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Recent investigations have revealed that the human microbiome plays an essential role in the occurrence of type 2 diabetes (T2D).
However, despite the importance of understanding the involvement of the microbiota throughout the body in T2D, most studies
have focused specifically on the intestinal microbiota. Extracellular vesicles (EVs) have been recently found to provide important
evidence regarding the mechanisms of T2D pathogenesis, as they act as key messengers between intestinal microorganisms and
the host. Herein, we explored microorganisms potentially associated with T2D by tracking changes in microbiota-derived EVs from
patient urine samples collected three times over four years. Mendelian randomization analysis was conducted to evaluate the
causal relationships among microbial organisms, metabolites, and clinical measurements to provide a comprehensive view of how
microbiota can influence T2D. We also analyzed EV-derived metagenomic (N = 393), clinical (N =5032), genomic (N =8842), and
metabolite (N = 574) data from a prospective longitudinal Korean community-based cohort. Our data revealed that GU174097_g, an
unclassified Lachnospiraceae, was associated with T2D (8 = —189.13; p = 0.00006), and it was associated with the ketone bodies
acetoacetate and 3-hydroxybutyrate (r=—0.0938 and —0.0829, respectively; p = 0.0022 and 0.0069, respectively). Furthermore, a
causal relationship was identified between acetoacetate and HbA1c levels (8 = 0.0002; p = 0.0154). GU174097_g reduced ketone
body levels, thus decreasing HbA1c levels and the risk of T2D. Taken together, our findings indicate that GU774097_g may lower the
risk of T2D by reducing ketone body levels.

Experimental & Molecular Medicine (2022) 54:1125-1132; https://doi.org/10.1038/512276-022-00816-x

INTRODUCTION

Recent studies have revealed that the intestinal microbiota plays
essential roles in host energy homeostasis, body adiposity, blood
sugar control, insulin sensitivity, hormone secretion, and the
pathogenesis of metabolic diseases, such as type 2 diabetes (T2D)
and obesity' . However, most of these studies analyzed stool
samples and therefore obtained limited information relative to
insights from direct sampling of the intestinal mucosa, which is not
possible in most cases. In addition, the composition of microbial
communities in stool samples is greatly affected by the specific
compartment in which they reside, such as the mucous membrane®.
Microbial communities also differ based on their source, ranging
from the intestines, skin, and airways, which are frequently studied,
to urine and blood, which are generally sterile environments®.
Therefore, it is important not only to understand the role of the
intestinal microbiota but also to consider the function and
combined contribution of the all microbiota throughout the body.

Extracellular vesicles (EVs) have been recently suggested to
function as the main messengers between intestinal microorgan-
isms and the host. EVs travel long distances within and between
body tissues® and have been used as biomarkers of atopic
dermatitis, alcoholic hepatitis, and asthma’~'°. Microbiota-derived
EVs can enter the circulatory system through the intestinal barrier.
They are suspected to play a key role in the development of
insulin resistance, potentially providing important clues into the
pathogenesis of T2D. For example, EVs derived from Pseudomonas
panacis are present in the stool samples of high-fat diet-fed mice.
They can infiltrated the gut barrier and block the insulin pathway
in skeletal muscle and adipose tissue, inducing the development
of insulin resistance and glucose intolerance''. However,
microbiota-derived EVs are highly variable, as they are modulated
by different factors, such as age and sex. Therefore, caution should
be exercised when inferring causal relationships based on the
statistical analysis of microbiota-derived data. Furthermore,
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Fig.1 Summary chart of data analysis. Datasets and analyses employed in the current study are described. Sample sizes for each analysis are

presented.

longitudinal microbiota studies may allow for stronger inferences
than cross-sectional studies'? and may allow for the detection of
microorganisms related to the progression of T2D in healthy
subjects. However, existing studies have been predominantly
cross-sectional in nature and are based on correlation analyses. As
a result, these studies are unable to comprehensively provide an
understanding of the exact roles of the intestinal microbiota and
EVs in metabolic disease development.

