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Abstract During the past two decades, antibodies,

antibody derivatives and vaccines have been devel-

oped for therapeutic and diagnostic applications in

human and veterinary medicine. Numerous species of

dicot and monocot plants have been genetically

modified to produce antibodies or vaccines, and a

number of diverse transformation methods and strat-

egies to enhance the accumulation of the pharma-

ceutical proteins are now available. Veterinary

applications are the specific focus of this article, in

particular for pathogenic viruses, bacteria and

eukaryotic parasites. We focus on the advantages

and remaining challenges of plant-based therapeutic

proteins for veterinary applications with emphasis on

expression platforms, technologies and economic

considerations.

Keywords Molecular pharming � Plant-based

vaccines � Therapeutic antibodies � Transgenic plants

� Veterinary medicine

Introduction

The discovery of the smallpox vaccine by Edward

Jenner more than 200 years ago was the defining event

for the development of vaccinology. Jenner found that

immunisation with a less virulent, but antigenic

related, Cowpox Virus protected against the more

virulent Smallpox Virus. In the following one-and-a

half-centuries vaccinology as a science became firmly

established and its basic principles were developed.

The world-wide eradication of smallpox, together with

the remarkable reductions in other important infectious

diseases of humans such as polio, diphtheria, tetanus,

pertussis, measles and mumps underlined the feasibil-

ity and utility of vaccination and its economic benefits

for the prevention, control and finally the extirpation of

infectious diseases (Andre 2003). In veterinary med-

icine, vaccinology addresses a wider spectrum of

challenges. These include the development of cost

effective approaches to prevent and control infectious

animal diseases, considering animal welfare and

focusing on decreasing production costs of animals

used as food (Shams 2005). In addition, mass vacci-

nation programmes have helped to significantly lower

the consumption of veterinary drugs, including antibi-

otics. Vaccines also led to reduced negative environ-

mental impacts by eliminating chemical residues in

products such as milk, eggs and meat. Production

losses caused by illnesses can be avoided.

In 1890 Emil Behring and Shibasaburo Kitasato

developed the principle of serum therapy. They found
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that immunity against diphtheria and tetanus toxins

resulted from the presence of substances in blood,

they called antibodies. Behring and Kitasato were

also able to transfer immunity to immunologically

naı̈ve animals by using the serum of animals treated

with non-lethal doses of a crude toxin preparation

(Behring and Kitasato 1890). In these early pioneer-

ing days Paul Ehrlich discovered that antibodies

could act as ‘‘magic bullets’’ to target cancer cells

(Ehrlich 1900). Later on, protein sequences and

structures of antibodies as well structures and

sequences of the genes coding for them were

elucidated. The use of mouse hybridomas generated

from stable fusions of immortalised myeloma cells

with B cells of immunised mice provided highly

specific monoclonal antibodies that could be used in

therapy (Kohler and Milstein 1975). Mouse antibod-

ies initially used in human therapy did not interact

well enough with different receptor types resulting in

inefficient effector functions and rather short terminal

half-lives. Furthermore, the mouse antibodies were

found to induce severe immune responses in humans

(for rev. see Carter 2006). The development of

innovative recombinant DNA technologies, including

chimeras and humanisation of mouse antibody mol-

ecules, greatly enhanced the clinical efficiency and

safety of murine-derived monoclonal antibodies. For

almost 15 years, phage display has been used for the

selection of specific antigen-binders from artificial

libraries of single chain antibodies. Filamentous

phages have been developed that carry the genetic

information to express foreign proteins on their

surface. This assures the coupling of phenotype and

genotype during phage amplification and affinity

selection. The ability to generate large antibody

libraries, and the simplified antibody-backbone of a

single chain antibody, has made antibody-phage

display a powerful tool for the development of new

therapeutic agents (for rev. see Hoogenboom et al.

1998; Kontermann and Duebel 2001; Winter et al.

1994). In parallel, new and evolving molecular

strategies are helping to enhance affinity, stability

and expression levels (Boder et al. 2000; Hanes et al.

2000; for rev. see Kurtzman et al. 2001; Low et al.

1996). The high cost of antibody production in

mammalian systems has limited the wider use of

antibody therapeutics (Scott 2005). These problems

are essentially important for the application of

antibody therapeutics in veterinary medicine.

