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This paper presents an analysis of the relationship of particle velocity and convergence of the particle swarm optimization. Its
premature convergence is due to the decrease of particle velocity in search space that leads to a total implosion and ultimately
fitness stagnation of the swarm. An improved algorithm which introduces a velocity differential evolution (DE) strategy for the
hierarchical particle swarm optimization (H-PSO) is proposed to improve its performance. The DE is employed to regulate the
particle velocity rather than the traditional particle position in case that the optimal result has not improved after several iterations.
The benchmark functions will be illustrated to demonstrate the effectiveness of the proposed method.

1. Introduction

Algorithms to tackle optimization problems include not
only classical techniques such as dynamic programming,
branch-and-bound, and gradient-based methods, but also
more recent techniques such as metaheuristics [1]. Among
the existing metaheuristic algorithms, the particle swarm
optimization (PSO) algorithm is a population-based opti-
mization technique developed by Kennedy and Eberhart in
1995 [2]. The PSO has resulted in a large number of variants
of the standard PSO. Some variants are designed to deal with
specific applications [3–6], and others are generalized for
numerical optimization [7–10]. A hierarchical version of PSO
(H-PSO) has been proposed by Janson and Middendorf [10].
In H-PSO, all particles are arranged in a tree that forms the
hierarchy. A particle is influenced by its own best position
and the best position particle in its neighborhood. It was
shown that H-PSO performed very well compared to the
standard PSO on unimodal and multimodal test functions
[10, 11]. H-PSO presents the advantage of being conceptually
very simple and requiring low computation time. However,
the main disadvantage of H-PSO is the risk of a premature
search convergence, especially in complex multiple peak
search problems.

A number of algorithms combined various algorithmic
components, often originating from algorithms of other
research areas on optimization. These approaches are com-
monly referred to as hybrid meta-heuristics [12]. The surveys
on hybrid algorithms that combine the PSO and differential
evolution (DE) [13] were presented recently [14, 15]. These
PSO-DE hybrids usually employ DE to adjust the particle
position. But the convergence performance is dependent
on the particle velocity. Limiting the velocity can help the
particle to get out of local optima traps [16, 17]. In this
paper, we will combine these two optimization algorithms
and propose the novel hybrid algorithm H-PSO-DE.The DE
is employed to regulate the particle velocity rather than the
traditional particle position in case that the optimal result has
not improved after several iterations. The hybrid algorithm
aims to aggregate the advantages of both algorithms to
efficiently tackle the optimization problem.

The remainder of this paper is organized as follows.
Section 2 briefly describes the basic operations of the PSO,
H-PSO, and DE algorithms. Section 3 presents an analysis
of the relationship of particle velocity and convergence.
Section 4 provides the hybrid optimization method: H-PSO-
DE. Section 5 reveals the simulations and analysis of H-PSO-
DE in solving unconstrained optimization problems. Finally,
conclusions are given in Section 6.
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2. The PSO, H-PSO, and DE Algorithms

2.1. The PSO Algorithm. The PSO [18–20] is a stochastic
population-based optimization approach. Each particle is a
𝐷-dimensional vector, and it consists of a position vector
𝑥
𝑛
, which represents a candidate solution of the optimization

problem, a velocity vector V
𝑛
, and a memory vector 𝑦

𝑛
, which

is the best candidate solution encountered by the particle.
The velocity and position of the particle are updated in every
dimension 𝑑 (1 ⩽ 𝑑 ⩽ 𝐷) by

V
𝑛,𝑑

(𝑡 + 1) = 𝑤V
𝑛,𝑑

(𝑡) + 𝑐
1
𝑟
1
(𝑦
𝑛,𝑑

(𝑡) − 𝑥
𝑛,𝑑

(𝑡))

+𝑐
2
𝑟
2
(𝑦
𝑝(𝑛),𝑑

(𝑡) − 𝑥
𝑛,𝑑

(𝑡)) ,

(1)

𝑥
𝑛,𝑑

(𝑡 + 1) = 𝑥
𝑛,𝑑

(𝑡) + V
𝑛,𝑑

(𝑡 + 1) , (2)

where 𝑤 is the inertia weight, which determines how much
of the previous velocity the particle is preserved. 𝑐

1
and

𝑐
2
are positive constants. 𝑟

1
and 𝑟

2
are randomly chosen

numbers uniformly distributed in the interval [0, 1]. 𝑦
𝑝(𝑛)

represents the best position achieved by any member of the
population.

