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Co-infection with ancillary pathogens is a significant modulator of morbidity and mortality
in infectious diseases. There have been limited reports of co-infections accompanying
SARS-CoV-2 infections, albeit lacking India specific study. The present study has made
an effort toward elucidating the prevalence, diversity and characterization of co-infecting
respiratory pathogens in the nasopharyngeal tract of SARS-CoV-2 positive patients.
Two complementary metagenomics based sequencing approaches, Respiratory Virus
Oligo Panel (RVOP) and Holo-seq, were utilized for unbiased detection of co-infecting
viruses and bacteria. The limited SARS-CoV-2 clade diversity along with differential
clinical phenotype seems to be partially explained by the observed spectrum of co-
infections. We found a total of 43 bacteria and 29 viruses amongst the patients,
with 18 viruses commonly captured by both the approaches. In addition to SARS-
CoV-2, Human Mastadenovirus, known to cause respiratory distress, was present in
a majority of the samples. We also found significant differences of bacterial reads
based on clinical phenotype. Of all the bacterial species identified, ∼60% have been
known to be involved in respiratory distress. Among the co-pathogens present in our
sample cohort, anaerobic bacteria accounted for a preponderance of bacterial diversity
with possible role in respiratory distress. Clostridium botulinum, Bacillus cereus and
Halomonas sp. are anaerobes found abundantly across the samples. Our findings
highlight the significance of metagenomics based diagnosis and detection of SARS-
CoV-2 and other respiratory co-infections in the current pandemic to enable efficient
treatment administration and better clinical management. To our knowledge this is the
first study from India with a focus on the role of co-infections in SARS-CoV-2 clinical
sub-phenotype.
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INTRODUCTION

The COVID-19 disease that emerged in Wuhan, China has
spread across the globe in the past 1 year and assumed
pandemic proportions. The infection is caused by Severe Acute
Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) which is a
betacoronavirus of the Coronaviridae family (Zhu et al., 2020).
Symptomatic patients present with a wide range of symptoms
including fever, cough, runny nose, headache, nasal congestion
and shortness of breath (Huang et al., 2020). While the majority
of patients with SARS-CoV-2 infection have mild to moderate
symptoms, some progress to a severe disease category despite
standard treatment regime (World Health Organization, 2020).
Patients with severe manifestation of the disease require Intensive
Care Unit (ICU) admission, necessitated by the development
of pulmonary pathology including ground glass opacification of
the lungs and the Acute Respiratory Distress Syndrome (ARDS),
often culminating in multiple organ failure and death (Fan et al.,
2020; Wang et al., 2020).

Due to the diversity in clinical manifestations of the
disease, more than one factor is assumed to possibly affect
the clinical course of SARS-CoV-2 infection. Studies so far
have indicated the role of older age, male gender and presence
of comorbidities such as diabetes and hypertension as well
as demographic and clinical factors in increasing the risk of
developing a severe form of COVID-19 (Richardson et al., 2020;
Wu and McGoogan, 2020; Zhou et al., 2020). Simultaneously,
a limited number of reports have indicated the presence of
co-infections with viral and bacterial respiratory pathogens in
SARS-CoV-2 infected individuals. Studies have indicated the
co-occurrence of respiratory viruses including Influenza virus,
Human metapneumovirus, Rhinovirus and Respiratory syncytial
virus in COVID-19 patients (Ding et al., 2020; Kim et al., 2020;
Lin et al., 2020). Bacterial co-infections also affect the morbidity
and mortality in viral respiratory infections. In this context,
it is important to differentiate between hospital-acquired co-
infection/secondary bacterial infection which develops during
the course of hospitalization, versus an existing bacterial co-
infection which is present when a patient reports to the hospital.
A meta-review by Langford et al. studied the rate of bacterial co-
infection in COVID-19 patients. Among the bacterial pathogens,
the ones reported in SARS-CoV-2 positive patients include
Haemophilus influenzae, Pseudomonas aeruginosa, Klebsiella
spp. and Mycoplasma spp. (Langford et al., 2020). Most of
these findings are, however, associative in nature and do not
clearly indicate whether co-infection is a driver of poor clinical
outcomes, or simply more common in severe categories of
patients (e.g., intubation associated pneumonia in patients on
ventilatory support).

To be able to better understand the COVID-19 pathogenesis
and prognosis, it is important to elucidate the role of co-
infections and concomitant interactions between co-infecting
pathogens. Next generation sequencing (NGS) has aided the
characterization and analysis of the genomic profile of not
just the primary pathogen, i.e., SARS-CoV-2, but also of
the associated microbiome, using the nucleic acids extracted
from the respiratory specimens of patients (Chen et al., 2020;

Peddu et al., 2020). The current magnitude of the problem
requires multi-modal efficient management of the COVID-19
disease. Early detection of the co-infection with possible role in
disease severity and outcome would be helpful in prioritising
medical care. Identification of co-infections in SARS-CoV-2
positive individuals, especially of the bacterial species, may be
crucial for better risk stratification of patients, disease prognosis
and effective treatment, especially in context of the usage of
suitable antibiotics.