Production shortfalls and high costs are providing

the impetus for further development of alternative

antibody production technologies (Chadd and

Chamow 2001; Fischer et al. 2004; Kipriyanov and

Le Gall 2004). Infectious diseases are on the rise

world-wide. It is estimated that 58% of the 1,407

recognised species of human pathogens are zoonotic,

i.e. infect more than one host. Zoonotic pathogens

represent the most likely source of emerging and

re-emerging infectious diseases (Woolhouse and

Gowtage-Sequeria 2005). Thus, providing solutions

for the well-being of animals also impacts human

health. The worldwide and dramatic increase of

resistances against antibiotics, and the possible pres-

ence of residues in meat, milk, eggs and in the

environment, has spurred the development of alter-

native products for the treatment of infectious

diseases. Attempts are especially being made to

reduce the quantities of antibiotics used for prophy-

laxis and growth promotional effects in animals.

Active vaccination using live virulent or attenuated

vaccines is widely used, but has its drawbacks in

terms of low levels of immunogenicity, high produc-

tion cost, antigenic variability between species and

possible transfer of genetic material to wild-type

strains. Vaccination is also not a feasible option for

mammals post-weaning as well as in animals such as

broilers, which have a short life-span. The production

of vaccines for veterinary use also needs low cost

systems combined with inexpensive application strat-

egies. An ideal expression system for recombinant

antibodies and antigens should therefore be amenable

to genetic modification, inherently safe and econom-

ical. It should provide functional proteins of either

high antibody affinity and/or neutralisation or vacci-

nation capacity (Fischer and Schillberg 2004). Sys-

tems for the production of antigens and antibodies in

transgenic plants have been under development dur-

ing the last 15 years (for rev. see Giddings et al. 2000;

Hood et al. 2002; Koprowski 2005; Ma et al. 2003,

2005b; Stoger et al. 2005a; Streatfield 2005b; Streat-

field and Howard 2003; Warzecha and Mason 2003).

Plants offer general advantages in terms of production

scale and economy, product safety, and ease of

storage and distribution (Ma et al. 2005a). Here we

focus on the production of vaccines and therapeutic

antibodies in transgenic plants for veterinary applica-

tions. Recent developments of plantibody and plan-

tigen applications in veterinary medicine are
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summarised. We discuss advantages and disadvan-

tages of different plant expression systems for veter-

inary applications, also considering economic issues.

Plant-derived vaccines for veterinary purposes

The development and improvement of vaccines are

suitable ways to combat infectious diseases in wild

and also in domesticated animals. Current strategies

use intact or inactivated pathogen strains to induce

immunity, as well as subunit vaccines, which are

commercially produced in bacteria, yeast or mam-

malian cell cultures. In a key patent of 1990 Curtiss

and Cardineau described the expression of the

Streptococcus mutans surface protein antigen A

(SpaA) in transgenic tobacco plants (Curtiss and

Cardineau 1990). Subsequent to this key event Mason

and co-workers succeeded in expressing the hepatitis

B surface antigen in tobacco (Mason et al. 1992), and

in 1993 Usha and co-workers expressed a peptide

representing an epitope of the VP1 envelope protein

of the Foot-and-Mouth-Disease Virus (FMDV) on the

surface of a plant virus particle (Usha et al. 1993).

Following this pioneering work various veterinary

candidate vaccines have been produced using engi-

neered plant viruses and transgenic plants. The

overview presented here reflects the current situation

on plant-based vaccines with a focus on veterinary

applications. Summaries of plant-based vaccines for

both, veterinary as well as human medicine, were

published in 2003 (Streatfield and Howard 2003) and

2006 (Joensuu 2006). One major prerequisite for

vaccine production in planta is the development of

fast, reliable and safe systems for the generation of

transgenic plants. Since the first report of the

successful transformation of plant cells (Fraley

et al. 1983), various plant expression systems have

been established for molecular farming (for rev. see

Fischer and Schillberg 2004; Stoger et al. 2005a, b).

Four different methods are now generally used for the

production of recombinant proteins (Horn et al.

