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Abstract: Identification of early biomarkers of stress is important for preventing mood and anxiety
disorders. Saliva is an easy-to-collect and non-invasive diagnostic target. The aim of this study was to
characterize the changes in salivary whole microRNAs (miRNAs) and metabolites in mice subjected
to subchronic and mild social defeat stress (sCSDS). In this study, we identified seven upregulated
and one downregulated miRNAs/PIWI-interacting RNA (piRNA) in the saliva of sCSDS mice. One of
them, miR-208b-3p, which is reported as a reliable marker for myocardial infarction, was upregulated
in the saliva of sCSDS mice. Histological analysis showed frequent myocardial interstitial fibrosis in
the heart of such mice. In addition, gene ontology and pathway analyses suggested that the pathways
related to energy metabolism, such as the oxidative phosphorylation and the pentose phosphate
pathway, were significantly related to the miRNAs affected by sCSDS in saliva. In contrast, salivary
metabolites were not significantly changed in the sCSDS mice, which is consistent with our previous
metabolomic study on the plasma of sCSDS mice. Taken in the light of previous studies, the present
study provides novel potential stress biomarkers for future diagnosis using saliva.

Keywords: heart; metabolite; microRNA; saliva; social defeat stress

1. Introduction

Depression is one of the most frequent disorders, affecting more than 264 million
people worldwide [1]. Depression not only severely impairs a patient’s quality of life due
to a depressed mood, anxiety, and loss of pleasure but can also be a contributing factor
for various diseases [2]. Selective serotonin reuptake inhibitors are the most widely used
antidepressants for patients with major depressive disorder (MDD). However, it has been
suggested that approximately 30% of patients show resistance to treatment with selective
serotonin reuptake inhibitors [3]. Therefore, prevention and early diagnosis of depression
are essential and, consequently, it is important to identify diagnostic biomarkers of psycho-
logical stress. Saliva is an easy-to-collect, non-invasive, and cost-effective diagnostic target.
Saliva collection does not require highly trained professionals, and salivary diagnosis is
highly practical and free from infection risk through contaminated needles [4]. In fact,
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because salivary cortisol responds to stress conditions [5], it is reasonable to focus on the
salivary biomarkers of depression. Thus, the present study focused on salivary biomarkers
for the early diagnosis of stress.

Depression is generally diagnosed using subjective methods, such as interview-based
diagnoses [6], suggesting that the objective biomarkers for stress and depression could
help improve the diagnosis of depression. Therefore, multiple studies to identify the early
biomarkers of stress and depression have been performed [7–18]. Previously, microRNA
(miRNA) profiles were investigated in patients with MDD in whole blood [7,8], blood
serum [9,10], peripheral blood mononucleocytes [10–12], and the prefrontal cortex [8,14–16].
It was suggested that miRNA profiles are significantly altered in patients with MDD. In
addition, metabolomic analyses were performed using plasma samples from patients [17].
However, the salivary biomarkers of stress and depression were not examined. Salivary
stress biomarkers enable the early detection of depression for those who hesitate to use the
mental health services [18], because saliva collection can be performed at home without any
clinical equipment. In particular, we focused on miRNAs as potential biomarkers, because
miRNAs were consistently present in the salivary exosomes, which protect miRNAs from
digestion [4]. In this study, we investigated salivary miRNAs and metabolic profiles in
an animal model of depression, which fulfills predictive validity [19,20], in advance of
future studies using human saliva samples. In addition, as studies on animal models
have the advantage that the genetic and environmental backgrounds of the animals are
highly controlled, in contrast with the human studies, we speculated that an animal model
could be suitable for the identification of the biomarkers specifically reflected from the
pathophysiology of stress. Interestingly, a recent study compared the metabolomic data
of patients with MDD and those of mice subjected to chronic social defeat stress (CSDS),
and stated that some metabolites were commonly regulated in the plasma of humans
and mice [21]. CSDS is widely used as an animal model of depression [19,20]. We have
previously established a mouse model of subchronic and mild social defeat stress (sCSDS),
and found significant increases in body weight, food intake, water intake, and social
avoidance behavior [22,23]. In particular, our sCSDS paradigm consists of a half-scale
physical stress condition, compared with the standard CSDS method [24]. Thus, our sCSDS
conditions would likely reduce the effects of physical stress and wounds and induce milder
phenotypes compared to standard CSDS mice [22]. Therefore, we investigated entire
salivary miRNAs and metabolic profiles in sCSDS mice.