2.2. The H-PSO Algorithm. In H-PSO [21], all particles are
arranged in a hierarchy.The hierarchy is defined by the height
h, the branching degree bd, and the total number of nodes tnn
of the corresponding tree.

In H-PSO, the iteration starts with the evaluation of the
objective function of each particle at its current position.
Then, the new velocity vectors and the new positions for the
particles are determined. This means that for particle 𝑛, the
value of 𝑦

𝑝(𝑛)
in (1) equals 𝑦

𝑚
, with𝑚 being the particle in the

parent node of the node of particle 𝑛. H-PSO uses 𝑦
𝑝(𝑛)

= 𝑦
𝑛

only when particle 𝑛 is in the root. If the function value of
a particle 𝑛 is better than the function value at its personal
best position so far, then the new position is stored in 𝑦

𝑛
. For

each particle 𝑛 in a node of the tree, its own best solution is
compared to the best solution found by the particles in the
child nodes 𝑆(𝑛). If the best of these particles𝑚 is better than
particle 𝑛, then particles 𝑛 and𝑚 swap their places within the
hierarchy.

2.3. The DE Algorithm. The DE [11, 13, 22] is a stochastic
parallel direct search method. More specifically, DE’s basic
strategy can be summarized as follows.

Initialization. DEbeginswith a randomly initiated population
of 𝑁 𝐷-dimensional parameter vectors 𝑥

𝑖,𝑔
, 𝑖 = 1, 2, . . . , 𝑁

as a population for each generation 𝑔. The initial population
(𝑔 = 0) of the 𝑗th parameter of the 𝑖th vector is

𝑥
𝑗,𝑖,0

= 𝑥
𝑗,min + rand

𝑖,𝑗
[0, 1] ⋅ (𝑥

𝑗,max − 𝑥
𝑗,min) , (3)

where 𝑥
𝑗,min and 𝑥

𝑗,max indicate the lower and upper bounds,
respectively. rand

𝑖,𝑗
[0, 1] is a uniformly distributed random

number lying between 0 and 1.

Mutation. DE mutates and recombines the population to
produce a population of𝑁 trial vectors. Specifically, for each
individual 𝑥

𝑖,𝑔
, a mutant vector 𝜐

𝑖,𝑔
is generated according to

𝜐
𝑖,𝑔

= 𝑥
𝑟
𝑖

1
,𝑔
+ 𝐹 ⋅ (𝑥

𝑟
𝑖

2
,𝑔
− 𝑥
𝑟
𝑖

3
,𝑔
) , (4)

where 𝐹, commonly known as scale factor, is a positive real
number.Three other random individuals 𝑥

𝑟
𝑖

1
,𝑔
, 𝑥
𝑟
𝑖

2
,𝑔
, and 𝑥

𝑟
𝑖

3
,𝑔

are sampled randomly from the current population such that
𝑟
𝑖

1
, 𝑟
𝑖

2
, 𝑟
𝑖

3
∈ {1, 2, . . . , 𝑁}, and 𝑖 ̸= 𝑟

𝑖

1
̸= 𝑟
𝑖

2
̸= 𝑟
𝑖

3
.

Crossover. DE crosses each vector with a mutant vector:

𝑢
𝑗,𝑖,𝑔

= {

𝜐
𝑗,𝑖,𝑔

, if (rand
𝑖,𝑗

[0, 1] ≤ 𝐶
𝑟
or 𝑗 = 𝑗rand) ,

𝑥
𝑗,𝑖,𝑔

, otherwise,
(5)

where 𝐶
𝑟
is called the crossover rate.

