathways, especially if they participate in multiple
pathways and functions. Moreover, such strategies often neglect
gene pairs with strong S scores, but poor PCCs, which could also
be informative, as discussed above.

Borrowing ideas from the analysis of PPI networks (Sharan
et al., 2005a, b), we propose to identify modules from the genetic
interaction network. ‘Module’ refers to a set of genes that are
enriched for pair-wise interactions. In a Bayesian probabilistic
framework, modules can be predicted from the probabilistic
genetic interaction network (see Section 2). We have designed
a new approach, rather than directly applying established cluster
algorithms in PPI networks, because genetic interaction networks
differ from PPI networks in their topological structures, which
have a major impact on the performance of the algorithms (Song
et al., 2009). In a genetic interaction network, the average network
clustering coefficient is much larger (see Supplementary Table S5),
regardless of the choice of cutoff.

Applying the algorithm in the ESP EMAP dataset, we predicted
27 modules (see Supplementary Text 1). Two of the modules are
enriched in a MIPS protein complex, four are enriched in a KEGG
pathway and 14 are enriched in GO terms (see Supplementary
Table S2). The experimental results of our method is described,
evaluated and compared with existing methods in Section 3.2.

3.2 Module prediction in the ESP EMAP dataset,
compared with HC and MCL

To determine whether our approach has any advantage over existing
methods, a detailed comparison was conducted. We considered
two algorithms for comparison. The first one is HC analysis
(Supplementary Method 3), which is widely used in analyzing
genetic interaction networks to infer protein complexes and cellular
pathways (Collins et al., 2006, 2007b; Costanzo et al., 2010;
Schuldiner et al., 2005). The second one is MCL (Supplementary
Method 4), which is based on simulating random walks in a
network (van Dongen et al., 2000). A recent study compared several
network clustering algorithms, and the authors concluded that MCL
outperforms others in PPI networks (Brohee et al., 2006).

The framework provided by Song et al. (2009) is exploited
for the comparison. The results demonstrated that our method
outperforms both HC and MCL in Jaccard measure, PR measure
and semantic density measure (Fig. 1). Moreover, our method
significantly outperforms HC and MCL in all three measures with
respect to GO terms and KEGG pathways (Fig. 1A, C, D, E, G). In
PR measure, HC is slightly better than our method when mapped to
MIPS protein complexes.

In addition, we examined the overlap between the modules
predicted by our method and the clusters predicted by HC. There
are 13 modules that significantly overlap with the cluster method,
while the others represent distinct discoveries by our method (see
Supplementary Table S4).
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Fig. 1. Comparison of the Bayesian approach (BA) with other methods
(MCL and HC). Different inflation parameters (3, 4, 5) were used for MCL.
Different cutoffs were used for HC (0.5, 0.6, 0.7). Comparison of Jaccard
measure with respect to GO terms (A), KEGG pathways (B), MIPS protein
complex (C); comparison of semantic density of GO terms (D); comparison
of PR measure with respect to GO terms (E), KEGG pathway (F) and MIPS
protein complex (G). In all three measures, the larger value corresponds to
better performance.

For cases in which our modules overlap with the clusters identified
with HC (Schuldiner et al., 2005), our modules tend to contain
additional information about pathway cross talk. For example,
8 genes in module 22 participate in the N-Glycan biosynthesis
pathway in KEGG (Fig. 2A). The same eight genes are also clustered
together by HC (Supplementary Method 3). However, our module
includes two additional genes: Ire1 and Hac1. It is well known that
these two genes work together to transcriptionally upregulate the
genes involved in the unfolded protein response (UPR) pathway
in response to misfolded proteins in the ER (Jonikas et al., 2009).
When glycosylation is inhibited, the most commonly observed effect
is the generation of misfolded proteins (Helenius and Aebi, 2001),
suggesting cross talk between the N-Glycan biosynthesis pathway
and the UPR pathway. Our method captured the extensive interaction
and cross talk between the two pathways.

There are a number of modules that are identified by our method,
but missed by HC. For example, in module 15, 8 out of 11 genes are
annotated as ‘cellular lipid metabolic process’ (Fig. 2B). The genetic
interaction profiles among them are poorly correlated, so these genes
are distributed into distinct subgroups by HC. Nevertheless, the
dense interactions among these genes are revealed by our method.
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Fig. 2. Examples of the modules identified in the ESP EMAP dataset. (A)
The module is enriched in the N-Glycan biosynthesis pathway in KEGG;
(B) the module is enriched in the cellular lipid metabolic process in GO;
(C) the module possibly carries cross talk between pathways. The figure was
produced using Cytoscape (Shannon et al., 2003).

More than 50% of the modules we predicted are supported
by functional evidence from diverse sources. However, the other
modules are also biologically informative. Other than working in
the same biological pathways, genes in a module can often mediate
cross talk between different pathways. For instance, in module
25 (Fig. 2C), MGA2 and SPT23 are transcriptional regulators of
OLE1, which is a delta (9) fatty acid desaturase, which is required
for monounsaturated fatty acid synthesis. OLE1 is short lived and
regulated by ER-associated degradation (ERAD) (Braun et al.,
2002). SEL1 and UBC7 in module 25 are involved in the ER-
associated protein degradation pathway, and the dense interactions
in the module can be explained by the cross talk between the OLE
and ERAD pathways. This kind of information from EMAP data is
hard to capture with cluster analysis.