2. Results
2.1. Body Weight, Food Intake, and Water Intake

Daily body weight, food intake and water intake were monitored to evaluate the effect
of sCSDS (Figure 1b–d). The significant effects of sCSDS on food intake (p < 0.001) and water
intake (p < 0.001) were observed using two-way analysis of variance (ANOVA) (Table 1).

Table 1. The effects of sCSDS on body weight, food intake and water intake determined by two-way
ANOVA (control mice; n = 11, sCSDS mice; n = 11).

Stress Time Stress × Time

Body weight F1,180 = 3.28
p = 0.08

F9,180 = 18.42
p < 0.001

F9,180 = 0.97
p > 0.1

Food intake F1,180 = 21.30
p < 0.001

F9,180 = 5.85
p < 0.001

F9,180 = 0.89
p > 0.1

Water intake F1,180 = 59.05
p < 0.001

F9,180 = 5.00
p < 0.001

F9,180 = 2.89
p < 0.01



Int. J. Mol. Sci. 2022, 23, 14479 3 of 15
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 15 
 

 

 

(a) 

 

 

(b) (c) 

 
 

(d) (e) 

Figure 1. (a) Experimental design of the subchronic and mild social defeat stress (sCSDS) paradigm, 
social interaction (SI) test, and sampling. (b–d) The changes in the body weight, food intake, and 
water intake in the sCSDS mice are presented (n = 11). Values are expressed as means ± SE (n = 11). 
(e) The SI scores of the sCSDS and control mice are presented. The SI scores (% of target absent) are 
calculated as (interaction time with target present/interaction time with target absent) × 100. The SI 
scores significantly decreased in the sCSDS mice compared to the control mice by unpaired t-test 
(*** p < 0.001, degree of freedom (df); 20). Values are expressed as means ± SE (n = 11). The individual 
SI scores of the mice used in the miRNA-seq analysis are presented as cross marks (×; n = 6), and 
those of the mice used in the metabolomic analysis are presented as triangles (△; n = 5). 

Table 1. The effects of sCSDS on body weight, food intake and water intake determined by two-
way ANOVA (control mice; n = 11, sCSDS mice; n = 11). 
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2.2. Social Interaction (SI) Test 
The SI scores significantly decreased in the sCSDS group (p < 0.001; Figure 1e). In the 

present study, B6 mice in the sCSDS group were selected according to their lower SI scores 
in advance of subsequent microRNA-seq and metabolome analyses. 

  

Figure 1. (a) Experimental design of the subchronic and mild social defeat stress (sCSDS) paradigm,
social interaction (SI) test, and sampling. (b–d) The changes in the body weight, food intake, and
water intake in the sCSDS mice are presented (n = 11). Values are expressed as means ± SE (n = 11).
(e) The SI scores of the sCSDS and control mice are presented. The SI scores (% of target absent) are
calculated as (interaction time with target present/interaction time with target absent) × 100. The
SI scores significantly decreased in the sCSDS mice compared to the control mice by unpaired t-test
(*** p < 0.001, degree of freedom (df ); 20). Values are expressed as means± SE (n = 11). The individual
SI scores of the mice used in the miRNA-seq analysis are presented as cross marks (×; n = 6), and
those of the mice used in the metabolomic analysis are presented as triangles (4; n = 5).

2.2. Social Interaction (SI) Test

The SI scores significantly decreased in the sCSDS group (p < 0.001; Figure 1e). In the
present study, B6 mice in the sCSDS group were selected according to their lower SI scores
in advance of subsequent microRNA-seq and metabolome analyses.

2.3. Saliva microRNA-seq Analysis

We identified eight miRNAs/piRNAs, which tended to be up/downregulated in the
saliva of sCSDS mice (q < 0.1; Table 2; Supplementary Tables S1 and S2). miR-208b-3p was
one of the most upregulated miRNAs in the sCSDS group (Table 2). The results of principal
component analysis (PCA) of saliva miRNA-seq data are presented in Figure 2a. Interest-
ingly, the miRNA profiles of the control and sCSDS mice were not clearly differentiated
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by the PC1 and PC2. In addition, the gene ontology term and pathway analyses revealed
that several pathways, such as the oxidative phosphorylation and the pentose phosphate
pathway, were significantly related to the miRNAs modulated by sCSDS in saliva (Table 3;
Supplementary Table S3).

