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Abstract

The purpose of this study was to investigate the feasibility of using neck-surface acceleration 

signals to discriminate between modal, breathy and pressed voice. Voice data for five English 

single vowels were collected from 31 female native Canadian English speakers using a portable 

Neck Surface Accelerometer (NSA) and a condenser microphone. Firstly, auditory-perceptual 

ratings were conducted by five clinically-certificated Speech Language Pathologists (SLPs) to 

categorize voice type using the audio recordings. Intra- and inter-rater analyses were used to 

determine the SLPs’ reliability for the perceptual categorization task. Mixed-type samples were 

screened out, and congruent samples were kept for the subsequent classification task. Secondly, 

features such as spectral harmonics, jitter, shimmer and spectral entropy were extracted from the 

NSA data. Supervised learning algorithms were used to map feature vectors to voice type 

categories. A feature wrapper strategy was used to evaluate the contribution of each feature or 

feature combinations to the classification between different voice types. The results showed that 

the highest classification accuracy on a full set was 82.5%. The breathy voice classification 

accuracy was notably greater (approximately 12%) than those of the other two voice types. 

Shimmer and spectral entropy were the best correlated metrics for the classification accuracy.
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1. Introduction

Voice quality describes a wide range of multifaceted perceptual characteristics of human 

voice [1]. One of these characteristics is the voice type. Breathy, modal and pressed voice 

have been viewed on a continuum paradigm of phonation in terms of vocal fold contact area 

and open quotient [2]. Electroglottalgraph waveforms have shown that breathy voice 

featured a small Vocal Fold (VF) contact area and a large open quotient, and thus implied a 

low laryngeal resistance [3]. Pressed voice displayed opposite trends [3]. Methods of voice 

type classification may broadly be subdivided into two categories: (1) subjective methods; 

and (2) objective methods. The perceptual judgement of voice quality by panels of listeners 

(as opposed to self-evaluation) is still considered the gold standard for clinical voice 

evaluation and monitoring [4–7]. Recency effect and listener experience could confound an 

individual’s perceptual ratings [8,9]. Notably, as perceptual voice assessment tools are 

context-specific, clinicians have limited ability to provide long-term monitoring and 

evaluation of patient’s voice quality outside the clinic. Long-term voice data acquisition and 

monitoring is known to be challenging to implement in occupational settings. Automatic 

voice type discrimination based on ambulatory device data is therefore needed.

Objective methods involve the processing of dynamic signals obtained from sensors and the 

calculation of metrics using a vast array of signal processing schemes. The microphone has 

primarily been used in a vast majority of voice quality studies [10–13]. Although 

microphones are convenient, easy to use in the field and have a large bandwidth, the 

captured voice signals are often contaminated by background noise, and they are distorted 

by reverberation in the surrounding spaces. The large bandwidth of the microphone provides 

a broad spectral range, but the associated speech intelligibility implies privacy disclosure, 

which may be of concern for long-term voice monitoring applications.

The Neck Surface Accelerometer (NSA) offers a viable alternative to microphones for the 

capture of voice signals [14–18]. The NSA is a small sensor that measures the vibration 

acceleration in the direction normal to the neck surface. During speech, neck tissue 

vibrations are mainly produced by the transmission of structure-borne vibrations induced by 

the acoustic waves in the subglottal and supraglottal portions of the vocal tract to the neck 

skin surface. Data are acquired through a wearable recorder or a smartphone. The NSA has a 

good sensitivity and bandwidth, but the neck tissue tends to dissipate high frequency 

vibrations, and thereby acts as a low-pass filter. Consequently, the bandwidth of the NSA 

signals is less than 1.5 kHz. The NSA mounted on the below-glottis skin surface can hardly 

capture formant information, which is important for speech intelligibility. Thus, the NSA 

protects speakers’ privacy.

The NSA signals accurately convey the features of the voice source such as fundamental 

frequency (f0) and vocal amplitude [19]. A semi-empirical model was reported to correlate 

Surface Acceleration Level (SAL) with Sound Pressure Level (SPL) based on 27 

participants’ data [20]. Glottal source characteristics such as the Maximum Flow Declination 

Rate (MFDR) and Harmonic Richness Factor (HRF) have been estimated from NSA signals 

using subglottal inverse filtering [21]. A comparison between vocal function measures 
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derived from an acoustic microphone and from am NSA has also shown that f0 and jitter are 

congruent (p > 0.98), but shimmer is less correlated (p < 0.7) [17].