Selection. To decide whether or not it should become a
member of generation𝑔+1, the trial vector 𝜐

𝑖,𝑔
is compared to

the target vector 𝑥
𝑖,𝑔

using the greedy criterion.The selection
operation is described as

𝑥
𝑖,𝑔+1

= {

𝑢
𝑖,𝑔
, if 𝑓 (𝑢

𝑖,𝑔
) ≤ 𝑓 (𝑥

𝑖,𝑔
) ,

𝑥
𝑖,𝑔
, otherwise,

(6)

where 𝑓(𝑥) is the objective function to be minimized.

3. Relationship of Particle Velocity
and Convergence

This section presents an analysis of the relationship of particle
velocity and convergence.

Substituting (1) into (2) results in

𝑥
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From (2), it is known that

V
𝑛,𝑑

(𝑡) = 𝑥
𝑛,𝑑

(𝑡) − 𝑥
𝑛,𝑑

(𝑡 − 1) . (8)
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Step 1. Initialize particles in swarm. Initialize location 𝑥
𝑛
, and velocity V

𝑛

of each particle 𝑛. Best position 𝑦
𝑛
= 𝑥
𝑛
.

Step 2. Evaluate objective function 𝑓(𝑥
𝑛
) and update personal best.

for each particle 𝑛, do
if 𝑓(𝑥

𝑛
) < 𝑓(𝑦

𝑛
) then

𝑦
𝑛
= 𝑥
𝑛

end if
end for

Step 3. Swap particles.
for each particle 𝑛, do
Determine the best successor𝑚 = arg
min {𝑓 (𝑦

𝑞
) | 𝑞 ∈ 𝑆 (𝑛)}, where are the successors of 𝑛.

if 𝑓(𝑦
𝑚
) < 𝑓(𝑦

𝑛
) then

Swap particles 𝑛 and𝑚

end if
end for

Step 4. Update the position and velocity of the 𝑛th particle.
for each particle 𝑛, do

Update the velocity V
𝑛
in each dimension 𝑑:

V
𝑛,𝑑

= 𝑤V
𝑛,𝑑

+ 𝑐
1
𝑟
1
(𝑦
𝑛,𝑑

− 𝑥
𝑛,𝑑

) + 𝑐
2
𝑟
2
(𝑦
𝑝(𝑛),𝑑

− 𝑥
𝑛,𝑑

)

Move the particle: 𝑥
𝑛,𝑑

= 𝑥
𝑛,𝑑

+ V
𝑛,𝑑

end for
Step 5. Judge the evolution process of H-PSO.

if (𝑔
0
==𝐺
0
), then

goto Step 6
else goto Step 7

end if
Step 6. Update the velocity and position of the particle according to (16).

if 𝑓(𝑥󸀠
𝑛
) < 𝑓(𝑥

𝑛
) then 𝑥

𝑛
= 𝑥
󸀠

𝑛

end if
Step 7. If a stopping criterion is met, then output the global best position and stop;

otherwise, repeat Step 2–Step 6.

Algorithm 1: Procedure for the H-PSO-DE.

This recurrence relation can be written as a matrix-vector
product, so that

[

[

𝑥
𝑛,𝑑
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1
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0 0 1
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1

]

]

.

(10)
The characteristic polynomial of the matrix in (10) is (1 −

𝜆)(𝑤 − 𝜆(1 + 𝑤 − 𝑐
1
𝑟
1
− 𝑐
2
𝑟
2
) + 𝜆
2

), which has a trivial root of
𝜆 = 1 and two other solutions

𝛼 =
(1 + 𝑤 − 𝑐

1
𝑟
1
− 𝑐
2
𝑟
2
+ 𝛾)

2
,

𝛽 =
(1 + 𝑤 − 𝑐

1
𝑟
1
− 𝑐
2
𝑟
2
− 𝛾)

2
,

(11)

where 𝛾 = √(1 + 𝑤 − 𝑐
1
𝑟
1
− 𝑐
2
𝑟
2
)
2

− 4𝑤.