Therefore, in the present study, we investigated the prospective
Korean Association REsource project (KARE) cohort'>. By tracking
changes in microbiota-derived EVs in urine samples from Korean
adults collected three times over four years, we explored the
potential associations between microorganisms and T2D progres-
sion. Furthermore, using genomic and metabolite data from the
KARE cohort, we conducted a multiomics analysis to investigate
the specific role of microorganisms potentially involved in T2D
pathogenesis. We expect our findings to provide information
regarding how microbes, the substances they produce, and their
byproducts interact with the human body and affect metabolic
disease development. In addition, we evaluated causal relation-
ships among microbial organisms, ketone bodies, and clinical
measurements, with the aim of further elucidating the relationship
between T2D and the microbiota.

MATERIALS AND METHODS

Cohort and study design

The KARE cohort is a prospective study cohort involving subjects from the
rural community of Ansung and the urban community of Ansan in South
Korea. The KARE project began in 2001 as part of the Korean Genome
Epidemiology Study'®. We used data from urine samples taken from
subjects in 2013, 2015, and 2017, which we refer to as phases 1, 2, and 3 in
this study. After collection, the urine was stored at -80°C. For the
1,891 subjects whose urine samples were available, age, sex, and body
mass index (BMI) were matched via 2:1:1 propensity score matching. As a
result, a healthy group (healthy in all phases, N = 328), a T2D-at-risk group
(T2D-at-risk in all phases, N=164), and a T2D group (T2D in any of the
three phases, N=164) were selected. From the remaining unmatched
subjects, 35 T2D subjects were also included. Consequently, 691 subjects
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were finally included, and their 2,072 urine samples were subjected to
microbiota analysis. Metagenomic, metabolite, clinical, and genomic data
were subjected to comprehensive analyses (Fig. 1).

Operational definition of T2D and related phenotypes

Study participants were categorized into control individuals, T2D-at-risk
patients, and T2D patients. T2D and T2D-at-risk patients were diagnosed
on the basis of the American Diabetes Association criteria, which are
provided in Supplementary Table 1. T2D status was then stratified into
T2D-at-risk/T2D (0 for healthy; 1 for T2D-at-risk and T2D) and binary_T2D (0
for healthy and T2D-at-risk; 1 for T2D). In addition, we considered other
T2D-related indicators, such as BMI, HbAlc levels, fasting glucose and
insulin levels, 60- and 120-min plasma glucose levels, and insulin levels
after a 75 g oral glucose tolerance test in our analysis. Age, the levels of
total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides,
kidney- and liver-related disease indicators (blood urea nitrogen (BUN),
creatinine, aspartate aminotransferase (AST), and alanine aminotransferase
(ALT) C-reactive protein (CRP), white blood cell (WBC) count, red blood cell
(RBC) count, hemoglobin, hematocrit, and platelet count) were also
collected. The homeostatic model assessment for insulin resistance
(HOMA-IR) was calculated using fasting glucose and fasting insulin levels'.
Descriptive statistics for all variables were generated using Rex software
(RexSoft Inc., Seoul, Korea) (Supplementary Table 2)'e,

EV isolation and DNA extraction

For EV isolation, urine samples were subjected to differential centrifugation
at 10,000 x g and 4 °C for 10 min using a microcentrifuge (Labogene 1730R;
Bio-Medical Science, Seoul, Korea)'’. To remove bacteria, foreign particles,
and waste, the supernatant was filtered through a 0.22-um filter (Inchpor2
Syringe Filter; Inchemtec, Seoul, Korea). The isolated EVs were boiled at
100°C for 40 min and centrifuged at 18,214 x g and 4°C for 30 min to
eliminate floating particles and impurities. The supernatant was collected
and subjected to DNA extraction using a PowerSoil” DNA Isolation Kit (MO
BIO Laboratories, Carlsbad, CA, USA) according to the manufacturer’s
protocol. DNA was quantified using the QlAxpert system (Qiagen, Hilden,
Germany).