The first level of objective voice evaluation and classification is normally based on statistical 

analysis on voice metrics extracted from recorded voice signals. A plethora of temporal, 

spectral and cepstral metrics have been proposed [2,22–24]. Jitter and shimmer measures of 

fundamental frequency and loudness perturbations were found to correlate with voice 

quality based on microphone data [25]. MFCCs and Cepstral Peak Prominence (CPP) have 

been used to discriminate between modal, breathy, strained and other voice types based on 

microphone data [11,26]. The difference between the amplitudes of the first two harmonic 

components on microphone and NSA spectra, H1–H2, was found to be correlated with 

perceived speech breathiness [13,14]. Glottal flow waveforms obtained using the Glottal 

Inverse Filtering (GIF) method have been used for differentiation between modal and 

pathological voice through the estimation of the MFDR and other residue quantities [27,28]. 

However, the accuracies of processing close rounded vowels using the GIF method were 

unacceptable and would limit the use of the GIF for continuous speech. Thus far, no single 

metric could show a good statistical separation between different voice types, such as modal, 

breathy and pressed.

A second level of analysis that uses multiple features is usually needed to obtain effective 

evaluation. Secondary processing tools, such as expert systems or machine learning 

algorithms, require that the mathematical algorithms first be calibrated through the 

adjustments of model parameters that are data-specific. The Hidden Markov Model (HMM), 

Support Vector Machine (SVM) and Artificial Neural Network (NN) were used to improve 

the performance on classification between different voice qualities based on microphone 

features [29,30]. A Gaussian Mixture Model (GMM) using Mel-Frequency spectral 

Coefficients (MFCCs) extracted from neck-surface vibration signals achieved 80.2% and 

89.5% accuracies in classifying modal, breathy, pressed and rough types at the frame level 

and utterance level, respectively [11]. Machine learning algorithms critically require, for 

accurate results, that the calibration be done against a “ground truth”, or gold standard. In 

the case of voice quality classification, the “ground truth” consists of subjective evaluation 

by a panel of trained listeners, with intra- and inter-rater analysis [11].

The NSA technology has recently been applied for voice type discrimination with the use of 

a Gaussian mixture model [31]. However, the work reported so far in this area has not used a 

comprehensive listener panel dataset with inter- and intra-rater analysis as the ground truth. 

The present study attempted to bridge this gap. The overarching idea is to provide automatic 

detection of voice type and provide long-term monitoring of voice routines based on 

accumulated datasets. The objective of the present study was to investigate the feasibility of 

using NSA signals and supervised learning techniques to discriminate between three voice 

types, namely modal, breathy and pressed. The paper is organized as follows: Section 2 

describes the NSA hardware and the data acquisition process. Section 3 describes the 

subjective auditory-perceptual voice type rating task using an online system. Section 4 

describes how features were extracted and used for machine learning classification. Section 

5 shows the classification and analysis results based on different feature sets. The 

conclusions, the limitations of this study and future work are discussed in Section 6.
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2. Experimental Setup and Data Acquisition

2.1. Hardware Platform Description

The acoustic sensor used in the NSA for neck-skin vibration monitoring was a miniature 

accelerometer (BU-27135, Knowles Inc., Itasca, IL, USA). One customized peripheral 

circuit, consisting of one power supply module and one amplifier module, was fabricated 

using the Printed Circuit Board (PCB) technique. Four lithium coin batteries (CR2032, 

Panasonic Inc., Japan; nominal voltage and capacity: 3 V and 225 mAh) were used as the 

power source. The interface between the peripheral circuit board and the accelerometer was 

one 3.5-mm stereo audio cable, of which the three wires corresponded to the positive, 

ground and signal channels. One voice recorder (ICD-UX565F, Sony Inc., Tokyo, Japan) 

was employed to record the acceleration data with high fidelity. The hardware components 

are shown in Figure 1. To increase the sensitivity of the accelerometer, one silicon pad 

(Ecoflex 00–30, Part A and Part B with a 1:1 ratio, Smooth-On Inc., Macungie, PA, USA) 

was fabricated to encapsulate the accelerometer and increase the contact area between the 

accelerometer and neck skin. The silicon pad was moulded to obtain a flat (diameter: 28 cm) 

and thin (thickness: 1.2 mm) circular pedestal. An adhesive was used to mount the silicon 

pad on neck skin firmly. The Sony voice recorder supports multiple options for sampling 

rate, encoding format (MP3: 48 kbps/128 kpbs/192 kbps; Linear Pulse Code Modulation 

(LPCM): 44.1 kHz, 16-bit) and compatible memory cards. The voice data were saved in 

WAV format audio files and were transferred to a PC for analysis through the USB interface. 

The uniformity of the NSA frequency response was verified using Laser Doppler 

Velocimetry (LDV) in a Gaussian white noise test. The transfer function between the LDV 

and the NSA signals is shown in Figure 2. The frequency bandwidth of the NSA was around 

3000 Hz.

2.2. Voice Recording Process

The human study protocol (A09-M46–11A) was approved by the Institutional Review Board 

at McGill University. The experiment was conducted in a voice recording studio. 