Table 2. The list of salivary miRNAs/piRNA significantly up/downregulated by sCSDS.

miRNA/piRNA Fold Change p-Value q-Value

mmu-miR-6985-3p 7.66 5.36 × 10−5 0.0609
mmu-miR-7092-5p 9.13 9.25 × 10−5 0.0609
mmu-miR-208b-3p 10.77 9.34 × 10−5 0.0609
mmu-miR-378a-5p 12.21 0.000147 0.0685
mmu-miR-6944-3p 6.2 0.000175 0.0685
mmu_piR_000159 5.94 0.000217 0.0707
mmu-miR-3106-3p −9.12 0.000332 0.0926
mmu-miR-3064-3p 7.33 0.000402 0.098
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Figure 2. (a–c) Principal component analysis (PCA) results of control and sCSDS mice used in the
miRNA-seq analysis (n = 5 in each group); (a), capillary electrophoresis Fourier transform mass
spectrometry (CE-FTMS) analysis (n = 6 in each group); (b), and liquid chromatography time-of-flight
mass spectrometry (LC-TOFMS) analysis (n = 6 in each group) (c) are presented.

Table 3. The list of pathways significantly related to the miRNA-target genes in the saliva of sCSDS
mice (Z score > 1.96 and permuted p < 0.05).

Pathway Criterion for Z Score Permuted p-Value

Oxidative phosphorylation 2.7 0.008
ApoE and miR-146 in

inflammation
and atherosclerosis

2.55 0.014

Small ligand GPCRs 3.34 0.016
BMP signaling pathway in

eyelid development 3.12 0.021

Pentose phosphate pathway 2.77 0.023
Robo4 and VEGF signaling

pathways
crosstalk

3.04 0.033

Monoamine GPCRs 2.15 0.033

2.4. Saliva Metabolome Analyses

In the saliva, 384 and 61 metabolites were detected using capillary electrophoresis (CE)-
Fourier transform mass spectrometry (FTMS) and LC-TOFMS analyses, respectively. We
found that no metabolites were significantly modified in the saliva of sCSDS mice (q > 0.1,
Supplementary Tables S4 and S5). The results of the PCA of the saliva metabolome are
shown in Figure 2b (CE-FTMS analysis) and 2c (LC-TOFMS analysis); we discovered that
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the saliva metabolome profiles of the control and sCSDS mice were not clearly differentiated
by the PC1 and PC2.

2.5. Pathological Analysis of the Heart of sCSDS Mice

Among the ten control mice, the hearts of the eight control mice (control#1, #2, #4,
#6, #7, #8, #9, and #10) had no pathological abnormality, and hearts of the two control
mice (control#3 and #5) showed myocardial interstitial fibrosis (Table 4; Supplementary
Figure S1). However, among the 13 sCSDS mice, the hearts of eight sCSDS mice (sCSDS#1,
#2, #3, #4, #5, #7, #8, and #13) showed myocardial interstitial fibrosis, and the hearts of
two sCSDS mouse (sCSDS#3 and #9) showed inflammatory cell accumulation, including
neutrophils and macrophages (Figure 3a–f; Table 4; Supplementary Figure S1). The hearts
of four sCSDS mice (sCSDS #6, #10, #11, and #12) showed no pathological observations
(Table 4; Supplementary Figure S1). The average fibrotic areas (µm2) of the hearts of sCSDS
mice tended to be larger than those of the hearts of control mice (p = 0.07; Figure 3).

Table 4. The pathological phenotypes of the hearts in the control and sCSDS mice.

Mouse Pathological
Phenotype Mouse Pathological Phenotype

Control#1 - sCSDS#1 Fibrotic tissue accumulation
Control#2 - sCSDS#2 Fibrotic tissue accumulation

Control#3 Fibrotic tissue
accumulation sCSDS#3 Fibrotic tissue accumulation

Inflammatory cell infiltration
Control#4 - sCSDS#4 Fibrotic tissue accumulation

Control#5 Fibrotic tissue
accumulation sCSDS#5 Fibrotic tissue accumulation

Control#6 - sCSDS#6 -
Control#7 - sCSDS#7 Fibrotic tissue accumulation
Control#8 - sCSDS#8 Fibrotic tissue accumulation
Control#9 - sCSDS#9 Inflammatory cell infiltration
Control#10 - sCSDS#10 -

sCSDS#11 -
sCSDS#12 -
sCSDS#13 Fibrotic tissue accumulation

-: No pathological abnormality.
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Figure 3. (a–c) The histological sections of the heart from sCSDS mouse #1 are shown. The fibrotic
tissue accumulation is depicted at lower (a), middle (b), and higher (c) magnifications. (d–f) The
histological sections of the hearts from the sCSDS #3 are presented (a–c). The inflammatory cell
infiltration is depicted at lower (a), middle (b), and higher (c) magnifications. (g) The average fibrotic
area (µm2) from 10 continuous sections for each sample is presented in control (n = 10) and sCSDS
mice (n = 13). Values are expressed as means ± SE. # p = 0.07 by the unpaired t-test (df ; 21).