3.3 Mixture modeling
We applied a three-component Gaussian mixture model (see
Section 2) to fit the distribution of S scores. For each pair of genes
in the EMAP dataset, the posterior probability that the S score
corresponds to a positive and negative genetic interaction is derived
from the model. The S score versus posterior probability curve in
the phosphorylation EMAP dataset is shown in Figure 3, and the
fitting of mixture model on the same dataset is shown in Figure 4.

Our mixture modeling is a soft threshold technique. Alternatively,
one can arbitrarily choose a cutoff and output a discrete genetic
interaction network. However, there are two limitations with hard
threshold. First, when a threshold such as 2.0 is chosen, scores
from 0 to 2.0 are not regarded as significantly different. Second,
the threshold is arbitrarily chosen. Therefore, we assign a posterior
probability to each gene pair and output a probabilistic genetic
interaction network. The probability represents the discrepancy
between the observed double mutant phenotype and the expected
phenotype. Such a probabilistic network carries the quantitative
information of EMAP into further inference so that a moderately
scored interaction can be detected, if supported by other evidence.
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Fig. 3. The mixture model was trained on the phosphorylation EMAP
dataset. The positive and negative posterior probability curves are shown.
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Fig. 4. Fitting of the mixture model on the phosphorylation EMAP dataset.
The gray bars are the histogram of the original S scores. The yellow, red and
blue curves are the density of the negative, null and positive interactions,
respectively. The triangles indicate the mean value of the respective normal
distribution.

3.4 Prediction of positive triplet motifs
To illustrate the advantage of the soft threshold property of the
mixture model, we predicted positive triplets with original S scores
(Fiedler et al., 2009) and their posterior probabilities, respectively
(see Section 2). We compared the precision of our method (Method
1) with the method in Fiedler et al. (2009) (Method 2) (Fig. 5A).
The high-scoring triplets at different cutoffs for both methods are
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Fig. 5. Comparison of two methods in predicting triplet motifs. (A) Precision
curve of both methods. Method 1 (red): a triplet is scored as the sum of
log posteriors. Method 2 (blue): a triplet is scored as the product of S
scores. Random (gray): the triples are randomly sampled in the genetic
interaction network. The x-axis is the number of interactions in the positive
triplets. The y-axis is the number of true positive interactions divided by
the corresponding values of the x-axis. (B) An example triplet predicted
by our method (Method 1). The values around the edges are the S scores
of the corresponding interaction, and the values in the parentheses are the
corresponding probabilistic scores.

shown in the figure. Their performance is comparable, no matter
whether an extremely stringent or a very loose cutoff is applied.
When a moderate cutoff is used, our method catches more verified
interactions, demonstrating its ability to detect subtle interactions.
Actually, a stringent cutoff will result in a high false negative rate,
which is not desirable in large-scale studies. In summary, our method
outperforms the method using direct S scores.

Method 2 usually predicts triplets with extremely large S scores
and misses those with three moderately large S scores. Our method,
on the other hand, is not affected by extreme S scores, which
could originate from either true interaction or noise. For example,
the triplet (SAP155, GCN2, SIT4) is ranked among top 500 by
our method (Fig. 5B). SIT4 is a phosphatase that functions in
G1/S transition in the mitotic cell cycle (Sutton et al., 1991).
SAP155 forms a complex with SIT4 protein, and is required for the
function of SIT4 (Luke et al., 1996). Plus, GCN2 is the substrate of
SIT4 (Cherkasova et al., 2003). These evidences suggest SAP155,
GCN2, SIT4 is a biologically significant triplet, and the pair-wise
interactions in the triplet have large S scores (Fig. 5B). The rank of
this triplet by Method 2 is below 1000, which is much lower than
the rank by our method.

4 DISCUSSION
Large-scale genetic interaction networks can be measured in model
organisms like Escherichia coli, S.cerevisiae and S.pombe (Dixon
et al., 2009; Tong et al., 2004). As more and more experimental
data are generated, it becomes very challenging to interpret the
biologically significant results in a way that can be experimentally
verified. In this article, we proposed a Bayesian approach to identify
modules in a probabilistic genetic interaction network obtained by
mixture modeling of EMAP data. Our evaluation and comparison
with other state-of-the-art algorithms (HC and MCL) demonstrated
that our method could identify modules with high efficiency. Also,
the posterior probability derived from mixture modeling, which

is based on a soft threshold, proved to be a better quantitative
measure than the S score in predicting triplet motifs with biological
significance.

We also found that high PCC and large posterior probability
are both associated with functional similarity and that they can
complement each other in biological modules. Higher efficiency can
be expected if these two measures are combined to identify modules
in the genetic interaction network. Therefore, in the future, we will
focus on developing network clustering algorithms that combine
PCC and posterior probability.
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