Participants were 31 native Canadian English speakers aged from 18–40 years. All 

participants were females and had no history of voice disorders or laryngeal discomfort 

during the experiment, as self-reported subjectively. The protocol for each participant began 

with a training session followed by a formal recording session. The duration of the entire 

session for each participant was approximately 30 min. During the training session, the 

participants were instructed by an SLP to practice producing five vowels in the three target 

voice types (modal, breathy and pressed). The five vowels were [aː] in “father’, [æ] in “cat”, 

[e] in “bed”, [iː] in “heat” and [uː] in “food”. Each vowel is characterized by one unique 

vocal tract shape [32]. In this experiment, only glottal articulators (i.e., intrinsic laryngeal 

muscles) were expected to vary across different voice qualities. The vocal tract shape was 

presumed to remain constant for the same vowel. The influence of pitch and loudness on 

voice type discrimination was not considered and was left outside the scope of this study. 

The SLP provided exemplars of different voice types and kinesthetic tasks of laryngeal 

muscles to aid accurate replication of modal, breathy and pressed voice types. The 

participants did not proceed to formal recording until the SLP confirmed they could reliably 

produce all three voice types. During the formal recording session, the participants were 
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required to pronounce stable and sustained vowels for at least two seconds. The Linear Pulse 

Code Modulation (LPCM) encoding mode with a 44.1-kHz sampling rate in the SONY 

voice recorder was used. The participants were required to produce the three different types 

with short breaks between each vowel. During each utterance, the participants were required 

to maintain the pitch and loudness at their greatest effort. Repetition of the corresponding 

utterance was required until the target voice type was met, as judged by the SLP.

3. Auditory-Perceptual Screening

Most participants experienced difficulties in producing consistent breathy and pressed voice 

types, as reported by the on-site monitoring SLP. A mixed voice quality or other quality 

dimensions such as vocal tremor were sometimes perceived in the formal recording session. 

The recorded microphone data were perceptually assessed independently by five SLPs in 

order to validate each token’s membership to a voice quality category. The SLPs were 

blinded to the purpose of the study and the information of voice samples. Since there is no 

validated perceptual tool to facilitate assessment of voice quality in two-second tokens, a 

customized website was developed to allow the SLPs to categorize the single vowel samples. 

Screenshots of the online system are shown in Figure 3. The SLPs were required to select a 

voice quality category (modal, breathy, pressed or none of the above) and a confidence level 

for the specific token’s categorical membership. Distractor samples, with other voice quality 

dimensions, such as tremor, were added into the dataset to ensure use of the “none of the 

above” category and reduce any selection bias towards the three target types. The comment 

box was utilized to describe perceptually any samples categorized as “none of above”. The 

SLPs were required to pass a training test (eight of 10 correctly categorized sample tokens) 

before proceeding to the formal rating.

Inter-rater reliability analysis was used to evaluate the agreement among raters. Fleiss’ 

Kappa method was used to assess the SLPs’ reliabilities on categorical ratings. The 

parameters for the analysis were five raters, four categories (modal, breathy, pressed and 

none of the above) and 1595 samples. According to the κ value interpretation proposed by 

Landis and Koch, the resulting (κ = 0.7322) value indicated a substantial reliability among 

SLPs. Intra-rater reliability was evaluated by calculating the ICC (Intra-class Correlation 

Coefficient) using IBM SPSS Statistics 24 on 200 duplicated samples. The ICC was 

calculated using the two-way random model, as participants and raters were chosen 

randomly from a large population. Absolute agreement was targeted. The κ values for all 

five SLPs revealed “almost perfect” reliability (0.802, 0.863, 0.874, 0.931, 0.952) based on 

their rating results on the 200 duplicated samples, as interpreted in [33].

The auditory-perceptual screening process was used to obtain ground-truth voice type labels 

for single vowel phonation and to screen out samples with mixed or inconsistent voice 

qualities [11]. In this study, “pure samples” were defined as any sample whereupon at least 

four out of five raters agreed on the voice type label with a minimum confidence level of 

80%. The screening results showed that 952 out of 1395 samples were rated as “pure”. The 

numbers of samples rated as “pure” voice types were 285, 395 and 273, for modal, breathy 

and pressed voice types, respectively. The number of breathy voice samples was 

approximately 40% greater than that of each other voice type sample, indicating that breathy 
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voice was easier to mimic and perceive than modal or pressed voice. Through auditory-

perceptual screening, the labels of the “pure” samples provided a ground truth dataset for 

developing an automatic voice type classification algorithm.

4. Classification

The NSA and microphone data were measured simultaneously during the experiment and 

transferred to a desktop computer for data analysis. Labels of “pure” NSA samples were 

obtained by matching with the “pure” labels obtained from the auditory-perceptual 

screening. Seven features including H1, H2, H3, H4, jitter, shimmer and Spectral Entropy 

(SE) were extracted from the “pure” NSA spectra and time-domain waveforms. Since the 

loudness was not constrained during the formal data recording session, the amplitudes of the 

time-domain waveforms and the spectral harmonics were both normalized to eliminate the 

influence of loudness on the subsequent classification.