MATERIALS AND METHODS

Sample Collection and Processing
Sample Collection
The study was conducted by the CSIR-Institute of Genomics
and Integrative Biology (CSIR-IGIB) in collaboration with the
MAX Hospital, Delhi, India. Ethical clearance for the study was
obtained from the Institutional Ethics Committee at the IGIB
and the Max Hospital, respectively. A total of 100 patients with
confirmed COVID-19 positive status, based on RT-PCR results,
hospitalised in MAX Hospital were enrolled in the study. The
nasopharyngeal and/or throat swabs along with a sputum sample
were collected by the paramedical staff at the MAX Hospital on
the day of reporting to the hospital. The tip of the swab was
put into a vial containing 3 ml of Viral Transport Media (VTM)
(HiViral Transport Kit, HiMedia, Cat. No: MS2760A-50NO),
by breaking the applicator’s stick and sealing the tube tightly.
The tube was then vortexed for 2 min to allow the dissolution
of sample into the VTM solution followed by centrifugation
and allowed to settle for some time before processing. For
sputum samples, 200 µl of sputum was added to 200 µl of
Sputum Liquefaction reagent, thoroughly mixed and incubated
at 37◦C for 10 min.

RNA Isolation and qRT-PCR Detection
Viral RNA from VTM solution or liquified sputum samples
was extracted using commercially available RNA extraction kit
(QIAmp viral mini kit, Qiagen, Cat. No. 52906). 200 µl of VTM
solution or liquified sputum was processed for lysing and viral
enrichment, in accordance with the kit protocol (QIAamp Viral
RNA Mini Handbook). After washing with the wash buffers, viral
RNA was eluted in RNase-free water. qRT-PCR for SARS-CoV-2
detection was performed using the TRUPCR SARS-CoV-2 kit (3B
BlackBio Biotech India Ltd., Cat. No. 3B304). In brief, 10 µl of
RNA was added to 15 µl of reaction mix in accordance with the
kit protocol. The qRT-PCR was run on Rotor-Gene Q (Qiagen)
using the recommended cycling conditions. The cycle threshold
(Ct) value of 35 was considered for interpretation of the results.

Sequencing
Respiratory Virus Oligo Panel (RVOP)
Double-stranded cDNA (ds cDNA) was synthesised from
100 ng of total RNA for all SARS-CoV-2 positive samples.
The first strand of cDNA was synthesised using Superscript
IV First strand synthesis system (Thermo Fisher Scientific,
Cat. No. 18091050) followed by single-stranded RNA (ssRNA)
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digestion with RNase H for second strand synthesis using
DNA Polymerase I Large (Klenow) Fragment (New England
Biolabs, Cat. No. M0210S). The cDNA was purified using
AMPure XP beads (AMPure XP, Beckman Coulter, Cat. No.
A63881) and quantified using NanoDrop (ND-1000 UV-Vis
Spectrophotometer, Thermo Fisher Scientific). 100 ng of purified
ds cDNA was used for library prep using the Illumina DNA Prep
with Enrichment kit (Illumina, Cat. No. 20018705). The process
involves tagmentation followed by cleanup and amplification
leading to indexed DNA fragments. Following tagmentation and
indexing, enrichment was performed using the Illumina RVOP
(Illumina, Cat no. 20042472), wherein 500 ng of each sample were
pooled by mass in accordance with the reference guide (Illumina,
Doc. No. 1000000048041v05) for the 12-plex hybridisation
with biotinylated adjacent oligo-probes of the RVOP. The
hybridisation was performed overnight after which the probes
were captured by streptavidin-biotin based interactions. The final
library was PCR amplified and purified before sequencing. The
quality and quantity of the sequencing library was checked using
Agilent 2100 Bioanalyzer with high sensitivity DNA chip and the
Qubit dsDNA HS Assay kit, respectively. A loading concentration
of 10 pM was prepared by denaturing and diluting the libraries in
accordance with the MiSeq System Denature and Dilute Libraries
Guide (Illumina, Document no. 15039740 v10). Sequencing was
performed on the MiSeq system, using the MiSeq Reagent Kit v3
(150 cycles) at 2× 75 bps read length.

Holo Transcriptome
Whole transcriptome sequencing was performed using the
Illumina TrueSeq Stranded Total RNA Library Prep Gold
(Illumina, Cat. No. 20020598). A total RNA input of 500 ng
of each sample was depleted of cytoplasmic and mitochondrial
rRNA by Ribo-Zero Gold, followed by fragmentation, first and
second strand cDNA synthesis and purification with AMPure
XP beads (AMPure XP, Beckman Coulter, Cat. No. A63881)
in accordance with the reference guide (Illumina, Doc. No.
1000000040499 v00). The purified ds cDNA was adenylated
at 3′ends, ligated with index adapters, which were further
enriched by PCR based amplification. The final cDNA libraries
were purified using AMPure XP beads and quantified using
Qubit dsDNA HS Assay kit (Thermo Fisher Scientific, Cat. No.
Q32854). The quality of cDNA libraries was checked by Agilent
High Sensitivity DNA Kit using the Agilent 2100 Bioanalyzer.
A final loading concentration of 400 pM was prepared by
denaturing and diluting the libraries. Sequencing was performed
on the NovaSeq 6000 system, using the NovaSeq SP reagents v1
at 2× 101 read length.

Sequencing Data Analysis and
Metagenomic Analysis
In this study, the total sample set was divided into two
subsets with some overlapping samples across the two subsets.
Fifty samples consisting of one subset were used for detection
of viruses other than the SARS-CoV-2, using the Illumina
Respiratory Virus Oligo Panel (RVOP). The second subset
consisted of 48 clinical phenotype defined samples that were
studied to explore the presence of microbes using Holo-Seq.

Of the 48 samples, 21 samples were common with RVOP
based study. The downstream analysis was automated using
the Nextflow script. The methodology includes steps for base
calling, quality check, removal of adapters (trimming), alignment,
generation of consensus genome FASTA, and evaluation of
species diversity, as well as coexistence and visualisation.