2004): Generation of stable nuclear transgenic plants,

transplastomic plants, transient expression using a

plant virus and transient expression via Agrobacte-

rium infiltration. The production of plants which

release the vaccine into a hydroponic medium, as a

component of the root exudates, is another possibil-

ity, but such production systems are impractical due

to the high dilution of the vaccines and the technical

facilities required for plant cultivation. Model plants

such as Arabidopsis thaliana (Table 1, 15, 28, 51, 52, 65)

and tobacco (Table 1, 10, 12, 22–24, 29, 31, 44, 45, 48, 54,

56) are strong candidates for initial studies to generate

stable transgenic plants expressing proteins of inter-

est. Species with edible leaves, e.g. lettuce (Table 1,
8, 59, 62), alfalfa (Table 1, 4, 5, 8, 11, 36, 47, 62, 64), white

clover (Table 1, 63); tubers/fruits, e.g. potato (Table 1,
13, 14, 25, 27, 35, 37, 38, 50, 61), tomato (Table 1, 34, 42, 51)

or grains, e.g. maize (Table 1, 18, 26, 58) and barley

(Table 1, 46) have also been used for the production

of veterinary vaccines. Oral delivery offers ease of

application and, via the induction of mucosal immu-

nity, protection against pathogens interacting with

host mucosal surfaces (for rev. see Streatfield 2005a).

In contrast, the immunisation of animals via injection

predominantly results in a systemic immune re-

sponse. Transient expression methods using plant

viruses have been established and this yields in high

levels of protein accumulation in the host plants by

the rapid amplification of an infectious plant viral

genome (Table 1, 1, 3, 9, 10, 17, 19, 39, 40, 60). In these

reports antigenic peptides were fused to the coding

sequence of the viral coat protein to obtain virus-like

particles which present the desired peptide. The

resulting virions can easily be purified by centrifu-

gation. Transplastomic plants were developed to

improve accumulation of recombinant proteins, as

shown for the antigenic peptide 2L21 from the VP2

capsid protein of Canine Parvovirus (CPV). This

peptide has been expressed as an N-terminal trans-

lational fusion with the GUS protein in nuclear-

transformed Arabidopsis plants at a rather low level

(Gil et al. 2001). The 2L21 peptide was then fused to

GFP or the cholera toxin B subunit, and accumulated

in tobacco chloroplasts to a significantly higher level

compared with stable transformants (Table 1, 6).

Further examples of successful production in trans-

plastomic plants are the heat-labile toxin B subunit

(Table 1, 53, 55), a candidate vaccine against entero-

toxigenic Escherichia coli (ETEC), and a protective

antigen for Bacillus anthracis (Table 1, 41–43). The

advantages of chloroplast transformation have been

reviewed (Daniell et al. 2002; Maliga 2002, 2003).

In addition to the examples cited earlier, numerous

veterinary candidate vaccines, mainly against virus

infections, have been expressed in plants. Examples

are Foot-and-Mouth-Disease Virus (Table 1, 11, 12),
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Newcastle Disease Virus (Table 1, 16–20), Rinderpest

Virus (Table 1, 30–33) and Rotavirus (Table 1, 2–4, 34–

38). Complete antigenic proteins, as well as peptides

representing major antigenic determinants, have been

produced in plant systems. In the case of vaccination

against viruses, proteins located at the virion surface

are generally the most suitable targets for an efficient

immune response. Vaccines against the Newcastle

Disease Virus (NDV) have been generated based on

plant expression systems. The fusion protein (F) and

the hemagglutinin-neuraminidase (HN) of NDV ini-

tiate the infection process, and are essential targets

for the host immune response. Neutralising epitopes

from these proteins were selected and expressed

using a plant virus system (Table 1, 17, 19). The

complete fusion protein (F) can also be formed in

transgenic maize plants (Table 1, 18). This strategy of

expressing virus proteins was used to produce

different targets for the induction of an adequate

host immune response (Table 1, 1, 8, 10, 11, 13–16, 18, 26–

29, 31–38), whereas certain epitopes of viral proteins

with antigenic properties were selected in other cases

(Table 1, 3, 4, 6, 7, 9, 12, 22). In addition, bacterial

infectors have also been chosen as targets for

recombinant vaccines, e.g. B. anthracis (Table 1,
39–43), E. coli (Table 1, 44–61) or M. tuberculosis

(Table 1, 65, 66). Several bacterial pathogens listed in

Table 1 could also infect humans and therefore the

described veterinary plant-derived vaccines are useful

tools for human medicine (B. anthracis, E. coli, M.