4.1. Feature Extraction

Features were extracted at the utterance level. The utterances were isolated from the raw 

data using a Vocal Activity Detection (VAD) algorithm, which was based on the short-time 

energy and zero crossing rate methods [34]. A Hamming window was used to obtain NSA 

spectra. The NSA spectral harmonic quotients were calculated using,

Hi = Ai
A1 + A2 + A3 + A4 + A5

  (i = 1, 2, 3, 4), (1)

where Ai(i = 1, 2, 3, 4, 5) are the amplitudes of the first five harmonics in the NSA spectra. 

The sum of Hi(i = 1, 2, 3, 4, 5) is unity according to Equation (1). The first four components, 

Hi(i = 1, 2, 3, 4), were selected as features, with H5 excluded because H5 was linearly 

related to Hi(i = 1, 2, 3, 4) and thus was redundant. The harmonics were used to approximate 

the envelopes of NSA spectra in a limited frequency bandwidth from 50 Hz–1500 Hz. The 

SE described the complexity of a signal and was defined as,

SE = − ∑
i = 1

n
pilog pi, (2)

where pi is the normalized spectral density point, which is from 0–3000 Hz. For a simple 

signal, e.g., an ideal sinusoidal function, most of the spectral energy was concentrated within 

a narrow bandwidth, resulting in a small SE. On the contrary, a white noise has a broadly 

distributed spectrum, and the resulting SE was large. To include voice stability information 

in the feature set, the jitter and the shimmer were extracted from the time-domain 

waveforms. Since the lengths of the utterance samples were not identical, jitter (Jr) and 

shimmer (Sr) were calculated as relative percentages using,

Jr =
1

N − 1 ∑i = 1
N − 1 |T i − T i + 1|

1
N ∑i = 1

N T i
, (3)
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and:

Sr =
1

N − 1 ∑i = 1
N − 1 |Ai − Ai + 1|

1
N ∑i = 1

N Ai
. (4)

where Ti and Ai(i = 1, 2, …N) were the period of each vocal cycle and the peak magnitude 

in each vocal cycle, respectively. N was the number of sampling points for each voice 

sample. The feature vector had the form of [H1, H2, H3, H4, SE, Jr, Sr]. One representative 

NSA waveform and its spectrum are shown in Figure 4. The feature statistics for 31 

participants are shown in Figure 5a,b. Figure 5a shows the shapes of the spectral envelopes 

for each voice type. The breathy voice features a prominent H1 component, which accounts 

for over 60% of the total energy. The pressed voice features a prominent H2. The modal 

voice harmonics decreased monotonically with frequency from H1–H4, but less rapidly than 

those of the breathy voice. The SE of pressed voice was notably different from that of the 

other voice types, as shown in Figure 5b. The average SE value of pressed voice was greater, 

which indicated that the pressed voice spectrum had a greater bandwidth than the other voice 

types. A comparison between the shimmer values across voice types showed that the modal 

voice had the smallest average value and standard deviation, which indicated that the modal 

voice has the most stable loudness. Figure 5a,b shows the notable feature range overlap 

across voice types, which caused difficulties in voice type classification. The classification 

results obtained using the Linear Discriminant (LD) method based on single features are 

shown in Table 1. The overall accuracies for every single feature classification did not 

exceed 65%. H1, SE and shimmer contributed the most to the classification accuracies for 

pressed (from TP to PP: 68%), breathy (from TB to PB: 93%) and modal (from TM to PM: 

92%) types, according to the confusion matrix in Table 1. The modal and breathy voice had 

similar SE distributions. The LD method could not recognize modal voice and misclassified 

all modal voice samples into breathy or pressed types. The similar jitter distribution across 

different voice types resulted in a misclassification of all pressed voice samples into modal 

or breathy voice types. A pilot study was conducted using the same protocol as that of the 

present study. In the pilot study, participants were 14 female Canadian English speakers 

aged from 18–40 years with no history of voice disorders. Voice data were recorded using 

the NSA only. No auditory-perceptual screening was done due to the absence of microphone 

recordings. Since the sample size (n = 180) of the pilot study was small, the classification of 

the NSA dataset using machine learning techniques was unsupported. The results of the 

statistical analysis on various features are shown in Figure 6a,b. Figure 6a shows that the 

spectral envelopes of the breathy and modal voice of the pilot study had similar contours as 

those of the present study. The H2 of the pressed voice of the pilot study was less prominent 

(12%) than that of the present study. In Figure 6b, the SE and shimmer analysis showed 

similar trends as those in Figure 5b. The modal voice featured the lowest average value and 

standard deviation for shimmer, and pressed voice featured the highest average value for the 