3. Discussion

In the present study, mice subjected to sCSDS showed increased food and water intake
compared to the control mice, as previously described [22]. The robust increase in water
intake could be related to polydipsia-like behavior [22]. The sCSDS mice also exhibited
social avoidance behaviors. Taken together, these results indicate that the mice used in the
present study successfully reflected the effects of sCSDS.

Furthermore, in this study, we identified seven upregulated and one downregulated
miRNAs/piRNA in the saliva of sCSDS mice. Interestingly, miR-208b-3p, which is down-
regulated in the nucleus accumbens of CSDS mice [25], was upregulated in the saliva
in this study. Thus, it is possible that miR-208b-3p is reversibly modulated in the saliva
and nucleus accumbens. The previous studies investigated the miRNAs of patients with
MDD, using their whole blood [7,8], blood serum [9,10], peripheral blood mononucleo-
cytes [11–13], and prefrontal cortex [8,14–16]. In addition, salivary miRNA biomarkers
in humans subjected to acute psychological stress using the Trier Social Stress Test were
investigated [26]. However, no identical biomarkers were found among these reports and
the eight miRNAs identified in the present study. Therefore, the present study identified
novel potential candidates of salivary biomarkers reflecting chronic and mild social stress
conditions. The present miRNA signals were not identified before and could be novel;
however, they could also be a false negative. It is possible that animal models may provide
an approach for identifying new potential biomarkers for psychological stress. In the future,
investigation of the eight salivary miRNAs/piRNAs, identified in the present study, in
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humans with chronic and mild psychological stress, will be useful for identifying human
salivary stress biomarkers.

The present study found that the expression of miR-208b-3p tended to be upregulated
in the saliva of sCSDS mice (Table 2). In particular, miR-208b is expressed in cardiac and
skeletal muscles and regulates slow myosin expression in skeletal muscles [27–29]. More-
over, miR-208b has also been suggested as a reliable biomarker, which is highly expressed
in patients with acute myocardial infarction [30,31], suggesting its role in cardiac systems.
Psychological stress is considered an independent risk factor for coronary artery disease
and myocardial stunning [32,33]. In addition, mice subjected to social defeat stress showed
altered heart rate and cardiac arrhythmias [34,35], while those subjected to two weeks
of CSDS showed fibrotic tissue accumulation in the heart [35,36]. Our additional results
also indicated that the hearts of sCSDS mice exhibited myocardial interstitial fibrosis at a
higher rate compared to the control mice (Figure 3). Thus, it is suggested that upregulation
of salivary miR-208b-3p is related to cardiac dysfunction in sCSDS mice. Thus, further
studies of myocardial system dysfunction in sCSDS mice will help understand the role
of miR-208b-3p, especially studies of psychological stress-induced heart fibrosis by the
manipulation of miR-208b-3p expression. The present study also raised the possibility
that salivary miR-208b-3p could be a potential biomarker for cardiac disease, in addition
to psychological stress. However, we found that miR-208b-3p expression tended to be
upregulated in the saliva of sCSDS mice (q < 0.1). Thus, further expression analyses in
several tissues, including salivary glands and hearts, are required to validate the expression
of this miRNA as a reliable biomarker.

In the present study, miR-378a-5p expression was upregulated in mice subjected to
sCSDS (Table 2). miR-378a-5p expression is also upregulated in the peripheral blood of
patients with bipolar disorder [7]. It has been reported that the knockout of miR-378a causes
resistance to high-fat diet-induced obesity by regulating mitochondrial metabolism [37];
thus, miR-378a is considered a potential target for obesity and metabolic syndrome. Bipolar
disorder has been suggested to be associated with mitochondrial dysfunction [38]. miR-
378 is highly expressed in brown adipose tissue (BAT) [37], and the expression of miR-
378 reportedly increased during BAT differentiation [39]. The SDS rats showed BAT
thermogenesis and hyperthermia [40], while CSDS mice showed increased BAT weight [41].
Thus, it is possible that BAT could be a potential candidate for salivary miR-378a-5p in
sCSDS mice.