tuberculosis). Further examples of animal pathogens,

which are also infective to humans, are e.g. Salmo-

nella or Avian flu. Especially the latter will attract

notice to plant-based expression platforms in the near

future. Antigens with immunological potential have

been identified as vaccines against bacterial diseases,

e.g. ESAT-6 (6 kDa early secreted antigen target) in

the case of M. tuberculosis (Table 1, 65, 66) or the

fimbrial antigens of enterotoxigenic E. coli strains

(Table 1, 44–50). For vaccination against ETEC the

heat-labile toxin subunit B (LTB), also known as a

carrier molecule, acts as an immunogen and has been

produced in plants (Table 1, 51–59). Another interest-

ing approach to obtain a plant-based vaccine against

coliform mastitis, caused by E. coli, is the expression

of a bovine CD14 receptor (Table 1, 60). This receptor

occurs in a membrane-bound and in a soluble form.

The latter binds to lipopolysaccharides (LPS) in the

outer membrane of e.g. E. coli, and induces the

secretion of cytokines followed by host innate

immune responses (Table 1, 60). The pathogen B.

anthracis primarily infects animals, but humans are

also susceptible. This bacterium is a candidate for the

development of biological weapons, and was identi-

fied as a category A agent for bioterrorism. The

protective antigen (PA) of B. anthracis is useful for

the immunisation of animals and humans, and this

candidate vaccine has been expressed using different

plant systems (Table 1, 39–43).

Expression levels of veterinary vaccines in plants

are crucial for the economic success of such strate-

gies, since costs for production and application have

to be low. In this respect, expression levels of the

candidate vaccines summarised in Table 1 are

generally not adequate. The only exception is the

expression of the 2L21 peptide fused to GFP or LTB

in tobacco chloroplasts (Table 1, 6). In this case, the

expression level was calculated to be approx. 23% of

total soluble protein for GFP-2L21 and approx. 31%

for the LTP-2L21 fusion. Other translational fusions

have been reported (e.g. Table 1, 28). The structural

protein VP60 of RHDV was fused to ubiquitin or

rbcS, but unfortunately the expression levels were

rather low, 0.8% of total soluble protein for VP60

without fusion and 0.1% for the ubiquitin VP60

fusion. Low costs for application of the plant-based

vaccines were achieved either by oral delivery of

crude plant material through ‘‘edible vaccines’’ or by

the development of simple purification methods.

Purification details for plant-based veterinary vac-

cines on a large scale have not been published yet.

There are only few hints for the purification of plant

virus particles expressing antigenic epitopes using

centrifugation (Table 1, 9, 17, 19, 34) and of veterinary

subunit vaccines using either affinity chromatography

(Table 1, 3, 43, 51, 60) or anion exchange chromatog-

raphy (Table 1, 29) on a small scale. Most of the

plant-derived veterinary vaccines shown in Table 1

have been tested in laboratory animals, either by

injection (Table 1, 1, 3, 6, 9–12, 29, 31, 34, 40, 42–44, 46, 49,

67), oral delivery (Table 1, 8, 13, 18, 26, 27, 32, 35–38, 48,

50, 61, 62) or both (Table 1, 4, 7, 14–16, 22, 28, 33, 58) to

determine their ability to provoke humoral or muco-

sal immune responses. As mentioned above the

induction of mucosal antibodies against epitopes of

certain pathogens is especially favoured by the oral

delivery of the plant-derived recombinant vaccines.

Most pathogens enter or colonise their host via
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mucosal surfaces of the gastrointestinal, respiratory

or genital tract. To combat these infectors a mucosal

vaccine, which induces the generation of serum (IgG)

and mucosal antibodies (IgA), is needed. This was

achieved by oral delivery of e.g. transgenic peanut

leaves expressing the Rinderpest Virus hemagglutinin

protein (H) to mice (Table 1, 33). Splenocytes were

collected 13 weeks post-oral immunisation and were

proliferated in the presence of the specific antigen.

Immune response to the H protein has further been

studied in cattle (Table 1, 32). Also here, systemic

immune response was induced upon oral delivery.