SE. For jitter, the breathy voice of the pilot study showed a larger standard deviation 

(approximately 0.4 more) than that of the present study. No notable difference between jitter 

in modal and pressed voice was found between the pilot and the present study. Overall, the 

results from the pilot study were consistent with those of the more exhaustive present study.
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4.2. Machine Learning Classification Using Multiple Features

Supervised learning algorithms were implemented using MATLAB (2018a). Our 

preliminary analysis on classification used more than 10 classifiers and their derivatives 

based on linear and nonlinear kernel functions. Considering overall classification accuracies 

and physical interpretation, results were obtained for five classifiers: Linear Discriminant 

(LD), medium Decision Tree (DT), linear Support Vector Machine (SVM), weighted K-

Nearest Neighbours (KNN) and Neural Network (NN). The LD is a simple classifier that 

uses a linear combination of selected features to test whether the dataset is linearly 

separable. Since LD does not consider nonlinear metrics, LD directly separated the dataset 

using feature amplitude range. The medium DT used up to 20 splits and Gini’s diversity 

index as the split criterion. Our previous analysis showed that the overall classification 

accuracy was notably lower if the number of splits was smaller than 10 or larger than 40. 

Linear kernel functions were used to build the SVMs. The linear SVMs used a one-versus-

one strategy for multiclass classification and chose the label that was selected by the most 

linear SVM classifiers. The weighted KNN used 10 nearest neighbours to determine the 

host’s label. The number of neighbours was optimized in previous pilot studies. The 

Euclidean distance used by the weighted KNN described the degree of sample aggregation. 

The decision boundaries were physically meaningful in terms of clustering tightness. The 

NN used 100 neurons in one hidden layer and the scaled conjugate gradient back-

propagation method in updating parameters. Different neuron numbers were tested before, 

and the number of 100 neurons was shown to have a good classification performance in 

terms of classification accuracy and computation time. The performance of the NN was 

evaluated using the cross-entropy method. A five-fold cross-validation was done for all 

classifiers, with the exception of the NN, to prevent model overfitting. The average accuracy 

was determined. For the NN classifier, the dataset was randomly divided into three subsets: 

training (n = 70%), validation (n = 15%) and testing (n = 15%). The data randomization was 

repeated six times for the NN classification, and the average accuracy was calculated for 

presentation. Classification was performed on the full feature set and its nine subsets to 

investigate the priority and the contribution of each feature to the overall accuracies. A 

leave-one-feature-out (LOFO) strategy was used to build the first seven feature subsets. The 

H1–4 + SE subset was a composite of spectral features. The Jr + Sr subset was built using 

two vocal stability metrics.

5. Results and Discussion

The classification results were analysed in multiple dimensions. Firstly, a comparison 

between the full feature set and the LOFO subsets was made to investigate the contribution 

of each specific feature to the overall and the individual-class classification accuracies. The 

accuracy of different classifiers was assessed. Secondly, a comparison between the spectral 

feature set (H1–4 + SE) and the stability feature set (Jr + Sr) was made to show their 

contributions to the overall classification accuracies.

5.1. Full Set versus LOFO Subsets

The overall classification accuracies using the full set and the LOFO subsets are shown in 

Table 2, and accuracies per voice type classification are shown in Figure 7. Table 2 shows 
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that all classifiers achieved an overall accuracy greater than 75% on the full set. NN 

(82.5%), SVM (81.3%) and KNN (81.0%) yielded over 80% overall accuracy on the full set, 

which was much greater (by approximately 20%) than the single feature classification 

accuracy in Table 1. By removing features from the full set, the overall accuracies were 

generally decreased with respect to the per-set average of the overall accuracies. Two LOFO 

subsets, −Sr (74.4%) and -SE (76.7%) dropped by 5.7% and 3.4%, respectively, in 

comparison with the full set. For these two LOFO subsets, all classifiers showed a notable 

decrease between −2.5% (KNN on -SE) and 8.1% (SVM on −Sr) in overall accuracy. This 

showed that the shimmer and the SE were of more importance than other features in the 

classification overall accuracy. Other subsets did not produce conspicuous changes in overall 

accuracies. Only DT’s performance on −H1 (−2.5%), −H2 (−4.0%), −H3 (−2.0%) and −Jr 

(2.0%) and LD’s performance on −Jr (−1.5%) were degraded compared to the full set. Other 

classifiers’ accuracies did not change notably (within ±1.1%). The overall accuracy varied 

with the chosen classifier. In general, NN, SVM and KNN had greater overall accuracies 

than DT and LD on both the full set and the LOFO subsets. All accuracies greater than 80% 

were achieved by these three classifiers. The DT and the LD accuracies did not exceed 80%, 

either on the full set or the LOFO subsets. For the per-classifier average accuracies, shown in 

Table 2, the NN achieved the highest overall accuracy (81.5%) on all datasets, and DT had 

the lowest overall accuracy (75.2%). The classifier performances based on the full feature 

set were shown in Table 3. The AUC scores for all classifiers exceeded 0.85, which showed 

satisfactory performances of the classifiers. The NN achieved the highest AUC score (0.93, 

0.97), the highest TPR (0.81, 0.90) and the lowest FPR (0.10, 0.08) for the modal and the 

breathy voice classification. For the pressed voice, the NN AUC score and the TPR score 

were the highest (0.94) of all classifiers, but the NN FPR (0.16) was not the lowest.

