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Permeability index (PI) and magnesium absorption ratio (MAR) are both primary irrigation water 
quality indicators (IWQI) used to evaluate the efficacy of agricultural water supplies. This is considered 
a complex environmental issue to reliably forecast IWQI parameters without its appropriate time 
series and limited input sequences. Hence, this research develops an innovative hybrid intelligence 
framework for the first time to forecast the PI and MAR indices at the Karun River, Iran. The proposed 
framework includes a new hybrid machine learning (ML) model based on generalized ridge regression 
and kernel ridge regression with a regularized locally weighted (GRKR) method. This research 
developed an optimized multivariate variational mode decomposition (OMVMD) technique, optimized 
by the Runge-Kutta algorithm (RUN), to decompose the input variables. The light gradient boosting 
machine model (LGBM) is also implemented to select the influential input variables. The main 
contribution of the intelligence framework lies in developing a new hybrid ML model based on GRKR 
coupled with OMVMD. Five water quality parameters from the Karun River at two stations (Ahvaz 
and Molasani) over 40 years are used to forecast the PI and MAR indices monthly. Statistical metrics 
confirmed that the proposed OMVMD-GRKR model, concerning the best efficiency in the Ahvaz 
(R = 0.987, RMSE = 0.761, and U95% = 2.108) and Molasani (R = 0.963, RMSE = 1.379, and U95% = 3.828) 
stations, outperformed the OMVMD and simple-based methods such as ridge regression (Ridge), least 
squares support vector machine (LSSVM), deep random vector functional link (DRVFL), and deep 
extreme learning machine (DELM). For this reason, the suggested OMVMD-GRKR model serves as a 
valuable framework for predicting IWQI parameters.
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Rivers are vital sources of water for human life, they are playing a crucial role in agriculture, electricity 
generation, domestic usage, and industry. However, their dynamic nature increases the risk of pollution due to 
variations in water flow and runoff from nearby areas. Additionally, poor waste disposal practices contribute 
to both physical and chemical contamination of river ecosystems. These factors exacerbate the susceptibility of 
rivers to ecological pollution1,2. Historically, water quality (WQ) problems have often received less attention in 
research discussions because of abundant water resources3. Nonetheless, as global water availability is expected 
to decrease due to climate change4, there is an urgent need to address WQ to ensure a sufficient water supply for 
irrigation and other essential uses. Consequently, forecasting WQ facilitates the early identification of pollutants 
and supports cost-effective treatment strategies. forecasting WQ enables preventive measures to safeguard water 
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supplies, ensuring compliance with health rules and mitigating public health hazards. Therefore, forecasting 
WQ enhances resource utilization, lowers treatment costs, and ensures access to clean water, particularly by 
identifying pollutants in river systems.

Reusing water from agricultural drainage systems shows promise as a means to increase the availability of 
irrigation water in the face of constraints5, including growing water shortages, runoff pollution, and conflicting 
demands from urban and industrial sectors. However, insufficient treatment of this drainage water have adverse 
effects on soil quality, agricultural growth, and irrigation infrastructure. There are questions about the efficacy 
of recycled water persist. Several metrics are employed to evaluate the quality of irrigation water. These metrics 
include residual sodium carbonate (RSC)6, the sodium adsorption ratio (SAR)7, permeability index (PI)8,9, 
magnesium absorption ratio (MAR)10, and potential of salinity (PS)8. Accurate estimating of them can be helpful 
for use in agricultural purposes. Thus, ongoing attempts exist to create non-physical methods for predicting 
such indexes11,12. Non-physical methods utilize computational models and algorithms, such as machine learning 
(ML) models, to analyze and predict phenomena without relying on direct physical measurements.

ML models offer several advantages, such as their ability to handle missing data, non-linear structure, big 
datasets of varying sizes, and complex events. ML techniques such as support vector machines (SVMs)13, artificial 
neural networks (ANNs)14, and least square SVMs (LSSVMs)15 are among the most reliable computational 
approaches for rapid and practical WQ modeling16,17. Numerous studies have demonstrated the reliability and 
accuracy of these models. For example, the monthly sodium (Na+) levels were predicted by two different models, 
namely, hybrid wavelet-linear genetic programming (WLGP) and wavelet-ANN (W-ANN) in Turkey18. The 
computed outcomes proved that the LGP model offers more accuracy compared to the ANN model. In another 
study, the Karun River’s water quality index (WQI) was predicted by Ref.19. They employed advanced variable 
reduction methods, such as the forward selection M5 model tree (FS-M5), focusing on several WQ factors. Their 
finding showed that the river’s WQ parameters were “Relatively Bad,” with only a 19% chance of improvement. 
Nouraki et al. (2021) applied four ML models, namely, random forest (RF), multiple linear regression (MLR), 
support vector regression (SVR), and the M5P model tree to forecast total hardness (TH), total dissolved solids 
(TDS), and SAR in the Karun River from 1999 to 201920. The study’s results showed that, even with complicated 
pollution sources, such models could accurately predict WQ metrics.