FastQC was used to check the Phred quality score for
all sequences (Babraham Bioinformatics, 2020a – FastQC A
Quality Control tool for High Throughput Sequence Data).
For all samples, the quality score threshold was 20 and above.
Adapter trimming was performed using the Trim Galore tool
and alignment of sequences was performed using the HISAT2
algorithm on human data build hg38 (Kim et al., 2015; Babraham
Bioinformatics, 2020b – Trim Galore!). To remove any human
sequences from the dataset, SAMtools were used to remove
aligned sequences (Li et al., 2009). Henceforth, only unaligned
sequences were taken into consideration. BEDTools were used
to generate consensus fasta and variant calling (Quinlan and
Hall, 2010), which was followed by the alignment of sequences
to the 30 respiratory virus panel of Illumina RVOP, to explore
the presence of respiratory viruses other than the SARS-CoV-2.
After alignment with the virus panel, the detected strains were
counted using the number of reads mapped per strain. Kraken
was used to assign taxonomic labels to microbial strains detected
from the RVOP and the Holo-Seq analysis (Wood and Salzberg,
2014). The output from the metagenomic classification of the
detected strains obtained from Kraken was analyzed further using
the Pavian software (Breitwieser and Salzberg, 2020).

The Heatplus package from R was used to plot the heatmap
(heatmaps, 2021: Flexible Heatmaps for Functional Genomics
and Sequence Features version 1.14.0 from Bioconductor). For
the alluvial plot, the Ggplot2 package from R was used and
Plotly was used for the sunburst plot (Wickham, 2016 citation
info) (Sievert, 2020). Cytoscape software was used to visualize the
microbial presence captured by the RVOP and Holo-Seq analysis
(Shannon et al., 2003).

Statistical Analysis
All the data were summarized using descriptive statistics, wherein
continuous variables are presented as median or interquartile
range, and categorical variables are presented as percentages
or proportions. A correlation analysis was conducted using the
metadata of all 100 samples and plotted using the R corrplot
package (GitHub, 2020 – taiyun/corrplot: Package corrplot is for
visualizing a correlation matrix). We used the Mann–Whitney U
test and Chi-square tests to compare the differences, wherever
appropriate. The Kruskal Wallis test was used to compare the
distribution of bacterial presence across our patient subgroups.
The Shannon Diversity index (H) was calculated to characterise
the bacterial species diversity as aerobes and anaerobes, in 48
patient samples used for the Holo-transcriptomics study, to
account for the abundance and evenness of bacterial species in
each patient sample (Supplementary Material).

SARS-CoV-2 Phylogenetic Analysis
The phylogeny study was automated using NGphylogeny.fr
online tool (Lemoine et al., 2019). Multiple sequence alignment
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was performed using the MAFFT algorithm for SARS-CoV-2
isolates from 100 samples using MN908947.3 as the reference
SARS-CoV-2 sequence. The alignment was curated using trimAI.
The phylogenetic tree was constructed using PhyML maximum
likelihood algorithm as the statistical method. The phylogenetic
analysis was visualized using FIGTREE software (FigTree, 2020).
Gviz and trackViewer packages from R were used to plot the
lollipop plot to visualise the mutations observed in 100 samples
(Hahne and Ivanek, 2016; Ou and Zhu, 2019). Inkscape was used
to modify the figures.

RESULTS

The objective of the study was to explore and elucidate
the correlation/association between differential presence of co-
infecting microorganisms and, diversity in clinical symptoms
as well as disease severity manifested by SARS-CoV-2 infected
individuals. For identification of co-infecting species we used
two different NGS approaches: target amplification based on
hybridisation capture (Illumina RVOP) and whole transcriptome
RNA-Seq (Holo-seq). RNA samples from 50 patients with
COVID-19 were used for Illumina RVOP analysis followed by
Holo-Seq of 48 samples with an overlap of a subset of 21 samples
which were used for both the analyses (Figure 1). The selection
of 77 unique patient samples from among the 100 enrolled in the
study, for further analysis via RVOP and Holo-Seq, was based on
the clinical sub-categorisation of the patient metadata.

Demographics and Spectrum of Clinical
Features in COVID-19 Patients
The spider web plot represents the distribution of patient
samples included in the RVOP (represented in red) and Holo-seq
(represented in purple) analysis with respect to their associated
clinical symptoms and comorbidities (Figure 2). The common
samples among two datasets (represented in magenta) have
dual objectives of validating the findings from two different
sequencing approaches and enabling new discoveries. The
outermost blue block represents the distribution of clinical
metadata with respect to the 100 patients enrolled in our study.
The plot highlights that a comparatively fewer number of patients
investigated using RVOP (red block) had breathlessness and heart
disease than the patients profiled using Holo-seq (purple block).

The requirement of respiratory support has been one of
the important features for defining the COVID-19 disease
severity (Nicholson et al., 2020; Ñamendys-Silva, 2020). Thus, the
patient cohort was sub-categorised into two groups viz. patients
requiring respiratory support and patients without respiratory
support (Table 1). The median age of the subgroup of COVID-
19 patients who required respiratory support was 58 years, and
that without respiratory support was 29 years, while the median
age for the patient cohort as a whole was 32 years. Higher age
in our patient group was significantly associated with respiratory
support requirements with a p-value < 0.05 (Table 1). Female
and male patients’ ratio in our cohort was almost similar, with
females accounting for slightly more than 50% of all the patients
within each subgroup. Fever was the most common symptom

reported by a majority of the patients (69%), followed by cough
and sore throat that were reported by nearly one-third of the
patients (33% each) (Figure 2 and Table 1). The loss of taste and
smell was reported by five patients while only one of the patients
was asymptomatic at admission (Table 1).