Oral immunisation with plant-derived Rotavirus

capsid proteins induced both serum IgG and mucosal

IgA in mice (Table 1, 34–38). Functionally active anti-

Rotavirus intestinal antibodies could be detected in

the faeces of mice immunised with transgenic potato

tubers expressing the capsid protein VP7 (Table 1,
38). The oral immunisation of female mice with

Rotavirus capsid protein VP6 resulted in reduced

symptoms in their offspring after virus challenge

(Table 1, 36). Passive transfer of anti-Rotavirus

antibodies from immunised dams to their offspring,

and protection of the pups after virus challenge, were

observed (Table 1, 4). A corn-based vaccine against

Porcine Transmissible Gastroenteritis Virus

(PTGEV) boosts the antibody levels in serum,

colostrum and milk of immunised gilts, indicating

that immunity can be passively transferred to suck-

ling piglets (Table 1, 26). Detection of an immune

response to the delivered plant-based candidate

vaccine was observed in every case (Table 1) when

the recombinant protein was given to the animal.

Virus challenge experiments showed protection of the

immunised animals (Table 1, 1, 10–15, 18, 27, 29).

However, the vaccination of rabbits with plant-

derived CRPV L1 protein did not completely prevent

papilloma growth (Table 1, 10) . Clinical symptoms of

BHV appeared later and were milder in cows

vaccinated with the plant-produced truncated glyco-

protein D (Table 1, 1). It was demonstrated that mice

immunised with the plant-derived protective antigen

of B. anthracis survived challenge with a lethal dose

of toxin (Table 1, 43).

Although expression of veterinary vaccine candi-

dates in different plant species has been well studied,

and their immunogenicity evaluated, challenges for

plant-derived veterinary vaccines still remain. Other

than barley (Table 1, 46), maize (Table 1, 18, 26, 58),

white clover (Table 1, 63) and alfalfa (Table 1, 4, 5, 8,

11, 36, 47, 62, 64), which constitute the main compo-

nents of animal feed, model plants are routinely used

as expression systems; the use of crop plants for the

production of veterinary vaccines therefore needs to

be developed further. Purification technology is

essential if plant-derived vaccines are to be admin-

istered by injection, and the development of low cost

purification methods is important for commercial

success. For oral delivery of vaccines very large

amounts of the recombinant protein are required, and

increases in expression levels remain a major chal-

lenge, especially for edible vaccines. Multi-compo-

nent vaccines, e.g. E. coli fimbrial antigen combined

with subunits of cholera toxin and an epitope of

Rotavirus (Table 1, 50), protect animals much the

same way as they do humans against multiple

infectious diseases. However, these also require

further development of reliable production systems,

well defined dosing regimens and ultimately a

marketable product. One major step towards a

marketable plant-derived vaccine was made by Dow

AgroScience which, at the beginning of 2006

(Table 1, 20), obtained federal approval in the US

for a vaccine against the Newcastle Disease Virus,

produced in tobacco cell culture. Regrettably the

chicken vaccine has not been introduced into the

market yet.(http://www.news.dow.com/dow_news/

feature/2006/05_22_06/index.htm).

Therapeutic antibodies for veterinary use from

transgenic plants

In view of the spread of microbial resistance to

antibiotics and the emergence of new pathogens,

passive immunisation by recombinant antibodies is

viewed as one of the most promising alternatives to

combat infectious diseases (Casadevall 1998). The

market for human therapeutic monoclonal antibodies

is growing at a forecast compound annual growth rate

of 21%, to reach $16.7 billion by 2008 (Pavlou and

Belsey 2005). This market is heavily focused on

oncology and arthritis, and immune and inflammatory

diseases. The role of antibodies for mitigation and

therapy of infectious diseases is only slowly emerg-

ing, but is impeded by high Cost of Goods. High Cost

of Goods for recombinant antibodies has so far also

prevented their successful introduction into the
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animal health market. Plant-based production pro-