16 S rRNA sequence data processing
Paired-end sequencing of the V3-V4 region of the bacterial 16 S rRNA gene
was conducted at MD Health care (Seoul, Korea) with the MiSeq Reagent
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Kit v3 (600 cycles, Illumina, San Diego, CA, USA) using the widely used
primers 16S_V3_F (5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACA-GCCTA
CGGGNGGCWGCAG-3') and 165_V4_R (5'-GTCTCGTGGGCTCGGAGATGTGT
ATA-AGAGACAGGACTACHVGGGTATCTAATCC-3’). Adaptor sequences were
detected and removed using CUTADAPT software (https://cutadapt.
readthedocs.io) with a minimum overlap of 11, a maximum error rate of
10%, and a minimum length of 10'®. Sequences were merged using
CASPER (http://best.snu.ac.kr/casper) with a mismatch ratio of 0.27 and
filtered based on the Phred (Q) score, resulting in sequences of 350-550 bp
in length'®?°, After the merged sequences were dereplicated, chimeric
sequences were detected and removed using VSEARCH (https://
github.com/torognes/vsearch) and the Silva Gold reference database for
chimeras®'. Open-reference operational taxonomic unit (OTU) picking was
conducted based on the EzTaxon database using UCLUST (http://
www.drive5.com/usearch)?*?3, For each OTU, we calculated its proportion
among all OTUs and determined the mean value across all subjects. If the
resulting value was <0.001, the OTU was excluded®*. Among the
691 subjects, those with a read count <3000 or whose genomic data
were not available in any phase were excluded. As a result, 1179 samples
from 393 subjects, including 70 genera, were used for subsequent
analyses.

Prediction of functional profiles from 16 S rRNA metagenomic
data

The functional potential of microbial communities can be predicted from
their phylogeny. Tax4fun uses evolutionary modeling to predict metagen-
omes based on 16 S data from the SILVA reference genome database. The
SILVA-based 16 S rRNA profile was used to estimate a taxonomic profile of
prokaryotic Kyoto Encyclopedia of Genes and Genomes (KEGG) organisms.
The estimated abundances of KEGG organisms were normalized using the
16 S rRNA copy number obtained from the National Center for
Biotechnology Information (NCBI) genome annotations. Finally, the
normalized taxonomic abundances were used to linearly combine the
precomputed functional profiles of KEGG organisms to predict the
functional profile of the microbial community®®. Similar to the analysis of
OTUs, we calculated the mean of the relative proportions across all
subjects for each functional profile. If the resulting value was <0.001, the
functional profile was excluded from the analysis. As a result, 238
functional profiles were retained for analysis.

Metabolite analysis of ketone bodies

Serum metabolites were analyzed using the Agilent 1290 Infinity LC and
Agilent 6490 Triple Quadrupole MS systems (Agilent Technologies, Palo
Alto, CA, USA). The levels of acetoacetate and 3-hydroxybutyrate from
subjects included in the metagenomics dataset were determined in the
multiple reaction monitoring mode. A batch normalizer was used to
correct for possible batch effects®.

Analysis of bacterial composition and microbial variance

We calculated alpha- and beta-diversity indices using R (v3.6.2) after read
number normalization with the Rarefy function in the R package GUniFrac
(v1.1). The R package Fossil (v0.4.0) was used to obtain Chaol and ACE
diversity indices. The Shannon index and Simpson’s diversity index were
calculated using the Vegan package in R (v2.5.6). Taxonomy-based ring charts
were created using the Krona tool®”. PERMANOVA is a nonparametric
multivariate analysis of variance test based on pairwise distances”®. The R
package pldist was used to obtain the microbial variance for individuals in
repeated measurements of microbial profiles. pldist summarizes within-
individual shifts in the microbiome composition and compares these across
individuals. pldist also calculates dissimilarities based on a novel transforma-
tion of relative abundances, which are then extended to more than two time
points. They are then incorporated into a chosen beta-diversity, which, in our
case, was Bray-Curtis dissimilarity. PERMANOVA was performed for
biochemistry-related KARE phenotypes using the adonis function in R.
PERMANOVA can be applied to the cross-sectional data, and thus, the
phenotypes were averaged for phases 1, 2, and 3.

Statistical analysis of the effect of the microbiome on T2D and
diabetes risk indicators

For each taxon and functional profile, a generalized linear mixed model
(LMM) with the logit link function was used to find associations with
binary_T2D and T2D-at-risk/T2D, whereas an LMM was used for log-
transformed diabetes risk indicators. A random effect with a compound
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symmetry structure for each time point was incorporated to adjust the
similarity of T2D status for the same subject at different time points, and
the sandwich estimator was used to find a robust estimate against the
misspecified covariance matrix. To accommodate the multiple testing
problem, p values were adjusted for the false discovery rate (FDR) using
the Benjamini-Hochberg method?’.