We discovered that miR-3064-3p expression was upregulated in the saliva of sCSDS
mice (Table 2). It has been reported that miR-3064-3p is involved in cementoblast dif-
ferentiation [42]. To the best of our knowledge, among the seven upregulated and one
downregulated miRNA/piRNAs in the saliva of sCSDS mice, the possible functions of the
other miRNA/piRNAs other than miR-208b-3p, miR-378a-5p and miR-3064-3p, have not
been reported.

Pathway analyses revealed that multiple pathways were significantly related to
the miRNAs up/downregulated by sCSDS (Table 3). The pathways related to energy
metabolism, such as oxidative phosphorylation and pentose phosphate pathway, were
significantly related to sCSDS (Table 3). In the oxidative phosphorylation pathway, the
present gene ontology term analysis suggested that a lipid-soluble part of ATP synthase,
atp5j, and nicotinamide adenine dinucleotide dehydrogenases, ndufa8 and ndufb6, are
related to the miRNAs modulated by sCSDS. It has been suggested that multiple nduf
proteins, including ndufa8 and ndufb6, were downregulated by corticosterone treatment
in the neural stem cell line, C17.2 cells [43]. In addition, it has been suggested that CSDS
downregulates oxidative metabolism in the brain of rats [44]. Moreover, consistent with the
present results, multiple studies have commonly suggested that the gut microbiota found in
patients with MDD are related to the pentose phosphate pathway [45–47]. It is known that
the pentose cycle is a major source of nicotinamide adenine dinucleotide phosphate, and
this can inactivate reactive oxygen species, which mediates oxidative stress [48]. Multiple
studies have suggested that oxidative stress is associated with the pathophysiology of
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social stress [49] and depression [50]. Therefore, the present study suggested the possibility
that miRNAs related to the pentose phosphate pathway might play important roles in
oxidative stress responses in depression. Taken together, the present results may provide
new insights into the involvement of miRNAs in energy metabolism induced by sCSDS.

Recently, it was reported that miRNAs were associated with stress-related disorders
using animal models, especially focusing on stress susceptibility and resilience [51–53].
It was suggested that miR-15a-5p, let-7d-5p, miR-511-5p, and miR497a-5p, which target
the two key post-traumatic stress disorder-related genes, FKBP5 and BDNF, were differen-
tially modulated in the several brain regions of the post-traumatic stress disorder-related
susceptible and resilient mice [51]. Another study reported that 14 miRNAs, including
let-7e, were modulated in the prefrontal cortex of three mouse strains, showing various
susceptibilities to stress, subjected to the restraint stress paradigm [52]. More recently, it
was suggested that the modulation of miR-144-3p could reduce the depression-related
phenotypes in stress-susceptible mice [53]. These recent results strongly suggested that
miRNA expression profiles could be reflected in the stress susceptibilities. Therefore, fur-
ther studies using saliva from the multiple stress-susceptible and stress-resilient animals
could provide diagnostic markers for identifying stress susceptibilities.

In the metabolome analyses, there were no salivary metabolites, which were signifi-
cantly different between the sCSDS and control mice, in contrast to the present salivary
miRNA profiles (Table 2). The differences between the present results obtained from
miRNA-seq and metabolomic analyses might be derived from exosomes, which protect
miRNAs from digestion [4].

This is the first report showing the potential candidates of salivary miRNA biomarkers
of stress. Therefore, there are a few limitations in this study. First, to identify the robust
and comprehensive salivary miRNA biomarkers, this study used saliva samples from the
stress-susceptible mice only. However, further studies are needed using saliva samples not
only from stress-susceptible mice but also from stress-resilient mice, as well as other stress
model animals and humans to obtain accurate results. Second, we tested only male sCSDS
and control mice. Therefore, the saliva samples from female depression models should also
be analyzed in the future study [54].

4. Materials and Methods
4.1. Animals

This study was carried out according to the Law Concerning the Human Care and
Control of Animals (Law No. 105; 1 October 1973), the Japanese Government Notification
on the Feeding and Safekeeping of Animals (Notification No. 6; 27 March 1980), and
the ARRIVE guidelines. It was approved by the Committee for Laboratory Animal Care
and Use at Ibaraki University according to the guidelines of the Experimental Animal
Committee (approval no.: 20170).