vides a solution to these cost problems. In addition,

plants provide an adequate system for oral delivery of

recombinant biomolecules as part of the diet. Infra-

structure and costs for downstream processing can

thus be avoided, as well as production losses which

are often significant. Proof-of-concept for the expres-

sion of recombinant antibodies and antibody frag-

ments in plants was demonstrated in the late 80s

(Hiatt et al. 1989). Since then, different moieties have

been generated ranging from single chain molecules

(scFvs) to Fab fragments, small immune proteins

(SIP), IgGs and chimeric secretory IgA (for rev. see

Ma et al. 2005a). Despite progress in the production

of antibodies in plants for human health, their

application to the veterinary field is rather limited

with most potential product developers focusing on

vaccines (see earlier). However, recent encouraging

developments have been reported in the field of

passive immunisation. Focus has been on the gener-

ation and development of products for oral applica-

tion in production animals, for prevention and/or

therapy of some of the major commercially relevant

infectious diseases. In most studies, the goal has been

to apply the antibody molecule orally with no or

limited purification thus making the product compat-

ible with the already in place cost structures in the

market for animal production. One major hurdle is

the low concentration of the heterologous protein in

the plant tissue. While efforts to overcome this

limitation are being addressed in the literature, little

attention has so far been given to issues such as final

product formulation and efficacy, and long-term

stability under farming conditions. So far, scFv, scFv

fusion proteins, IgA and IgA fusion proteins have

been expressed in transgenic tobacco and cowpea as

well as using transient viral systems (for rev. see

Fischer et al. 2004). Several examples are presented

below in more detail.

Working on the borderline of animal and human

health and biodefense, Almquist and co-workers

transformed tobacco with a synthetically optimised

gene for a scFv against Botulinum neurotoxin A

(Almquist et al. 2006). A single chain antibody that

binds to the lipopolysaccharide (LPS) of Salmonella

enterica Paratyphi B was expressed in tobacco

(Makvandi-Nejad et al. 2005). This scFv was

developed for higher affinity by introducing two

point mutations resulting in the formation of dimers

and multimers (Deng et al. 1995). These earlier

findings were confirmed for tobacco. In different T1

lines different functional and structural properties of

the scFv were observed and will have to be further

investigated. Transmissible Gastroenteritis Virus

(TGEV) is a coronavirus that causes near 100%

mortality in newborn piglets (Enjuanes and van der

Zeijst 1995). A TGEV-specific small immune pro-

tein (SIP) was expressed in Nicotiana clevelandii

and cowpea (Vigna undulata) for oral application

(Monger et al. 2006). The SIP was a dimeric fusion

of the e-CH4 domain of human IgE with scFv

antibodies specific for TGEV, stabilised by a

C-terminal cysteine residue. Expression was

achieved by Agrobacteria inoculation with two

different viral vectors based on Potato Virus X

(PVX) and Cowpea Mosaic Virus (CPMV). Effec-

tive dimerisation of the eSIP and its capacity to bind

and to neutralise TGEV in vitro was demonstrated.

Crude plant extract containing eSIP was orally

applied to-two-day old piglets together with a

TGEV challenge. As a result, reduction of virus

titres in gut and lung were observed, although to a

lower extent than with the full-length mammalian

produced parental monoclonal antibody.

In a subsequent report by the same group, an IgA

derived SIP, containing the CH3 domain of IgA

lacking a stabilising C-terminal cysteine, was

expressed in plants, together with the full-length

recombinant IgA (Alamillo et al. 2006). CPMV and

PVX inoculation was used for expression of the SIP,

whereas the recombinant IgA was expressed using

the PVX system. Effective dimerisation of both

aSIP and recombinant IgA was demonstrated.

Expression levels for aSIPs were generally low,

and a difference in vector efficiency for aSIP and

eSIP was observed: eSIP expression was 20 times

higher in the CPMV system, whereas aSIP expres-

sion was higher using the PVX vector. Crude plant

extracts containing either aSIP or recombinant IgA

were administered orally to newborn piglets after

TGEV challenge. A notable reduction of virus titres

was observed both for aSIP and full-length recom-

binant IgA: aSIP reduced virus titres in the lung by

more than 10,000-fold and in the gut by more than

100-fold. In contrast, recombinant IgA was almost

ineffective in the lung, but highly effective in the

gut, although activity was generally lower than with

the parental monoclonal antibody. These differences
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in tissue specific activity can be explained by the

smaller size of the aSIP, which allows for higher

tissue penetration. However, an adjuvant effect of

the plant extract cannot be ruled out.

Coccidiosis is the most commercially relevant

infectious disease in chickens, and is caused by

intracellular protozoan parasites belonging to the

genus Eimeria. Recombinant chicken IgA has been

proposed as a potential means for passive immuni-

sation against this disease (Wieland et al. 2006). IgA

was chosen as it is assumed to have a role in the

protection of mucosal surfaces, similar to mamma-

lian IgA. A set of ten full-length chicken IgA

cDNAs was cloned into Agrobacterium vectors for

transient expression. Tobacco (N. benthamiana) was

co-infiltrated with two different vectors containing

the genes coding for the IgL and the IgHalpha chains.