Network analysis of a T2D-related taxon based on multiomics
data

To assess overall associations using repeatedly measured multiomics data,
we first modeled an LMM using log-transformed diabetes risk indicators as
response variables and age in phase 1 as well as sex as explanatory
variables with a compound symmetry structure for its covariance. We
modeled an LMM with a T2D-related taxon as the response variable with
the same covariates and covariance structure. For each combination of
diabetes risk indicators and a T2D-related taxon, two different sets of
residuals were obtained, and Spearman correlations between the residuals
were calculated. Similarly, the association between a chosen microbial
marker and the levels of ketone bodies was analyzed.

Network analysis was conducted to calculate simple correlations among
diabetes risk indicators, a chosen taxon, and ketone bodies. Edge width
was calculated as -log;o of the p value. The network was visualized using
the R package visNetwork (v2.0.8).

Genotyping, imputation, and quality control

Quality control and genotype imputation were performed according to the
standard quality control and imputation protocols for the genotypes of
8842 KARE cohort participants®°. After quality control, 8216 subjects with
17,716,215 single-nucleotide polymorphisms (SNPs) were included in the
analysis. In total, the data of 351 subjects with a read count <3,000 and
nonmissing T2D status for all phases were used for a genome-wide
association study (GWAS) of metagenomic data. A total of 574 subjects
who had no missing metabolite levels and T2D status for all three phases
were selected for a GWAS of metabolite levels. Among the subjects not
included in the metabolite or metagenome GWAS, 3542 subjects had KARE
phenotypes for the three phases and were thus included in a GWAS of
KARE phenotypes. We excluded subjects in the metabolite or metagenome
GWAS for the purposes of a two-sample Mendelian randomization (MR)
study. Details are provided in Supplementary Fig. 1, and all the associated
SNPs from each GWAS are listed in Supplementary Table 3.

MR analysis

MR uses genetic variants that are not associated with conventional
confounders of observational studies and is therefore considered
analogous to randomized controlled trials®'. Randomly selected alleles
are transmitted from parents, and genotypes can be assumed to be
independent, with many potential confounders. This randomization
produces unbiased estimates for the associations between the main
exposures and outcomes. Thus, genetic variants associated with the main
exposure were used as instrumental variables. There are two types of MR,
namely, two-sample MR and one-sample MR. The former uses two
independent datasets with nonoverlapping samples for the association of
SNP exposure and SNP outcome (as opposed to one-sample MR) It is less
likely to lead to inflated type 1 error rates and false-positive findings when
compared to one-sample MR. Two-sample MR was conducted to identify
the effect of a microbial taxon or each ketone body on KARE phenotypes
by using no overlapping samples. One-sample MR was conducted to
estimate the effect of a chosen taxon on each ketone body.

For one-sample MR, we conducted two-stage least-squares regression.
The first stage consisted of a regression for SNP exposure, and the second
stage consisted of a regression for the outcome of interest on the fitted
values from the first-stage regression. The estimator of the coefficient for
first-stage fitted values in the second-stage model is the causal
estimate®?3, F-statistics from the first-stage regression were examined
to avoid weak instrument bias**. The Durbin-Wu-Hausman (DWH) test for
endogeneity®® was used to evaluate whether there is any evidence that
the causal estimate differs from the ordinary least square estimate of
exposure and outcome. For two-sample MR, the average F-statistic was
used to avoid weak instrument bias. The inverse-variance-weighted (IVW)
method, Cochran’s Q test, and MR-PRESSO global test were used to
confirm the heterogeneity assumption, and /> was used for the no
measurement error (NOME) assumption. To enhance the validity of MR
analysis, we considered the extensive range of existing MR methods,
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including IVW, MR-egger, MR-egger with SIMEX correction, median-
weighted method, and MR-PRESSO, and selected the recommended MR
method based on the violations of MR assumptions>¢.

RESULTS

Longitudinal changes in the urine microbial composition over
four years

The alpha-diversity of the urine microbiome decreased during the
follow-up period, which may have been an effect of aging
(Supplementary Fig. 2). A nonmetric multidimensional scaling plot
based on beta diversity also revealed a gradual change in
microbiota composition with age (Supplementary Fig. 3). The
overall microbiome composition at the phylum and genus levels is
presented in Fig. 2 and Supplementary Fig. 4, respectively.
Verrucomicrobia, Bacteroidetes, and Firmicutes were the predomi-
nant phyla, whereas Akkermansia and Bacteroides were the
predominant genera.