Male c57BL/6J (B6) (6-week-old) and Slc:ICR (ICR) mice (retired, older than 5 months)
were obtained from CLEA Japan (Tokyo, Japan) and SLC (SLC Inc., Shizuoka, Japan),
respectively. They were introduced into an air-conditioned room at Ibaraki University,
and individually housed in a single cage (143 mm × 293 mm × 148 mm; Charles River
Laboratories Japan, Kanagawa, Japan) with wood chips. All animals were given food and
water ad libitum and were kept in our animal facility with a 12-h light/dark (lights on at
7:00 am). B6 mice were fed AIN-93G pellet chow (Oriental Yeast, Tokyo, Japan) and ICR
mice were fed standard laboratory pellet chow (MF; Oriental Yeast).

4.2. Subchronic and Mild Social Defeat Stress (sCSDS)

The sCSDS paradigm was performed as previously described [22]. This paradigm
consists of (1) selection of aggressive ICR mice, (2) short-term physical contact between ICR
mice and B6 mice, and (3) long-term sensory interaction between them in a shared cage
separated by a transparent device [22,23]. Importantly, the duration of physical contact
was set at 5 min after the first attack bite on day 1, and was then reduced by 0.5 min per
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day from day 2 to day 10, as shown in a previous report [22]. The schedule of the present
study is presented in Figure 1a.

First, aggressive selection of ICR mice was performed using a method similar to that
described previously [22]. After 3 days of screening (three trials per day), aggressive
behaviors of ICR mice were evaluated by their total length of time for attacking behaviors
of each mouse, and 14 aggressive ICR mice were selected from 32 ICR mice. The retired B6
mice, which were not used for other experiments in this study, were used as screeners for
the aggressive ICR mice selection. The selected aggressive ICR mice were transferred from
single cages to individual social defeat (SD) cage (cage size: 220 mm × 320 mm × 135 mm;
Natsume Seisakusho, Tokyo, Japan), which was divided into two compartments.

The B6 mice were divided into two groups: the sCSDS (n = 15) and non-stressed
control (n = 6) groups after habituation to the environment of our facility for 2 weeks
(from day −13 to day 0). From day 1 to day 10, test individuals (B6: sCSDS group) were
exposed to a different ICR aggressor mouse each day at 10:00 a.m. To confirm the aggressive
behaviors of all trials for 10 days of sCSDS sessions, their interactions were recorded with a
video camera (Everio, JVC KENWOOD, Kanagawa, Japan). Aggressive behaviors were
evaluated as described previously [55].

After physical contact, test mice were moved into the neighboring compartment
to another aggressor for 24 h. As these two mice (B6 mice and aggressor ICR mice)
were separated by the divider, there was no physical contact between them. However,
psychological stressors from the aggressors, including visual, auditory, and olfactory
stimuli, affected B6 mice. In each experiment, 15 B6 and 14 ICR mice were used for rotation.
Control mice (B6) were kept in pairs in each compartment in SD cages with the divider for
10 days. The B6 mice were moved into the other compartment of the SD cage every day
to change the combination of mice and environments, as well as the condition of the test
mice. The sCSDS paradigm was performed twice for the microRNA-seq and metabolomic
analyses. Therefore, we used a total of 42 B6 mice (30 in the stress group and 12 in the
control group) in the present study.

4.3. Social Interaction Test

On day 11 in the morning (10:00 am), social behaviors were tested using previously
described methods [19]. Briefly, a plastic interaction box with three wire-mesh windows
was placed in an open-field arena (400 mm × 400 mm × 400 mm) and a 6–7 cm-wide
area surrounding the interaction box was set as an interaction zone. Behaviors of the B6
mice were monitored for 2.5 min with the empty box (target absent), and subsequently
the behaviors were monitored for 2.5 min in the target condition (with unfamiliar male
ICR mice). SI scores (% of target absent) were calculated as 100 × (interaction time with
target present/interaction time with target absent), as described previously [19]. A SI
score >100 points indicates that the B6 mice exhibited socially interactive behavior with
the unfamiliar male ICR mice. A SI score <100 points indicates that the B6 mice expressed
lower socially interactive behavior with the ICR mice.

4.4. Sample Collection

After a 3-h fast in the morning (7:00 a.m.–10:00 a.m.) on day 12, the mice were
anesthetized using 3% isoflurane for 3 min and intraperitoneally injected with 100 µL
of 1.0 mg/mL pilocarpine-HCl (FujiFilm Wako Pure Chemical Corp., Osaka, Japan) to
induce salivary secretion. Then, the mice were anesthetized using 3% isoflurane for 1 min,
and saliva was collected using 200-µL micropipettes for 9 min. The saliva samples were
centrifuged at approximately 5000× g for 15 min at 4 ◦C and stored at −80 ◦C until
further use.