The peripheral oxygen saturation levels of patients at
admission as measured by the SpO2 levels were found to be
significantly higher in patients who did not require respiratory
support than those who did require respiratory support (p-
value = 0.009) (Table 1). Lower Oxygen saturation levels have
been reported in more severe categories of COVID-19 patients
(Chandra et al., 2020). We found that approximately 47% of
the patients, who reported breathlessness at admission, went
on to require respiratory support whereas only around 16% of
those who did not report breathlessness, at admission, required
respiratory support. The observed difference was statistically
significant with a p-value < 0.05 (Table 1). While the median
length of hospital stay was similar at 5 days across both the
patient groups, the upper quartile range varied greatly, being
much higher in the patient group who required respiratory
support (Table 1).

To understand the correlation between different clinical
parameters, we plotted the data using scatter plot and correlation
matrix (Figures 3A,B, respectively). We found that patients in the
older age group had lower Ct-values of SARS-CoV-2 RdRp and
E gene, indicating a higher viral load when compared to younger
patients (Figure 3A). Also, RdRp and E gene expression showed a
negative correlation with fever, indicating that people with higher
viral load had higher body temperature. We also observed that
Ct values for RdRp, N, and E genes were negatively correlated
with age, heart disease and other comorbidities (Figure 3B).
Amongst all the parameters included in the study, presence
of heart disease appears to be strongly correlated with higher
SARS-CoV-2 viral load. From the correlation plot, we also
observed that heart diseases were correlated with hypertension
and other comorbidities, while hypertension and thyroid were
closely associated with each other. We observed a strong negative
correlation between the SpO2 levels and the requirement of
respiratory support after hospitalisation.

Limited Diversity of SARS-CoV-2 Clades
We performed the genome sequencing of SARS-CoV-2 isolates
from all 100 patients to discover the viral clades as well as the
phylogeny. We identified two clades according to the Nextclade
classification, i.e., 19A and 20B (Figure 3C). Clade 19A, defined
by positions 8782C (Nsp3) and 14408C (Nsp12/RdRp), was
found in 97 out of the 100 patients. Clade 20B denoted by
positions C3037T (Nsp3: 106F); A23403G (S: D614G); C14408T
(Nsp12/RdRp: P4715L) and G28881A and G28882A (N: R203K)
(Figure 3C) was found in only three of the 100 patients
(represented in red). In addition to the clade defining variants,
several other variants were identified within the viral isolates that
occur at a high frequency (Figure 3D). These variants include
nucleotide substitutions, some of which have been previously
reported in the Indian cohort (preprint, Kumar et al., 2020; Sarkar
et al., 2020) (Table 2).
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FIGURE 1 | Schematic for experimental design of the study. (A) Patient sample distribution across clinical parameters of 100 COVID-19 individuals was analyzed for
prioritizing samples for the Illumina RVOP (50 samples) and Holo-Seq (48 samples) with overlap of 21 samples. SARS-CoV-2 genome sequencing of all the 100
samples was performed. (B) Experimental workflow for sample collection, nucleic acid isolation, library preparation, sequencing, data analysis and identification of
viral and bacterial species using a combination of sequencing strategies, i.e., RVOP and Holo-Seq.

The above observations seem to indicate that there is a limited
viral genomic diversity in terms of the SARS-CoV-2 clades.
However, a larger diversity of symptoms and severity in SARS-
CoV-2 positive individuals suggests a possibility of a missing link,
which might help fill in the gap. Given the fact, that the presence
of co-infections during SARS-CoV-2 is still being understood
with only a limited number of studies till date, we thought that
it would be important to explore and elucidate the role and

presence of co-infections in SARS-CoV-2 positive patients in
the Indian context.

Detection and Characterization of
Respiratory Viruses Using RVOP
We conducted a target enrichment based sequencing of RNA
isolates from 50 SARS-CoV-2 positive individuals using Illumina
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FIGURE 2 | Spectrum of clinical symptoms for the COVID-19 patients in the study. Spider web plot representing the sample subsets used for RVOP (red) and
Holo-Seq (purple) indicating sample overlap (magenta), along with distribution of clinical symptoms and comorbidities in all 100 patients (blue). Inter-individual
variability in clinical symptoms is a hallmark of the COVID-19 disease, fever, sore throat and cough being the most common manifestations, along with differential
distribution in pre-existing comorbidities.

RVOP panel. Alluvial plot depicts the reads that mapped to 10
predominant viral strains identified by the HISAT aligner (left
panel) along with the NCBI ID for reference genome (right
panel) (Figure 4A). Human Coronavirus 229E and Human
mastadenovirus C had the most number of reads that mapped
to RVOP viral strains, as depicted by the respective band-
width. Two different strains of Influenza A virus viz. Texas and
New York strains were identified in our samples.

Though we detected 10 different viral strains, the coverage of
the aligned genome from the identified viruses was below 50%.
To delve further, we used taxonomic sequence classifier, Kraken,
to identify the overall diversity of co-infecting viral strains. Pavian
was used to visualize the output from Kraken. For analysis, we
included only those viruses whose relative abundance across
at least one sample exceeded more than 1% of the total read
count. Applying this cutoff value, we identified 26 viruses whose
presence was detected across 50 samples (Figure 4B). Of all
the viruses detected, Human mastadenovirus C and Shamonda
orthobunyavirus were the most common viruses co-occurring
with SARS-CoV-2, found in 49 of the 50 samples (Figure 4B).

Following the identification of viral species, we tried to
correlate the differential presence of respiratory viruses in
patients with their clinical parameters. A heatmap for differential
presence of viruses across patients was plotted using the Heatplus
package. We investigated whether levels of SpO2, condition of
breathlessness and requirement of respiratory support across our

samples are correlated with viral diversity (Figure 4C). It was
observed that most of the patients who came to hospital with
breathlessness required respiratory support later. Rhinophilus bat
coronavirus HKU2 and Shamonda orthobunyavirus were present
in the majority of patients with respiratory support. We found
that Bat Hp-betacoronavirus was largely confined to patients who
did not require respiratory support. Influenza A virus was seen in
lower abundance in our patient group (Figure 4C).