T2D and other clinical traits explained by microbial variance
We investigated the associations between various clinical
phenotypes and microbial compositions using PERMANOVA
(Supplementary Fig. 5). HbA1c, WBC, hematocrit, binary_T2D,
and age in phase 1 significantly explained changes in microbial
composition during the follow-up period (p=0.0061, 0.0107,
0.0110, 0.0409, and 0.0290, respectively; FDR-adjusted
p=0.1027, 0.1027, 0.1027, 0.2290, and 0.2030, respectively).
HbA1c and binary_T2D partially explained the variance in
microbial changes over the 4 years, indicating that the
longitudinal change in microbiome composition may be more
closely associated with T2D-related phenotypes than with other
clinical traits.
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Taxa and functional profiles associated with T2D and diabetes
risk indicators

In an association analysis of 70 genera with binary_T2D and
T2D-at-risk/T2D phenotypes, GU174097_g, an unclassified Lach-
nospiraceae, was found to exhibit a significant association with
these phenotypes and was more abundant in healthy subjects
than in diabetic or prediabetic patients (Table 1). We divided
the samples into four groups. The Healthy in Phases 1-3 group
included subjects who were healthy in phases 1, 2, and 3. The
T2D in Phases 1-3 group consisted of subjects who had T2D in
phases 1, 2, and 3. The Healthy to T2D-at-risk/T2D group
included subjects who were healthy in phase 1 and became
T2D patients or T2D-at-risk in phase 3. The T2D-at-risk/T2D to
Healthy group included subjects who were T2D-at-risk/T2D in
phase 1 and healthy in phase 3. The relative abundance of
GU174097_g in subjects who were healthy at baseline but
changed to the T2D-at-risk/T2D group at phase 2 or 3 decreased
with the development of T2D (p=0.0001). Conversely, its
relative abundance in the T2D-at-risk/T2D to Healthy group
exhibited no tendency to decrease (p =0.19) (Fig. 3). Supple-
mentary Fig. 6 shows the profiles of GU174097_g for randomly
selected subjects. The relative abundance of GU174097_g in
subjects who were healthy at baseline but changed to T2D-at-
risk/T2D at phase 2 or 3 tended to decrease. Most T2D patients
had small relative abundances of GU174097_g at baseline. In
summary, GU174097_g was clearly associated with the progres-
sion of diabetes over time, and this association was not simply
based on diabetic or nondiabetic status.

To investigate the T2D-associated microbial functional profiles,
238 functional profiles were evaluated. The significant associations
at an FDR-adjusted significance of 0.1 are presented in Supple-
mentary Table 4. The T2D-at-risk/T2D phenotype was related to
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Table 1. Analysis of the associations between type 2 diabetes (T2D) and bacterial genera.

Phenotype Genus Estimate Std Err DF p value FDR
T2D-at-risk/T2D GU174097_g —189.13 46.63 735 0.00006 0.00393
Binary_T2D IN713389_g —13.07 5.31 735 0.01411 0.38195
Binary_T2D Akkermansia —3.49 143 735 0.01489 0.38195
Binary_T2D Dialister —86.44 37.49 735 0.02140 0.38195
Binary_T2D Ruminococcus_g2 —25.38 11.70 735 0.03039 0.38195
Binary_T2D KE159538 g —48.29 22.95 735 0.03568 0.38195
Binary_T2D Bifidobacterium 6.71 3.21 735 0.03669 0.38195
Binary_T2D Eubacterium_g8 —71.10 34.46 735 0.03944 0.38195
Binary_T2D Megamonas —65.20 32.53 735 0.04538 0.38195
Binary_T2D Pseudomonas 7.74 3.91 735 0.04842 0.38195