Note that 𝛼 and 𝛽 are both eigenvalues of the matrix in
(10). The explicit form of the recurrence relation (9) is then
given by

𝑥
𝑛,𝑑

(𝑡) = 𝑘
1
+ 𝑘
2
𝛼
𝑡

+ 𝑘
3
𝛽
𝑡

, (12)

where 𝑘
1
, 𝑘
2
, and 𝑘

3
are constants determined by the initial

conditions of the system.
Substituting (12) into (8) results in

V
𝑛,𝑑

(𝑡) = ℎ
1
𝛼
𝑡

+ ℎ
2
𝛽
𝑡

, (13)

where ℎ
1
= 𝑘
2
(1 − 1/𝛼), ℎ

2
= 𝑘
3
(1 − 1/𝛽).

Consider

lim
𝑡→∞

V
𝑛,𝑑

(𝑡) = lim
𝑡→∞

(ℎ
1
𝛼
𝑡

+ ℎ
2
𝛽
𝑡

) , (14)

lim
𝑡→∞

V
𝑛,𝑑

(𝑡)

= {

0, if max (‖𝛼‖ , 󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩) < 1,

ℎ
1
or ℎ
2
or ℎ
1
+ ℎ
2
, if max (‖𝛼‖ , 󵄩󵄩󵄩󵄩𝛽

󵄩󵄩󵄩󵄩) = 1.

(15)

Equation (15) implies that if the PSO algorithm is conver-
gent, the velocity of the particles will decrease to zero or stay
unchanged until the end of the iteration.
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Figure 1: An illustration for 2-dimensional landscapes of the test functions. (a) Sphere function; (b) Rosenbrock function; (c) Rastrigin
function; (d) Griewank function; (e) Ackley function; and (f) Schaffer’s F6.

4. The Proposed H-PSO-DE Algorithm

The main idea of the hybrid H-PSO-DE algorithm is to
employ the DE to regulate the particle velocity rather than
the traditional particle position in case that the optimal result
has not improved after several iterations. If the swarm is going
to be in equilibrium, the evolution process will be stagnated
as time goes on. To prevent the trend, if the stagnating step

of evolution process 𝑔
0
is larger than threshold value 𝐺

0
, the

particle velocity performs mutation operators. The velocity
and position of the particles are updated as follows.

If (rand() < 𝐶
𝑟
or 𝑑 == 𝑘, 𝑘 ∈ [1, 𝐷]), then

V
󸀠

𝑛,𝑑
= V
𝑛,𝑑

+ 𝐹 ⋅ (V
1,𝑑

− V
2,𝑑

) ,

𝑥
󸀠

𝑛,𝑑
= 𝑥
𝑛,𝑑

+ V
󸀠

𝑛,𝑑
,

(16)
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Table 1: Comparing the mean value of H-PSO-DE with respect to
the other state-of-the-art algorithms.

Function Mean value of the solution
H-PSO-DE H-PSO DE PSO-DE

𝑓
1

2.06𝑒 − 8 6.13𝑒 − 7 7.29𝑒 − 5 6.80𝑒 − 7

𝑓
2

3.23𝑒 − 7 5.14𝑒 − 7 2.14𝑒 − 6 7.95𝑒 − 7

𝑓
3

1.77𝑒 − 6 3.26𝑒 − 5 5.21𝑒 − 3 8.03𝑒 − 5

𝑓
4

1.08𝑒 − 7 1.19𝑒 − 6 5.61𝑒 − 5 1.01𝑒 − 6

𝑓
5

2.01𝑒 − 9 3.15𝑒 − 9 4.21𝑒 − 7 8.17𝑒 − 9

𝑓
6

3.09𝑒 − 10 7.14𝑒 − 10 7.26𝑒 − 9 9.50𝑒 − 10

where 𝑥
𝑛,𝑑

= 𝑟 ⋅ 𝑦
𝑛,𝑑

+ (1 − 𝑟) ⋅ 𝑦
𝑝(𝑛),𝑑

, 𝑟 is a random number
in the interval [0, 1], and V

1,𝑑
and V
2,𝑑

are sampled randomly
from V

𝑛
.