For the microRNA analysis, among the 21 B6 mice (6 and 15 mice in the control and
sCSDS groups, respectively), five saliva samples from the control group and five from the
sCSDS group with lower SI scores were selected and applied. For the metabolome analyses,
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among the 21 B6 mice, six saliva samples from the control group and six from the sCSDS
group with lower SI scores were selected and applied.

4.5. Saliva microRNA-seq Analysis

Total RNA, including miRNA, was isolated from saliva samples using the MicroRNA
Isolation Kit (BioChain Institute Inc., Newark, CA, USA). Total RNA samples were sent to
the DNA Chip Research Inc., Tokyo, for the saliva microRNA-seq analysis. The quality of
the RNA samples was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA) with an Agilent RNA6000 pico kit and Agilent small RNA kit
(Agilent Technologies). We confirmed that the samples consisted mostly of small RNAs.
Sequencing libraries were constructed using the QIAseq miRNA Library Kit (Qiagen,
Hilden, Germany). The QIAseq miRNA library kit adopts a unique molecular index (UMI)
system, enabling unbiased and accurate quantification of mature miRNAs. The quality of
the libraries was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies) with a
high sensitivity DNA kit (Agilent Technologies). We confirmed that the library sizes were
between 155 and 200 bp.

Equally pooled libraries were sequenced using NextSeq 500 (Illumina, Inc., San
Diego, CA, USA) in 76-base-pair (bp) single-end reads. More than 10,000,000 reads
were obtained from all the samples. The sequence reads were aligned to miRBase v21
(http://www.mirbase.org) and piRNABank version 1 (http://pirnabank.ibab.ac.in/) using
the GeneGlobe data analysis center (Qiagen). All reads assigned to a particular miRNA or
PIWI-interacting RNA (piRNA) were counted, and the associated UMIs were aggregated
to count unique molecules. A matrix of the UMI counts of miRNA or piRNA was sub-
jected to downstream analyses using Strand NGS 3.4 software (Agilent Technologies). UMI
counts were quantified using the trimmed mean of the M-value method [56]. PCA was per-
formed using the Strand NGS software (Strand Scientific Intelligence, Inc., San Francisco,
CA, USA).

4.6. Gene Ontology and Pathway Analyses

Gene ontology analysis was performed using Strand NGS software. Pathway anal-
ysis was performed on the WikiPathways [57] database using the PathVisio tool [58] to
determine pathways related to the genes associated with miRNAs that were significantly
up/downregulated by sCSDS in saliva. Pathway analysis was conducted using miRNAs
significantly up/downregulated (p < 0.05) and differentially expressed (fold change >2 or
fold change <−2).

4.7. Saliva Metabolome Analysis (CE-FTMS)

The CE-FTMS was performed using an Agilent 7100 CE capillary electrophoresis
system equipped with a Q Exactive Plus (Thermo Fisher Scientific Inc., Waltham, MA, USA),
Agilent 1260 isocratic HPLC pump, Agilent G1603A CE-MS adapter kit, and Agilent
G1607A CE-ESI-MS sprayer kit (Agilent Technologies). The CE-FTMS was conducted
using an analyzer by Human Metabolome Technologies Inc. (HMT, Tsuruoka, Japan),
according to HMT’s ω Scan package, using a previously described method with some
modifications [59]. In short, 40 µL of saliva samples was added to 10 µL of Milli-Q water
containing internal standards (H3304-1002, Human Metabolome Technologies Inc.). The
solutions were filtered using a Millipore 5-kDa cutoff filter (ULTRAFREE MC PLHCC,
Human Metabolome Technology Inc.) at 9100× g for 60 min at 4 ◦C. Then, the filtrates
were employed for CE-FTMS analysis. PCA was performed using the HMT’s proprietary
software, SampleStat.

4.8. Saliva Metabolome Analysis (LC-TOFMS)

Liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) was carried
out using an Agilent 1200 HPLC pump with an Agilent 6210 time-of-flight mass spectrom-
eter (Agilent Technologies). LC-TOFMS was conducted using an analyzer by HMT Inc.,

http://www.mirbase.org
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according to HMT’s LC package, by performing previously described methods with some
modifications [60,61]. Briefly, 80 µL of saliva samples was mixed with 240 µL of methanol
containing internal standards (H3304-1002, HMT Inc., Tsuruoka, Japan). The mixtures
were centrifuged at 2300× g at 4 ◦C for 5 min, and the supernatants were collected and
evaporated. Then, the supernatants, resuspended in 160 µL of 50% isopropanol (v/v), were
applied for LC-TOFMS analysis. PCA was performed using SampleStat software.