Associations between genera and T2D-at-risk/T2D and Binary_T2D were tested, and significant associations at a significance level of 0.05 are summarized.
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Fig. 3 Relative proportions of GU174097_g in different type 2 diabetes (T2D) groups. The mean relative proportions of GU174097_g are
provided for the Healthy in Phases 1-3, T2D in Phases 1-3, Healthy to T2D-at-risk/T2D, and T2D-at-risk/T2D to Healthy groups and are compared
according to the T2D status. The Healthy in Phases 1-3 group included subjects who were healthy in phases 1, 2, and 3. The T2D in Phases 1-3
group included subjects who had T2D in phases 1, 2, and 3. The Healthy to T2D-at-risk/T2D group included subjects who were healthy in phase
1 and became T2D patients or T2D-at-risk in phase 3. The T2D-at-risk/T2D to Healthy group included subjects who were T2D-at-risk/T2D in
phase 1 and healthy in phase 3. The p values were calculated based on simple linear regression using the log relative proportion of
GU174097_g as a response variable and phase variable. The relative proportion of GU174097_g was log-transformed after adding one to avoid
zero values. The phase variable is coded by 1, 2, and 3 for phases 1, 2, and 3, respectively.

the cationic antimicrobial peptide. Furthermore, the biosynthesis
of fatty acids, coenzyme A (CoA), and secondary metabolites as
well as oxidative phosphorylation were significantly associated
with the Binary_T2D phenotype at an FDR-adjusted significance
of 0.1.

Next, we investigated the associations between the log-
transformed diabetes risk indicators and genera, and significant
associations at an FDR-adjusted significance of 0.1 were identified.
Twelve, four, and 20 genera were significantly associated with
HbA1c, glucose, and insulin levels, respectively. In particular,
Hafnia was associated with HbA1c and 60- and 120-min insulin
levels, whereas AB185816_g and Akkermansia were associated
with HbA1c, fasting glucose, and 60-min insulin levels (Supple-
mentary Table 5).
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Associations between T2D-related unclassified
Lachnospiraceae and diabetes risk indicators and ketone
bodies
To confirm the association between GU174097_g and T2D, we
performed extensive validation analysis using clinical and
metabolite data. We analyzed the association between
GU174097_g and diabetes risk indicators (Table 2). Among all
glucose- and insulin-related variables, GU174097_g was signifi-
cantly and positively associated with the 60-min insulin level.
Thereafter, we analyzed the potential associations between
ketone bodies and the T2D-related taxon, since ketone bodies
have been suggested as markers of disrupted glucose metabolism
in prediabetic patients®’. The ketone bodies 3-hydroxybutyrate
and acetoacetate exhibited significant negative correlations with
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Table 2. Analysis of the associations between diabetes risk indicators
and GU174097_g.

Phenotype rssho p value FDR
Ins60 0.0950 0.0018 0.0026
HbA1c —0.0434 0.1548 0.1872
Gluo 0.0306 0.3165 0.3647
InsO —0.0301 0.3236 0.3721
HOMA-IR —0.0270 0.3756 0.4255
Glu60 —0.0229 0.4536 0.5045
Ins120 0.0177 0.5622 0.6096
Glu120 0.0072 0.8138 0.8424
BMI —0.0070 0.8186 0.8469

Associations between diabetes risk indicators and GU174097_g were tested
and are presented.

Table 3. Analysis of the associations between GU174097_g and ketone
bodies.

Phenotype rho p value
Acetoacetate —0.0938 0.0022
3-hydroxybutyrate —0.0829 0.0069
Associations  between the ketone bodies acetoacetate and

3-hydroxybutyrate and GU174097_g were tested and are presented.

GU174097_g (r=-0.0829 and -0.0938, respectively; p =0.0069
and 0.0022, respectively) (Table 3). Supplementary Fig. 7 shows
the tendency of high acetoacetate and 3-hydroxybutyrate
concentrations coinciding with the low abundance of
GU174097_g. The ion abundances of acetoacetate and
3-hydroxybutyrate did not rise beyond 2000 and 10000, respec-
tively, when the relative abundance of GU174097_g was high.

Finally, we established an association network for diabetes risk
indicators and ketone bodies, as the same observed correlations
can imply completely different biological processes. For example,
if high levels of glucose or HbA1c tend to appear in parallel to
high levels of insulin, insulin resistance may be present. However,
if high levels of glucose or HbA1c are observed in parallel to low
levels of insulin, insulin secretion may have suppressed glucose or
HbA1c levels. Network analysis indicated strong associations
among the diabetes risk indicators (Supplementary Fig. 8). In
particular, the 60-min insulin level exhibited a strong negative
correlation with HbA1c levels, suggesting that the former can
decrease the latter. Ketone bodies exhibited negative correlations
with fasting insulin and 60-min insulin levels and positive
correlations with 60- and 120-min glucose levels.