The procedure for H-PSO-DE algorithm is presented in
Algorithm 1.

5. Simulations and Results

In this section, we present a simulation study to validate the
proposed H-PSO-DE algorithm. A set of test functions that
are commonly used in the field of continuous function opti-
mization is listed in the appendix.They are a set of curvilinear
functions for difficult unconstrainedminimization problems.
For illustration, the landscapes of two-dimensional versions
of the six functions are depicted in Figure 1. The first two
functions (Sphere and Rosenbrock) are unimodal functions,
and they have a single local optimum that is also the global
optimum. The remaining functions are multimodal, and
they have several local optima. Note that the dimensional
increase of these scalable functions does not change their
basic features.

In our experiments, the H-PSO uses the parameter values
𝑤 = 0.729, and 𝑐

1
= 𝑐
2
= 1.494 as suggested in [23] for a faster

convergence rate. The population size that has been used is
𝑁 = 21. The maximal number of generations uses 𝐺 = 5000.
The remainder parameters are set as 𝐶

𝑟
= 0.5, 𝐹 = 0.6,

𝑟 = 0.5, 𝐺
0
= 8, ℎ = 3, and 𝑏𝑑 = 4. Thirty independent runs

were carried out. The convergence behavior of the H-PSO is
shown in Figure 2. For comparison purpose, the H-PSO-DE
is also given in the same figure. As shown in Figure 2, the
convergence performance of the H-PSO-DE is better than
the H-PSO. H-PSO-DE is compared with H-PSO, DE, and
PSO-DE [1] in terms of the selected performance metrics,
such as the mean, maximum, and minimum values. In DE,
we use DE/rand/1/bin strategy (𝐶

𝑟
= 0.5, 𝐹 = 0.6). As shown

in Tables 1, 2, and 3, the H-PSO-DE outperforms H-PSO,
DE, and PSO-DE. The H-PSO-DE is quite competitive when
compared with the other existing methods.

6. Conclusions

In this paper, a new method named H-PSO-DE is proposed
to solve optimization problems, which improves the per-
formance of the H-PSO by incorporating DE. In H-PSO-
DE, when the evolution process is stagnated for several

Table 2: Comparing themaximumvalue ofH-PSO-DEwith respect
to the other state-of-the-art algorithms.

Function Maximum value of the solution
H-PSO-DE H-PSO DE PSO-DE

𝑓
1

6.35𝑒 − 8 8.74𝑒 − 7 6.20𝑒 − 3 4.81𝑒 − 6

𝑓
2

5.94𝑒 − 7 6.61𝑒 − 7 7.24𝑒 − 4 1.25𝑒 − 6

𝑓
3

7.12𝑒 − 6 4.91𝑒 − 5 6.16𝑒 − 2 2.73𝑒 − 4

𝑓
4

4.25𝑒 − 7 3.46𝑒 − 6 4.91𝑒 − 3 2.51𝑒 − 6

𝑓
5

4.34𝑒 − 9 5.24𝑒 − 9 7.61𝑒 − 5 9.42𝑒 − 9

𝑓
6

5.32𝑒 − 10 1.81𝑒 − 9 2.81𝑒 − 8 1.05𝑒 − 9

Table 3: Comparing theminimum value of H-PSO-DEwith respect
to the other state-of-the-art algorithms.