Two Chi-square tests were conducted to evaluate the classification accuracies of classifiers 

for the full set and the LOFO sets, respectively. Alpha values were set as 0.05. The null 

hypothesis of the first test was that the classification accuracy was independent of the 

classifier for the full feature set. Results showed that classification accuracies were 

significantly different between classifiers (p = 0.0268). Furthermore, the NN had the best 

classification accuracy overall for the full feature set of data. The null hypothesis of the 

second test was that the classification accuracy was independent of the features selected for 

classification. The classification accuracies of different datasets were significant for SVM (p 
= 1.99−6), KNN (p = 5.7 × 10−3), NN (p = 8.7 × 10−5), but insignificant for DT (p = 0.0995) 

and LD (p = 0.119). Results suggested that the SVM, KNN and NN classifiers were more 

sensitive to the variation of the feature set than the other two classifiers (DT and LD).

Figure 7 shows more details on how classifiers and single features influenced the per-type 

classification accuracies. The results are shown in comparison with the full set of 

classification results. For the modal voice classification, the −Sr subset results indicated a 

notable decrease in average accuracy (drawn in the red dashed line). The decrease for all 

classifiers was 15%, 8%, 12%, 11% and 7%, respectively. The average accuracy of the −Sr 

was 63.7%, i.e., 10.6% lower than that (74.3%) of the full set. The average accuracy of -SE 

was also lower (−3.5%) than that of the full set due to the notable degradation (−12%) of the 

LD performance. Other classifiers’ performance yielded little change (within ±2%) on the -

SE subset. The modal voice classification accuracies were comparable between the full set 
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and the other subsets. This result indicated that the other features were less important than 

SE and the shimmer in the modal voice classification task. NN and the KNN classifier had a 

better performance (approximately 5% greater) than the other three classifiers on all 

datasets.

For the breathy voice classification, the accuracies of all datasets using different classifiers 

were approximately 12% greater than those of the modal and the pressed voice 

classification. All datasets, except the −Sr set, had very high accuracies (approximately 

88%). The −Sr set had a lower average accuracy (approximately 5% lower) than the other 

datasets, which indicated that the shimmer was important for the breathy voice 

classification. Other features were less important than shimmer, as no obvious accuracy 

drops for other LOFO subsets were found. The DT performance was approximately 5% 

lower than that of the other classifiers. Other classifiers had a comparable performance for 

the breathy voice classification.

For the pressed voice classification, the SE feature was salient. The -SE average accuracy 

was 8.1% lower than the full set, and at least 4.8% lower than the other LOFO subsets. All 

classifiers showed a decreased accuracy on the -SE subset. The −Jr and the −Sr subsets also 

had decreased accuracies for pressed voice classification, but less notably than the -SE 

subset. NN had the best accuracy performance between 74% and 81.1% on all datasets. DT 

had an unsatisfactory accuracy performance between 58% and 71% on the LOFO subsets. 

Compared with the full set, DT accuracies decreased between −4% and −17%, more than 

that for the other classifiers on the LOFO subsets.

The LOFO strategy showed that the shimmer and the SE were the most important features 

for the voice type discrimination task. In particular, shimmer contributed most to the modal 

voice classification, as observed in Figure 5b. The modal voice samples had a much better 

aggregation and a lower average value than the other two types for the shimmer feature. The 

SE contributed most to the pressed voice classification, which could be explained by Figure 

5b. The pressed samples featured less overlap with other voice type samples in terms of SE. 

The breathy voice was much easier to classify using the algorithms than the other two voice 

types, as shown in Figure 5b.