Causal relationship between the T2D-related taxon and
ketone bodies and the diabetes risk indicators

One-sample MR did not reveal any significant causal relationship
between GU174097_g and ketone bodies and vice versa
(Supplementary Table 6). To verify whether a causal relationship
existed between the abundance of GU174097_g or the levels of
ketone bodies and diabetes risk indicators, two-sample MR
analysis was performed. Extensive assumption checks were
conducted to enhance the validity of the two-sample MR analysis
(Supplementary Table 7). No weak instrument bias was observed
(F-statistic >10). However, NOME assumptions were violated for all
tests because GU174097_g, 3-hydroxybutyrate, and acetoacetate
had seven, eight, and five SNPs as their instrument variables,
respectively, and these values were not sufficiently large for
2> 90. In this case, if heterogeneity exists, MR-Egger (SIMEX) is
recommended; otherwise, IVW is recommended. As the InSIDE
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assumption cannot be statistically tested®?, the weighted median
method—a robust approach used in cases of InSIDE assumption
violation—has to be considered with each recommended
method®®. Therefore, MR-Egger (SIMEX) was used to estimate
the causal effect of 3-hydroxybutyrate on 60-min insulin as well as
that of acetoacetate on HbA1c levels. The IVW method was used
to estimate all other causal effects. To determine the causal effect
of 3-hydroxybutyrate on 60-min insulin, rs2259835 was detected
as an outlier via MR-PRESSO at a significance level of 0.05
(Supplementary Table 8). Thus, rs2259835 had to be removed to
prevent potential horizontal pleiotropy. The result of MR-PRESSO
is shown in Supplementary Table 9 and shows the estimates
without outliers. The effect of acetoacetate on the HbA1c level
was the only significant effect at an FDR-adjusted significance of
0.05, indicating that acetoacetate increases HbA1c levels (Supple-
mentary Table 9). The results obtained using the weighted median
method corroborated this significant association (p = 0.0475).

DISCUSSION

Recent microbiome studies have shown that T2D is associated
with gut dysbiosis®*™' that can result in altered intestinal barrier
function and a dysregulation of host metabolic and signaling
pathways*?. Intestinal bacteria can promote insulin resistance by
triggering inflammation via polysaccharides, which are compo-
nents of the gram-negative bacterial cell wall**. Furthermore,
microbiota-derived EVs are expected to affect insulin resistance
and provide a more in-depth understanding of T2D pathogen-
esis'". Various bacterial metabolites, such as short-chain fatty acids
(SCFAs), can modulate the function of various signaling pathways
implicated in human health and can protect against insulin
resistance™**,

The human microbiota is highly variable, and this variability is
determined by various external factors, such as diet, exercise,
mobility, medication, and microbial cooccurrence patterns. Many
of these external factors also determine the risk of metabolic
disease and are age-related*’; that is, the intestinal microbiota and
host phenotype are substantially altered with aging. Furthermore,
the effect of the intestinal microbiota on the host phenotype is
also dependent on the age of the host. The estimation of within-
subject covariate effects represents a robust approach against
between-subject confounders, and longitudinally measured
microbiome data enable characterization of the effects of the
microbiota on host disease risk. As most existing studies have
been cross-sectional in nature, the validity and interpretation of
their results are limited. In turn, longitudinal studies are needed to
comprehensively investigate the association between the human
microbiome and diseases, including T2D.

Our longitudinal study revealed that a low abundance of
GU174097_g is a risk factor for T2D development. GU174097_g has
not been cultured to date. Multiomics data, including host
genomic data, T2D-related metabolites, clinical information, and
predicted functional metagenomic profiles, were utilized to
extensively validate our results via causality analysis.
GU174097_g is a member of the family Lachnospiraceae, and an
association between Lachnospiraceae and T2D risk has been
reported in several previous studies*®*”. SCFA pathways, including
the propanediol and acrylate signaling pathways, play important
roles in mediating the effects of Lachnospiraceae on T2D™.
Additionally, SCFA-producing bacteria affect epigenetic regulation
in T2D patients and reduce the risk of developing T2D***8, We
found that GU174097_g is positively correlated with the 60-min
insulin level, and in turn, it is negatively correlated with HbA1c
levels. This indicates that GU174097_g reduces HbA1c levels and,
thus, the risk of developing T2D by stimulating insulin secretion.