Function Minimum value of the solution
H-PSO-DE H-PSO DE PSO-DE

𝑓
1

9.34𝑒 − 9 5.21𝑒 − 7 5.28𝑒 − 7 5.94𝑒 − 8

𝑓
2

1.56𝑒 − 7 4.26𝑒 − 7 3.92𝑒 − 7 2.63𝑒 − 7

𝑓
3

8.35𝑒 − 7 2.74𝑒 − 5 1.97𝑒 − 4 6.91𝑒 − 6

𝑓
4

8.61𝑒 − 8 7.54𝑒 − 7 3.71𝑒 − 6 3.08𝑒 − 7

𝑓
5

5.97𝑒 − 10 2.01𝑒 − 9 8.87𝑒 − 8 9.86𝑒 − 10

𝑓
6

1.23𝑒 − 10 3.51𝑒 − 10 6.24𝑒 − 10 2.37𝑒 − 10

generations, all the particles may lose the ability of finding
a better solution. Then, the DE is employed to regulate the
particle velocity to avoid wasting too much calculation time
for vain search, so the searching efficiency of the H-PSO-
DE is improved greatly. The H-PSO-DE is compared on test
functions with H-PSO, DE, and PSO-DE. It is shown that H-
PSO-DE performs significantly better.

Appendix

Benchmark Functions

Sphere:

𝑓
1
(𝑥) =

30

∑

𝑖=1

𝑥
2

𝑖
, −50 ≤ 𝑥

𝑖
≤ 50,

min (𝑓
1
) = 𝑓
1
(0, . . . , 0) = 0.

(A.1)

Rosenbrock:

𝑓
2
(𝑥) =

29

∑

𝑖=1

(100(𝑥
𝑖+1

− 𝑥
2

𝑖
)
2

+ (𝑥
𝑖
− 1)
2

) ,

− 30 ≤ 𝑥
𝑖
≤ 30,

min (𝑓
2
) = 𝑓
2
(1, . . . , 1) = 0.

(A.2)



6 Computational Intelligence and Neuroscience

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−9

−8

−7

−6

−5

−4

−3

−2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−8

−7

−6

−5

−4

−3

−2

−1

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−10

−9.5

−9

−8.5

−8

−7.5

Number of generations

So
lu

tio
n 

qu
al

ity
 (l

og
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−10.5

−10

−9.5

−9

−8.5

−8

−7.5

Number of generations

Number of generations Number of generations

Number of generations Number of generations

So
lu

tio
n 

qu
al

ity
 (l

og
)

So
lu

tio
n 

qu
al

ity
 (l

og
)

So
lu

tio
n 

qu
al

ity
 (l

og
)

So
lu

tio
n 

qu
al

ity
 (l

og
)

So
lu

tio
n 

qu
al

ity
 (l

og
)

H-PSO
H-PSO-DE

H-PSO
H-PSO-DE

f1 f2

f3 f4

f5 f6

Figure 2: Convergence graph of the H-PSO and the H-PSO-DE for 𝑓
1
–𝑓
6
.

Rastrigin:

𝑓
3
(𝑥) =

30

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) ,

− 5.12 ≤ 𝑥
𝑖
≤ 5.12,

min (𝑓
3
) = 𝑓
3
(0, . . . , 0) = 0.

(A.3)

Griewank:

𝑓
4
(𝑥) =

1

4000

30

∑

𝑖=1

𝑥
2

𝑖
− Π
30

𝑖=1
cos(

𝑥
𝑖

√𝑖

) + 1,

− 600 ≤ 𝑥
𝑖
≤ 600,

min (𝑓
4
) = 𝑓
4
(0, . . . , 0) = 0.

(A.4)
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Ackley:

𝑓
5
(𝑥) = −20 exp(−0.2√

1

30

30

∑

𝑖=1

𝑥
2

𝑖
)

− exp(
1

30

30

∑

𝑖=1

cos 2𝜋𝑥
𝑖
)

− 32 ≤ 𝑥
𝑖
≤ 32,

min (𝑓
5
) = 𝑓
5
(0, . . . , 0) = 0.

(A.5)

Schaffer’s F6:

𝑓
6
(𝑥) = 0.5 +

(sin√𝑥
2

1
+ 𝑥
2

2
) − 0.5

(1 + 0.001 (𝑥
2

1
+ 𝑥
2

2
))
2
,

− 100 ≤ 𝑥
𝑖
≤ 100,

min (𝑓
6
) = 𝑓
6
(0, 0) = 0.

(A.6)
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