5.2. Full Set versus Spectral Set versus Stability Set

The classification results for the spectral set (H1–4 + SE) and the stability set (Jr + Sr) are 

shown in Table 4 and Figure 8. Compared with the full set (80.1%), the spectral set achieved 

a lower, but still satisfactory overall accuracy (75.1%), while the stability set performance 

was unsatisfactory, as its maximal accuracy was only 61.5%. The addition of stability 

features into the spectral set for classification yielded an observable improvement of 5% in 

overall accuracy. The overall accuracies of the spectral set were much greater (15.6% on 

average) than those of the stability set. The breathy and the pressed voice classification in 

Figure 8 show that the spectral set yielded greater accuracies than the stability set for all 

classifiers. The pressed voice was totally indistinguishable using the stability set, as the 

average accuracy was below 30%. However, the modal voice classification results showed 

that the stability set had a greater average accuracy (6.8% greater) than the spectral set. This 

means that the modal voice was more steady than the other two voice types in vocal intensity 
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and fundamental frequency. The LD achieved a very high accuracy (86.0%) for the modal 

voice classification using the stability set. For breathy and pressed voice classification, all 

five classifiers achieved a comparable accuracy (83.0% ± 1.2%, 74.0% ± 1.6%) using the 

spectral set. However, the similar distribution between the breathy and the pressed samples 

in jitter and shimmer indicated a high possibility of misclassification between these two 

types using the stability set in Figure 5b.

6. Conclusions

In the present study, seven NSA features showed different trends for different voice types. 

The spectral envelopes of the NSA signals were notably different for each voice type. The 

breathy voice spectral envelope decreased sharply from H1–H4. The modal voice spectral 

envelope also decreased from H1–H4, but less sharply than that of the breathy voice. The 

pressed voice spectral envelope increased from H1–H2 before decreasing from H2–H4. The 

SE revealed a notable difference between the pressed voice type and the other two types. 

The pressed voice had a much greater average SE (approximately 90% greater) than the 

other two types of voice. No notable difference between different voice types was found in 

jitter. The shimmer was the lowest for modal voice, which also had the smallest aggregation. 

The use of machine learning methods improved the voice type classification accuracies by 

approximately 20% from 60%–80% compared with the single-feature classification method. 

In particular, the pressed voice classification accuracy was improved by 13.1%. Sr and SE 

were found to make the greatest contribution to the machine learning classification. 

Increased sample size and auditory perceptual screening contributed to reducing the standard 

deviation of features and improved the differentiation accuracy between modal and pressed 

voice types.

The main contribution of this study was the successful application of machine learning 

algorithms to the NSA data for voice type classification. An overall classification accuracy 

of 82.5% was achieved. The approach proposed here is based on a noninvasive and portable 

measurement tool, i.e., the NSA, which offers long-term voice data recording capability and 

speaker privacy preservation. This work may lead to clinical applications. It could assist in 

the measurement of vocal fatigue and determine voice safety limits by incorporating the 

voice type factor into the vocal dose measures [35]. Considering that the existing vocal dose 

metrics cannot perfectly represent the mechanical manipulation and tissue strain exhibited 

by the VFs in isolation, analysis of voicing type information could complement existing 

vocal dose metrics as a surrogate of VF contact area and open quotient in voice use 

quantification [36]. One other plausible application is to integrate machine learning 

algorithms with existing clinical practices for the evaluation of voice quality and function, 

creating a hybrid expert system of voice assessment by incorporating other factors, such as 

subjective reports on vocal conditions. Such an expert system will help further understand 

the mechanisms of VF injury and repair and assist voice pathology medical diagnostics.

One study limitation is that diphthongs and voiced consonants were excluded from the 

analysis. They should be accounted for as additional voiced speech sounds in English. A 

comprehensive speech analysis is not possible unless an investigation of diphthongs and 

voiced consonants is completed. Future work should include the application of machine 
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learning techniques to identify voice types in sentences and running speech and the 

investigation of additional voice types (such as falsetto). It would be of interest to investigate 

participants with contrastable severities of dysphonia and subjects with pathologies that 

contribute to specific variation of vocal fold mobility and vibration (nodules, unilateral 

paralysis, etc.). The NSA may offer clinicians an auxiliary tool of tracking voice type 

variation in long-term voice monitoring. The quantification of severity based on NSA signals 

should also be considered. The long-term goal of this research is to use the NSA to monitor 

vocal conditions for professional voice users and individuals suffering from disordered 

voice.
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Abbreviations

NSA Neck Skin Accelerometer

SLP Speech Language Pathologist

GRABAS Grade of Roughness, Breathiness, Asthenia, Strain

CAPE-V Consensus Auditory-Perceptual Evaluation of Voice

GIF Glottal Inverse Filtering

MFDR Maximum Flow Declination Rate

MFCC Mel-Frequency Spectral Coefficients

CPP Cepstral Peak Prominence

SVM Support Vector Machine

GMM Gaussian Mixture Modal

NN Neural Network

DT Decision Tree

KNN K-Nearest Neighbours

LOFO Left-One-Feature-Out

SAL Surface Acceleration Level

SPL Sound Pressure Level

PCB Printing Circuit Board
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LDV Lase Doppler Velocimetry