4.9. Additional Study for Detection of Histological Abnormalities

Some inflammation-related pathways were changed in sCSDS mice; we performed
an additional study for the detection of histological abnormalities in the sCSDS mice
organs. Male B6 mice (7-week-old at experiment initiation) were subjected to the sCSDS
paradigm, using the method described above (four control and seven sCSDS mice). The
mice were habituated to the environment of our facility for 1 week, and 14 aggressive
ICR mice were selected from 21 ICR mice using the aforementioned method. After a 3-h
fast in the morning (7:00 a.m.–10:00 a.m.) on day 11, the B6 mice were anesthetized using
isoflurane. The mice were euthanized by blood collection from the inferior vena cava,
followed by decapitation. In addition, male B6 mice (7-week-old at experiment initiation)
were also subjected to the sCSDS paradigm (six control and six sCSDS mice). After a
3-h fast in the morning (7:00 a.m.–10:00 a.m.) on day 12 after the SI test, the mice were
euthanized by cervical dislocation followed by decapitation. The hearts were then collected,
immediately immersed in 10% neutral-buffered formalin, and embedded in paraffin wax.
Sections were cut at 4-µm thickness and stained with hematoxylin and eosin (H&E). Tissue
abnormalities were observed under a light microscope (Olympus, BX51, Tokyo, Japan) by a
veterinary pathologist in a blinded manner. Quantitative analyses were performed using
10 continuous sections per heart at 4–6 µm thickness. The sections were stained with H&E
and observed under a light microscope (Olympus BX50). The fibrotic areas (µm2) were
analyzed using the Motic Images Plus 2.3S software (version 2.3.2; Motic Corp., Kowloon
City, Kowloon, Hong Kong).

4.10. Statistical Analysis

Body weight, food intake, and water intake were analyzed by two-way ANOVA for
repeated measures to test the factors of stress, time, and stress × time. SI scores were
tested using Student’s unpaired t-tests. Data are shown as means ± SE. For miRNA-seq
and metabolomic analyses, Welch’s t-test was used to compare stress factors. To control
the p-value for multiple comparisons, the false discovery rate was determined using the
method of Benjamini and Hochberg [62] as well as that of Storey and Tibshirani [63]. The
significance threshold was set to q-value <0.1. In the pathway analysis, the pathways were
considered significantly related to sCSDS, when the standardized difference score (Z score)
was >1.96 and the permuted p-value was <0.05. The quantitative analyses of fibrotic areas
of the hearts were analyzed by the unpaired t-test.

5. Conclusions

We characterized the miRNAs/piRNA and metabolic profiles modulated in the saliva
of sCSDS mice. They could be potential candidates of early stress biomarkers in the saliva.
In addition, these miRNAs might play important roles in the pathophysiological mecha-
nisms of sCSDS, such as cardiac systems, adipogenesis, and oxidative stress responses. In
the future, studies on the newly identified biomarkers in stressed human saliva will enable
the development of reliable and early diagnosis of stress using saliva.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232214479/s1, Figure S1a–w: The histological sections of
the hearts from the control#1 (a), control#2 (b), control#3 (c), control#4 (d), control#5 (e), control#6
(f), control#7 (g), control#8 (h), control#9 (i), and control#10 (j) mice and sCSDS#1 (k), sCSDS#2
(l), sCSDS#3 (m), sCSDS#4 (n), sCSDS#5 (o), sCSDS#6 (p), sCSDS#7 (q), sCSDS#8 (r), sCSDS#9 (s),
sCSDS#10 (t), sCSDS#11 (u), sCSDS#12 (v), and sCSDS#13 (w) mice. White arrow in (M and S) shows
the area of inflammatory cell accumulation; Table S1: List of salivary miRNAs upregulated by sCSDS
(fold change > 2).; Table S2: List of salivary miRNAs downregulated by sCSDS (Fold change < −2).;
Table S3: The list of pathways related to the salivary miRNAs changed in sCSDS mice.; Table S4:
The list of salivary metabolites up/downregulated by sCSDS measured by the CE-FTMS analysis
(p-value < 0.05).; Table S5: The list of salivary metabolites up/downregulated by sCSDS measured by
the LC-TOFMS analysis (p-value < 0.05).
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