Functionality of the full-size antibodies was proven

in ELISA assays against Eimeria antigens. Large

differences were found in the production levels of

the different immunoglobulins. Plants with poor or

without expression were shown to have low or non-

detectable IgL levels. Clones with a degraded

IgHalpha chain showed low light chain expression

or did not even express the light chain. It is likely

that the light chain stabilises the full-length heavy

chain and prevents its degradation. Thus, expression

of the light chain might be a limiting factor in the

assembly and stability of the plant-made chicken

IgA. Further co-infiltration experiments demon-

strated the capacity of the plant cells to assemble

chicken secretory IgA complexes, a dimeric IgA

(dIgA) complex including the J chain and also

associations of dIgA and the chicken secretory

component.

Although results discussed here are rather pre-

liminary, there is increasing evidence that orally

applied recombinant antibodies have the capacity to

reduce the infectious load in animals following oral

administration. Issues such as stability in the gut,

tissue penetration, clearance and general immuno-

genic effects have to be addressed, as well as

technical issues and commercial applicability. Cur-

rent results indicate that there is no generally

applicable ‘‘ideal’’ plant system for the expression

of antibodies and antibody fragments, but that such

systems must be carefully chosen and tailored to the

specific type, and even to the specific sequence, of the

antibody under study.

Production of therapeutic proteins for veterinary

purposes in transgenic plants - advantages and

remaining challenges

Efficient transformation and regeneration of plants

are major prerequisites for the development of

suitable expression systems for vaccines and thera-

peutic antibodies. Such systems are not only available

for model plants such as tobacco and Arabidopsis, but

have also been developed for crops such as maize,

rice, barley, pea, potato, tomato, alfalfa and lettuce.

As outlined in sections ‘‘Plant-derived vaccines for

veterinary purposes’’ and ‘‘Therapeutic antibodies

for veterinary use from transgenic plants’’, many

different transformation systems have been success-

fully applied for veterinary purposes, including viral

systems. Further developments also need to consider

product safety. Plants do not contain human patho-

gens, oncogenic DNA or microbial endotoxins, but

may contain pesticide residues as possible contami-

nants. Specific plants may comprise several toxic

secondary metabolites and toxins derived from plant

pathogens. Removal of these substances during the

purification process, including final proof of absence,

will inevitably increase costs. Crops currently used as

animal feed provide an already proven safe alterna-

tive (equivalent to the GRAS status of food crops).

The development of rather simple procedures for

downstream processing and formulation that can be

scaled up is essential for veterinary applications.

Methods such as ‘‘inverse transition cycling’’ using

elastin-like-peptide fusions are examples of such low

cost large scale purification schemes (Scheller et al.

2004).

A major advantage of crop plants is easy upscaling

through field cultivation and established harvesting

and processing technologies. However, increased

costs due to quality control, quality assurance and

regulatory surveillance also have to be taken into

account. Easy storage and distribution, key advanta-

ges of molecular farming, can only be achieved by

seed-specific expression. High-level production and

long-term storage of antibodies in seeds was shown

more then 10 years ago (Fiedler and Conrad 1995;

Stoger et al. 2005b). Vaccine production in seeds is

also outlined in several examples in Table 1. In our

view, the major issue in terms of reducing costs and

maximising economic value is an adequate produc-

tion level in planta. Increase in expression level,
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particularly in seeds, directly improves the economic

value of any veterinary product in molecular pharm-

ing applications. This leads to decreasing costs for

planting, quality control, harvest and storage. New

promoters and regulatory sequences, as well as

fusions to specific peptides, have improved the

accumulation of transgenic proteins in seeds (De

Jaeger et al. 2002; Scheller et al. 2006). These

techniques can now be applied for the development

of new products, for vaccines as well as therapeutic

antibodies. A high demand for new, specific products,

spurred by the ban of persistent drugs, especially

antibiotics, now catalyses the development of thera-

peutic protein-based treatments in veterinary medi-

cine, and this is where molecular pharming can

provide better solutions.
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