ICC Intra-class Correlation Coefficient

VAD Vocal Activity Detection

SE Spectral Entropy

LD Linear Discriminant

TP True Pressed

PP Predicted Pressed

TB True Breathy

PB Predicted Breathy

TM True Modal

PM Predicted Modal

TPR True Positive Rate

FPR False Positive Rate

AUC Area Under the receiver operating characteristic Curve
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Figure 1. 
The physical prototype and schematic design of the NSA.
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Figure 2. 
The transfer function between the LDV and the NSA signals for two sensors.
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Figure 3. 
Screenshots of the online voice type assessment system.
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Figure 4. 
Representative example of normalized NSA waveforms and corresponding spectra of /a:/ in 

terms of different voice types: modal, breathy and pressed. The frequency resolution is 1 Hz.
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Figure 5. 
The averages and standard deviations of H1–H4, SE, jitter and shimmer based on 31 

participants’ “pure” NSA samples. The blue, red and green colours represent the modal, 

pressed and breathy voice types, respectively.
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Figure 6. 
The averages and standard deviations of H1–H4, SE, jitter and shimmer based on 14 

participants’ “pure” NSA samples for the pilot study. The blue, red and green colours 

represent the modal, pressed and breathy voice types, respectively.
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Figure 7. 
Per-type classification accuracies for the full set and the LOFO subsets. The red dashed line 

represents an averaged accuracy on a data-set as a function of the classifier. (a) Modal voice 

classification, (b) breathy voice classification and (c) pressed voice classification.
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Figure 8. 
Per-type classification accuracies for the spectral set and the stability set. The red dashed 

line represents that averaged accuracy on a dataset using different classifiers.
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Table 1.

Confusion matrix and overall accuracy in voice type classification using a single feature.

Feature PM PB PP Overall Accuracy

H1

TM 35% 31% 34%

64.7%TB 12% 84% 4%

TP 26% 6% 68%

H2

TM 35% 37% 28%

61.7%TB 12% 82% 7%

TP 29% 10% 61%

H3

TM 24% 35% 41%

59.3%TB 7% 92% 2%

TP 17% 33% 50%

H4

TM 2% 74% 24%

44.7%TB 2% 87% 11%

TP 1% 71% 28%

SE

TM 0% 88% 12%

54.1%TB 0% 93% 7%

TP 0% 46% 54%

Jr

TM 54% 46% 0%

47.4%TB 25% 75% 0%

TP 42% 58% 0%

Sr

TM 92% 2% 6%

60.6%TB 18% 72% 10%

TP 56% 33% 11%

TM: True Modal, TB: True Breathy, TP: True Pressed; PM: Predicted Modal, PB: Predicted Breathy, PP: Predicted Pressed.
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Table 2.

Overall classification accuracies (%) for the full set and the LOFO subsets.

DT LD SVM KNN NN Per-Set

Full Set 77.4 78.3 81.3 81.0 82.5 80.1 ± 2.1

−H1 74.9 78.4 82.1 81.7 83.3 80.1 ± 3.4

−H2 74.4 79.0 82.0 81.7 83.3 80.1 ± 3.5

−H3 75.4 78.0 81.5 79.9 82.7 79.5 ± 2.9

−H4 77.6 78.0 81.5 81.5 82.5 80.2 ± 2.3

-SE 74.4 74.3 78.3 78.5 77.9 76.7 ± 2.1

−Jr 75.4 76.8 81.1 80.1 83.3 79.3 ± 3.2

−Sr 71.8 74.9 73.2 75.3 76.8 74.4 ± 1.9

Per-Classifier 75.2 ± 1.8 77.3 ± 2.5 80.1 ± 2.9 79.9 ± 2.2 81.5 ± 2.6
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Table 3.

True Positive Rate (TPR), False Positive Rate (FPR) and Area Under the receiver operating characteristic 

Curve (AUC) of different classifiers for different voice types based on the full feature set.

DT LD SVM KNN NN

Modal

TPR 0.73 0.70 0.79 0.77 0.81

FPR 0.14 0.13 0.11 0.11 0.10

AUC 0.85 0.89 0.92 0.92 0.93

Breathy

TPR 0.84 0.87 0.89 0.89 0.90

FPR 0.10 0.10 0.09 0.09 0.08

AUC 0.89 0.95 0.96 0.96 0.97

Pressed

TPR 0.69 0.75 0.74 0.75 0.91

FPR 0.10 0.10 0.08 0.08 0.16

AUC 0.86 0.91 0.92 0.93 0.94
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Table 4.

Overall classification accuracies (%) for the full set, the spectral set and the stability set.

DT LD SVM KNN NN Per-Set

Full Set 77.4 78.3 81.3 81.0 82.5 80.1 ± 2.1

H1–4 + SE 73.5 75.2 74.9 75.1 76.7 75.1 ± 1.1

Jr + Sr 59.8 60.0 59.0 57.1 61.5 59.5 ± 1.6
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