Differential Bacterial Abundance in
COVID-19 Patients
To further our understanding of the possible modulators of
COVID-19 disease severity, in addition to the respiratory viruses,
we looked for the presence of other co-infecting bacteria in a
set of 48 SARS-CoV-2 positive samples using Holo-seq. Kraken
was used to identify the bacterial species within the sample
set. Interestingly, the majority of bacterial species identified in
our study were present in more than 40 patients, albeit with
a differential abundance across patients. To understand the
bacterial diversity within the nasopharyngeal environment of
the SARS-CoV-2 patients, we plotted a sunburst plot of the
identified bacterial species along with the frequency of samples
harbouring those species (Figure 5A). It is important to note that
many known pathogenic species such as Clostridium botulinum,
Bacillus cereus, Pseudomonas aeruginosa, Klebsiella pneumoniae
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TABLE 1 | Clinical characteristics of COVID-19 patients.

Characteristics Overall
(n = 90)*

No respiratory
support (n = 76)

Respiratory support (n = 14)

Value Value p-value

Age 32(25–54) 30(24–50.5) 57.5(37.75–61.75) 0.009a

Gender F/M 44/46 37/39 7/7 0.042b

Comorbidities

Heart disease 11(12.22) 8(10.52) 3(20) 0.048b

Diabetes 14(15.55) 11(14.47) 3(20) 0.066b

Hypertension 13(14.44) 13(17.10) 0 –

Thyroid 7(7.77) 6(7.89) 1(6.67) 0.655b

Asthma 2(2.22) 1(1.31) 1(6.67) 0.709b

Other comorbidities 14(15.55) 9(11.84) 5(33.33) 0.623b

Clinical Parameters

RdRp 25.61(21.08–28.50) 25.51(21–28.4) 27.39(25.10–29.12) 0.070a

N 23(19–25.11) 22.38(19–25.11) 24.00(22.96–25.17) 0.397a

E 25(20.40–29) 24.42(20–28.71) 28.29(25.18–29.29) 0.196a

Temperature (◦F) 98.2(97.7–98.6) 98.3(97.7–98.6) 98.2(98–98.8) 0.942a

SpO2 9.8(96–98) 98(96–98) 89(78–98) 0.009a

Pulse/min 86(78–98) 86(78–93) 85(78–100) 0.737a

Symptoms

Sore throat 31(32.22) 28(36.84) 3(20) 0.418b

Breathlessness 19(21.11) 12(15.8) 7(46.67) 0.003b

Loss of taste and smell 5(5.55) 5(6.57) 0 –

Cough 29(32.22) 25(32.9) 4(26.67) 0.750b

Fever 62(68.9) 55(72.36) 7(46.67) 0.096b

Asymptomatic 1(1.11) 1(1.31) 0 –

Other Symptoms 33(36.67) 29(38.15) 4(26.67) 0.493b

Hospital stay (in days) 5(4–6) 5(4–5.25) 5.5(4–11.75) 0.385a

Data are shown as median (quartile) or n (%).
aMann Whitney U test.
bχ2 test.
*Data not available for all patients.

and Neisseria gonorrhoeae were discovered in almost all samples.
We, thus, looked into sub-clinical classification of the SARS-CoV-
2 positive individuals and checked if the differential abundance
of bacteria would help explain the observed variation in clinical
symptoms. The patients who had respiratory distress symptoms
were divided into three subgroups based on the report of
shortness of breath (SOB) at admission and/or requirement of
respiratory support during the hospital stay (RS). The other
group of patients who didn’t have any respiratory symptoms
or requirements of respiratory support were classified into two
control groups with differing age (Table 3).

For individual patients in all the five groups, we calculated the
percentage of cumulative bacterial reads (%) as well as viral reads
(%) (Figure 5B). The percentage of bacterial abundance varied
from 26% to over 65% while the viral abundance varied from 0.4%
to a little over 4%. Kruskal–Wallis test was used to determine
the statistical significance of the distribution of bacterial presence
across our patient subgroups (Figure 5C). Bacterial abundance
was found to be significantly higher in the control+old group
which had an average age of 67.5 years (37.47%) compared to
the control+young group of patients with an average age of
22.5 years (32.8%) (p-value = 0.025). The bacterial presence in

the control+old group (31%) differed significantly from that in
the RS group (31.62%), though both lie within the higher age
bracket (p-value = 0.004). We also found a significant difference
in the bacterial abundance between control+young (35.81%) and
SOB (40.01%) groups despite both falling in the lower age bracket
(p-value = 0.02). Also, the bacterial presence within the RS and
SOB groups differed significantly, with the latter showing a higher
bacterial presence (p-value = 0.008). Interestingly, the average
bacterial read count in the SOB group at 45.85% was much higher
than the other four groups including the SOB+RS group, which
had an average bacterial read count of 35.12%, although not
statistically significant.