Next, we aimed to elucidate how GU174097_g affects T2D
through the regulation of 60-min insulin and HbA1c. Multiple
mechanisms may underlie these associations, including the effects
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of various microbiota-derived metabolites, including SCFAs, as
previously suggested. In addition, ketone bodies have been
reported not only as indicators of diabetic hyperglycemia but also
as markers of disturbed glucose metabolism in the prediabetic
state®”*8, Furthermore, fatty acid metabolism, CoA synthesis, and
oxidative phosphorylation, all of which are involved in ketogenesis
or ketolysis, have been associated with T2D*. In our study, the
ketone bodies 3-hydroxybutyrate and acetoacetate were nega-
tively correlated with GU174097_g but positively correlated with
the 60- and 120-min glucose levels. MR analysis was employed to
investigate the effects of GU174097_g and ketone bodies on
diabetes risk indicators. Although no causal relationship was
observed between GU174097_g and ketone bodies or other
clinical variables, acetoacetate was found to be causally related to
an increased HbA1c level. HbA1c level is a major biomarker of T2D
and explains the microbial beta-diversity. Furthermore,
GU174097_g was negatively correlated with acetoacetate. There-
fore, our study not only confirmed the importance of ketone
bodies in T2D pathogenesis but also suggests an underlying
mechanism for the association between GU174097_g and T2D
development.

Previous studies have reported that gut microbe-derived EVs
can infiltrate the circulatory system through the gut barrier'"*°,
Furthermore, microbe-derived EVs in urine can reflect the lung
and gut microbiota of children with asthma®’. Interestingly, T2D
increases the co-occurrence of the same OTUs within the gut
microbiome and microbe-derived EVs in urine samples®?, which
indicates that these EVs may reflect the gut microbiota composi-
tion. Coprococcus, a member of the Lachnospiraceae family, is one
of the major butyrate-producing bacteria. It is known to utilize
metabolic intermediates essential for the synthesis of ketone
bodies, such as acetoacetyl-CoA, 3-hydroxybutyryl-CoA, and
crotonyl-CoA26, as energy sources to produce the SCFA butyrate.
SCFAs are considered beneficial for health and are considered to
protect against T2D>>. Thus, we hypothesize that GU174097 g
consumes acetoacetate to produce SCFAs. These SCFAS can
promote insulin secretion and decrease HbA1c levels, leading to a
decreased risk of T2D.

Our study had several limitations. First, as it was based on the
metagenomic profiles of EVs, the microbial compositions
observed can differ from, and need to be further compared with,
those of the intestinal microbiota. Second, as the genus-level
taxonomy of GU174097_g is unknown, ecological and biological
information on this species is limited. Third, published summary
statistics of microbial GWAS are limited, and the sample size in the
current microbial GWAS was small. Therefore, the number of SNPs
used as instrumental variables in our MR analysis was also
suboptimal. Future studies should include a large sample size to
identify more associated SNPs and increase the power of MR
analysis. Therefore, the mechanisms underlying T2D pathogenesis
could be further identified and characterized. Fourth, even though
extensive methods were used to validate assumptions in our MR
analysis and enhance the validity of causal analysis, the MR results
were not easy to interpret. Ketone bodies and diabetes risk
indicators were highly correlated and interacted with each other.
Additional in vivo and in vitro experiments may clarify the
associations identified herein.

Our study revealed that GU174097_g, an unclassified Lachnos-
piraceae, is associated with T2D and ketone bodies. Furthermore,
we found a potential causal relationship between ketone body
acetoacetate and HbA1c levels. Our findings indicate that
GU174097_g may lower the risk of developing T2D via the
reduction in ketone body levels. Although the mechanisms by
which GU174097_g and ketone bodies affect T2D development
have not been elucidated, further large-scale longitudinal studies
as well as in vivo and in vitro experiments could contribute to
unraveling these mechanisms.
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