Validation of Microbial
Abundance/Diversity in a Subset of
COVID-19 Patients
In a subset of 21 patients, microbial diversity was explored
through both Holo-seq and RVOP, in correlation with clinical
sub-phenotype diversity. We set up a cutoff value of >5%
relative abundance for bacteria and >1% relative abundance
of viral species for inclusion in our analysis. The threshold
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FIGURE 3 | Diversity of patient features and SARS-CoV-2 clades. (A) Demographic and clinical characteristics of 100 COVID-19 patients highlighting the diversity of
features inclusive of the age, gender, SpO2, fever and wide range of the Ct-values indicative of the viral load. (B) Correlation matrix for clinical and demographic
features to capture possible association between the variables. (C) Phylogenetic classification of SARS-CoV-2 isolates with presence of two clades – 19A and 20B.
(D) Lollipop plot with identified clade defining variants (red) as well as other high frequency variants (yellow).

value was selected based on the required confidence for species
identification and to exclude minimal sequence similarity with
related organisms. In this subset, we identified 42 bacterial species
(red nodes) and 21 viral species (blue and yellow nodes) using the

TABLE 2 | Frequency and description of the variants obtained from SARS-CoV-2
genome isolated from 100 patients.

Position/SNP Gene Amino acid change Variant count

G11083T Nsp6 L37F 93

C13730T Nsp12/RdRp A4489V 97

C6312A Nsp3 T2016K 99

C6310A Nsp3 S2015R 93

C23929T S T789T 90

C28311T N P13L 74

C1707T Nsp2 S481F 41

G12685T Nsp8 G4140H 39

T24622CA S – 40

A15435G Nsp12/RdRp – 26

TTTA21990T S – 20

Holo-seq (Figure 6). When we looked into the RVOP dataset 26
viral species were identified (Figure 4B). Interestingly, an overlap
of 18 viral species was observed between both Holo-seq and
RVOP (yellow nodes) (Figure 6). This highlights that inferences
drawn using both the metagenomics approaches would provide
complementary strength for studies of this dimension.

Functional Classification of Co-infecting
Viral and Bacterial Species
To further understand the role of viruses and bacteria in
modulating the disease severity, we looked into the literature
for the functional role of the viral and bacterial species that
were identified in our study. Respiratory pathology being the
hallmark of COVID-19 disease severity, we especially looked
for their etiological relevance to respiratory infections and
distress (Supplementary Table 1). Importantly, we observed
that 27% of the viral species identified in our study have been
previously associated with respiratory tract infection while 15%
of them are causative agents for Pneumonia (Figure 7A). A small
fraction of the identified viruses are also implicated in other
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FIGURE 4 | Viral diversity in nasopharyngeal tract of COVID-19 patients. (A) Using Illumina RVOP sequencing reads, predominant viral reads are mapped with
reference genome. The relative thickness of the plot is indicative of the number of samples in which a particular virus is present. Thus, a thicker plot is indicative of
presence in a higher number of samples. (B) Viral species identified in SARS-CoV-2 positive individuals along with the number of samples having a viral strain.
Viruses found in ≤20 samples are indicated in blue and those in >20 samples are depicted in red. (C) Differential abundance of different viral species across
individual patients along with their clinical manifestations including respiratory support, breathlessness and SpO2 levels.

pulmonary pathologies such as asthma, COPD, ARDS and Cystic
Fibrosis. Majority of the identified species, however, had no
known pathological relevance in humans but are known to be
pathologically associated with other animals.

We visualized the composition of bacterial diversity in patients
in terms of aerobic vs. anaerobic species (Supplementary
Figure 1). The Shannon Diversity Index for bacterial
communities at the species level was calculated across the
data set from Holo-seq of 48 patients (Supplementary
Table 2). It was found that the diversity of anaerobic
bacteria was significantly much higher than that of the
aerobes across all patients. Amongst the anaerobic bacteria
known to be involved in hypoxia, Clostridium botulinum,
Bacillus cereus and Halomonas spp. were found in all the
samples (Figure 7B). Most of the peaks correspond to
the patients who required respiratory support during their
course of treatment (Patient Id: IGIB1130038, IGIB1130036,
IGIB1130044). However, there were significant outliers in
terms of those patients who did not require respiratory support
despite showing very high presence of anaerobic bacteria
(Patient Id: IGIB1130068 and IGIB1130048). At the other
end of the spectrum were patients who have extremely low

presence of anaerobes and yet required respiratory support
(Patient Id: IGIB1130008). This finding would be especially
relevant to explore in further studies, to understand the
underlying cause for the observed disease severity in response to
SARS-CoV-2 infection.

Finally, we also visualised the taxonomic distribution of
identified bacterial and viral species in each individual patient
through Sankey plots (Figure 7C). The left panel represents
bacterial diversity in one of the patients who required respiratory
support (Patient Id: IGIB1130006) [Figure 7C (i)]. It shows
clear predominance of anaerobic bacterial species Clostridium
botulinum, Bacillus cereus and Halomonas spp. The right panel
is a Sankey plot visualisation of bacterial and viral species in a
representative patient who did not require respiratory support
(Patient Id: IGIB1130045) [Figure 7C (ii)]. These two plots are
indicative of the spectrum of bacterial diversity with possible
role in disease severity (respiratory distress). However, this does
not suggest any conclusive representation with respect to the
association of any particular pathogen with either group of
patients. An analysis of all the individual patients did not reveal
any distinct pattern in distribution of bacterial and viral species
among the two groups of patients.
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FIGURE 5 | Bacterial abundance in the clinical symptoms sub-group of COVID-19 patients. (A) Bacterial species identified in COVID-19 patients along with the
number of patients harbouring each species. The outer circle enumerates the bacterial species whereas the inner circle mentions the number of samples in which a
particular species is present. (B) Cumulative viral and bacterial abundance (reads %age) in each patient across the five clinical subgroups designated based on
respiratory symptoms and age. The gender, clinical sub-phenotype and the differential presence of the bacterial and the viral reads has been represented with
different colour codes for each sub-group. (C) Kruskal–Wallis test for distribution of bacterial reads as a function of different clinical subgroups. The clinical
sub-groups along with average age within the group has been plotted with significance calculation between the comparison sets.

DISCUSSION

The present study utilized two different metagenomic approaches
to identify the diversity of co-infecting species present within
the upper respiratory tract of COVID-19 patients from the

TABLE 3 | Sub-clinical classification of COVID-19 patient sub-groups.

Category No. of samples Avg. age Shortness of
breath (SOB)

Respiratory
support (RS)

SOB+RS 8 52.5 Yes Yes

RS 6 50.3 No Yes

SOB 13 34.9 Yes No

*Control+old 11 67.6 No No

*Control+young 10 22.5 No No

*The patients below the age of 50 who did not require respiratory support
or showed signs of shortness of breath were grouped as control+young,
whereas, patients above the age of 50 with similar clinical history were grouped
as control+old.

Delhi-NCR (National Capital Region) during the initial phase
of the epidemic in India (April–May 2020). Metagenomic
sequencing offers advantages over other targeted methods of
pathogen detection by factoring out the limitations associated
with ascribing a particular disease state to a single causative
agent. It allows autarkic verification of the primary pathogen
along with the underlying microbiome which may be playing
an important role in the disease progression and prognosis.
Out of the three potential core elements that determine the
course and end-point of an infection, our study tried to capture
the possible role of two, i.e., pathogenic variation and the
airway microbiome of the host (the third one being the host
transcriptional response). To our knowledge, this is the first study
from India aiming to elucidate the role of co-inhabiting species
(virus and bacteria) in modulating the severity and trajectory of
SARS-CoV-2 infection (Figure 8).

To appreciate the role of nasopharyngeal microbiome in
affecting the SARS-CoV-2 disease course, we compared the
demographic and associated clinical parameters in two sub-
groups of patients who required or who did not require

Frontiers in Microbiology | www.frontiersin.org 10 May 2021 | Volume 12 | Article 653399

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-653399 May 25, 2021 Time: 17:2 # 11

Mehta et al. Co-Infections Modulate COVID-19 Outcome

FIGURE 6 | Overlap and unique viral and bacterial species in RVOP and Holo-Seq. Different colour codes have been used to highlight the unique bacterial and viral
reads captured by the RVOP and the Holo-seq as well as the common findings between the two metagenomics methods. The unique and overlap set of bacteria
and virus highlights the strength and limitations of each approach as well as complimentary strength of the experimental approach.

respiratory support during their stay in the hospital. The
dichotomy in the requirement of respiratory support showed
a correlation with older age. This is in sync with the previous
studies which have reported older age as a risk factor for COVID-
19 severity owing to weakened immune responses (Wu C. et al.,
2020). The presence of breathlessness and lower SpO2 levels
at hospital admission also correlated with the requirement of
respiratory support in our patient group. SpO2 level lower than
90% is a well-known indicator of hypoxaemia and respiratory
distress (Majumdar et al., 2011). Chandra et al. reported a
case of “Silent Hypoxia”, which involves severe hypoxaemia
without proportional signs of respiratory distress. Such patients
rapidly progress to respiratory decompensation, underscoring
the need to stringently monitor SpO2 levels as part of community
surveillance, to identify apparently clinically healthy patient
suspects of COVID-19 (Chandra et al., 2020).

Within our samples, we identified two clades of SARS-CoV-
2 virus, viz. 19A and 20B. 19A is the ancestral haplotype with
presumed origin in China. A majority of the viral isolates from
our cohort belonged to clade 19A, which has been previously
reported to be mainly present in Northern India. Clade 20B with
origin from European nations, along with other A2a haplotypes,
became dominant in India after June 2020 (preprint, Maitra et al.,
2020). Although this was found to be less frequent in our sample
set, a possible reason may be the time of sample collection which
predated June 2020. D614G (A23403G) mutation within Spike
protein (S) has been associated with viral isolates of European
descent and is found to co-occur with three other mutations at
positions C241T, C3037T and C14408T, all of which, together
form a haplotype (Korber et al., 2020). Though D614G was

not very frequent in our sample set, it has been reported to
be associated with enhanced infectivity, competitive fitness and
transmission (Hou et al., 2020; Plante et al., 2020). Another
missense SNP at position C6312A within Nsp 3 protein was
observed in 99% of the viral isolates in our sample set. This
mutation is found to be predominant in viral isolates from India
and is a defining variant for clade I/A3i (Raghav et al., 2020).

Concurrent infections are known to modulate the severity and
outcome of a disease including comorbidity and mortality. Many
recent papers have highlighted the co-occurrence of respiratory
pathogens including bacteria and viruses in SARS-CoV-2 infected
individuals (Massey et al., 2020). An investigation into the
role of co-infecting pathogens within the respiratory tract was
primarily guided by the observation that viral genomics and
patient demographics cannot adequately explain the variability
seen in the COVID-19 disease course in terms of the requirement
of respiratory support and disease outcome. Respiratory co-
infection biology also assumes importance in the context of the
seasonal change in India, wherein winter weather is typically
associated with respiratory illnesses caused by viruses and
bacteria other than SARS-CoV-2 which present similar disease
manifestations (Fares, 2013).

We used nasopharyngeal swab as a proxy for respiratory
tract microbiota for identifying co-pathogens within COVID-19
patients. Unlike many other studies reporting the co-occurrence
of Influenza virus with SARS-CoV-2, we did not find any
significant presence of Influenza virus infection in our samples
(Ding et al., 2020; Ozaras et al., 2020; Wu X. et al., 2020).
Influenza is known to manifest a discrete seasonality which is
also affected by the latitude of the region (Yaari et al., 2013;
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FIGURE 7 | Possible functional role of co-infecting bacteria and viruses. (A) Percentage of identified bacterial species classified according to pathological roles
Almost 60% of the identified bacterial species have literature pointing toward their role in respiratory distress ranging from respiratory tract infection to asthma and
COPD. (B) Differential abundance of three anaerobic bacteria across patients based on read count. Clostridium botulinum, Bacillus cereus and Halomonas spp. are
present in all the 48 Holo-seq samples but with differential read count. (C) Sankey plot representation of bacterial and viral taxonomic classification in (i) patient with
respiratory support (ii) patient without respiratory support. Differential aerobe–anaerobe distribution may have a functional relevance in disease outcome in terms of
respiratory distress. It is indicative of possible functional relevance in patient specific respiratory distress with an important role in disease outcome.

Koul et al., 2014). April-May in the Delhi-NCR is not a time for
Influenza peak; this may possibly explain our observation with
respect to the absence of Influenza co-infection in our samples.
Among other respiratory viruses, Human mastadenovirus was
present in most of our samples. Human mastadenoviruses have
been reported to cause respiratory tract diseases, especially
in children (Chen et al., 2015; Scott et al., 2016; Yao et al.,
2019). Human Coronavirus 229E, found in some of our
samples is known to be an opportunistic pathogen, causing
life-threatening infections of the lower respiratory tract in
immunocompromised individuals (Vassilara et al., 2018). Human
gammaherpesvirus, which has been implicated in pulmonary
fibrosis, was identified in over one third of the samples (Williams,
2014) (Supplementary Table 1).

Most of the bacterial species identified in SARS-CoV-
2 positive individuals in our study have known roles in
respiratory pathology (Supplementary Table 1). Klebsiella
pneumonia acts as an opportunistic pathogen and affects

the critically ill and immunocompromised individuals mainly.
Besides pneumonia, it is also known to cause other health
care related complications including urinary tract infections
(UTIs) and bloodstream infections (Martin and Bachman,
2018). Streptococcus pneumoniae has long been known to
cause community acquired pneumonia in populations of all
age groups, elderly people are, however, more susceptible. It
is known to show the worst prognosis in patients with a
history of smoking or presence of comorbidities as asthma or
COPD, same as is the case with SARS-CoV-2 (Pal et al., 2020).
Interestingly, the majority of identified bacterial species in
the respiratory microbiome of SARS-CoV-2 positive patients
belonged to the category of anaerobic bacteria lending credibility
to the hypothesis of Happy Hypoxia in COVID-19 (Figure 9)
(Dhont et al., 2020; González-Duarte and Norcliffe-Kaufmann,
2020). The increased abundance of anaerobic bacterial species,
especially Prevotella, has been proposed to cause degradation of
haemoglobin, thereby, further affecting the course of hypoxia
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FIGURE 8 | Metagenomics based identification of co-infecting pathogens in COVID-19 patients. It summarizes the whole study, highlighting the variables in
deducing the functional inferences from the data. With multiple variables at every stage, from sample collection to sequencing to functional interpretation, it highlights
the importance of an integrative approach towards understanding the host–pathogen interaction outcome in the course of an infection.

FIGURE 9 | Classification of identified bacterial species according to their aerobic/anaerobic requirements. The preponderance of obligate and facultative anaerobes
over aerobes is an important insight. The differential abundance is also an important aspect to be considered for functional interpretation in conjunction with the
clinical sub-phenotype. A higher abundance of anaerobic bacteria is important to highlight the differential disease severity and respiratory distress due to
SARS-CoV-2 infection.
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(preprints, Chakraborty, 2020; Chakraborty and Das, 2020).
Anaerobic bacteria, particularly Fusobacterium periodonticum, is
also known to be the cause of Ventilator associated Pneumonia
(VAP) in mechanically ventilated patients (Robert et al., 2003).
Altered balance of aerobes-anaerobes in COVID-19 patients has
important implications for altering the treatment regimen to
include targeted use of anaerobe-specific antibiotics.

We observed that different groups of patients that required
respiratory support or did not require the same had differential
abundance of bacteria. However, we will be cautious while
extrapolating our observation with respect to bacterial
abundance, to the observed differences in disease trajectory
of individual patients. This is particularly important as the
identified respiratory viruses and bacteria were part of the upper
respiratory tract (URT) where most pathogenic species survive
as commensals and become virulent only when they invade the
lower respiratory tract.

In view of the magnitude of the problem and excessive
burden on the healthcare workers, there are certain limitations
with respect to sampling that limited the scope of the present
study. First, the nasopharyngeal samples were obtained from
the patients only at the time of admission and there was
no longitudinal follow-up, which could have allowed a better
evaluation of the dynamic change in nasopharyngeal microbiome
during the course of SARS-CoV-2 infection, including, of
hospital-acquired infections. Second, all the samples were
restricted to Delhi-NCR region and, as there was a nationwide
lockdown imposed in the country at the time, hence much
variation in terms of viral genome and phylogeny cannot
be expected in viral isolates. Finally, the dataset lacked any
mortality cases.

The findings presented herewith have tried to correlate the
role played by co-infecting respiratory pathogens in modulating
the SARS-CoV-2 disease trajectory. The findings do not suggest
a pan-study causal role for a particular co-infecting pathogen,
but it does indicate possibilities of disease modulation in patient
sub-groups. The findings also assume significance in the context
of widespread usage of antibiotics during the current pandemic
which may have long term impact in terms of increased
antimicrobial resistance and emergence of multi-drug resistant
strains. A further investigation into the role of co-infections in
SARS-CoV-2 positive individuals in an extended dataset with
matched SARS-CoV-2 negative controls is warranted to enable
better understanding and management of the current COVID-19
disease pandemic.
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