In recent years, Ahmadianfar et al. (2022) proposed a new framework called the weighted exponential 
regression hybridized by gradient-based optimization (WER-GBO)21 with the purpose of monthly sodium 
(Na+) forecasts in Maroon River. When WER-GBO was compared to other methods, such as ANFIS, LSSVM, 
BLR, and RSR, WER-GBO showed better accuracy. Moreover, to forecast the irrigation WQI (IWQI) of Bahr El-
Baqr, Egypt, the V-KELM-INFO model was created by Chen et al. (2024) to predict TDS22. They combined the 
weighted mean of vectors (INFO) algorithm, kernel extreme learning machine (KELM), and variational mode 
decomposition (VMD) with Boruta-XGBoost. This model greatly enhanced the accuracy of predictions made at 
the Iranian Idenak station compared to previous models based on metaheuristics.

The prediction of WQ indicators has been supported by a number of effective models in the work of prior 
scholars19[,23,]24. However, there is an urgent need for a high-performance, sophisticated framework because of 
complicated and non-linear datasets. The complexity of WQ data also is a common challenge for traditional ML 
models. Hence, new advanced ML and artificial intelligence methods offer tremendous potential for solving 
these challenges21,25,26. As an illustration, ridge regression, SVMs, hybrid models, deep learning methods, and 
others can better manage big datasets and non-linear connections. Optimization strategies also allow these 
models to maximize computing efficiency and forecast accuracy. Thus, to improve decision-making and long-
term planning for water resources, it is essential to create and use these advanced models for WQ management.

The main shortcomings of the previous studies can be summarized as,

• Traditional ML models such as ANN, SVR, and MLR have been widely used; however, they exhibit limited 
effectiveness in capturing the complex, non-linear dynamics of water quality prediction.

• Decomposition methods like the VMD are highly sensitive to their control parameters. Most previous studies 
did not carefully optimize these settings, which could lead to less accurate results.

• Combining ML models and developing a robust and accurate framework is essential to solve complex fore-
casting problems. However, most previous water quality research relied on single machine learning models, 
which often limited the accuracy and comprehensiveness of predictions.

To address the above shortcomings, the main objective of this research is to develop a unique hybrid approach, 
namely the GRKR, for forecasting IWQI. The GRKR model is developed based on a combination of a generalized 
ridge regression, an efficient weighted least squares method with regularization, and kernel ridge regression with 
a wavelet kernel. The optimal control parameters for the proposed GRKR model are also determined using 
a mathematical optimization technique known as Runge-Kutta optimization (RUN). Decomposing the input 
variables through optimized multivariate variational mode decomposition (OMVMD) enhances prediction 
accuracy.

Consequently, the proposed intelligent framework significantly improves decision-making in WQ 
management by enabling water quality managers to take preventive actions through precise predictive insights. 
The framework integrates GRKR, OMVMD, LGBM, and RUN methods to provide reliable predictions, allowing 
decision-makers to make informed choices that lead to improved WQ outcomes. This research contributes to 
the academic understanding of ML applications in environmental science while also offering practical tools for 
professionals working in the field.
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Material and method
Case study
The Karun River’s watershed is situated in southwestern Iran. The Karun River with 950Km is the longest and 
most significant river in Iran. The Karun River’s longitudinal and latitudinal coordinates are 48° 15′ to 52° 30′ 
E and 30° 17′ to 33° 49′ N, respectively. Figure 1 depicts the Karun River within the Khuzestan Plain, as well 
as the specific locations of the WQ monitoring units situated along the river. In recent years, the WQ of the 
Karun River has significantly declined because of agricultural activities, human consumption, and industrial 
processes. The lack of sewage networks, non-compliance with environmental regulations by major industries, 
and the direct discharge of wastewater into the river are the primary factors affecting the WQ in this river. As 
a result, forecasting WQ has become essential for monitoring and managing the river’s environmental health, 
allowing for early problem detection, timely interventions, and informed decision-making to safeguard public 
health and preserve the ecosystem.

This study utilized monthly WQ data collected from two monitoring sites over a 40-year period. The 
time-series graph of WQ parameters is provided in Appendix A. The independent variables in this research 
include nine key WQ indicators: chloride (Cl), discharge (Q), sulfate (SO₄²⁻), sodium (Na), magnesium (Mg), 
bicarbonate (HCO₃), calcium (Ca), electrical conductivity (EC), and total dissolved solids (TDS). The dependent 
variables also include two IWQI, namely: the magnesium absorption ratio (MAR) and the permeability index 
(PI), which are measured at the Ahvaz and Molasani stations along the river.

Table 1 presents the dataset’s statistical summary, including the mean (Mean), maximum (Max), minimum 
(Min), and median (Med) values. It also reports skewness (Skew), standard deviation (SD), and kurtosis (Kur). 
Skewness and kurtosis are critical statistical measures for WQ evaluation, as they provide insights into data 
distribution. Skewness indicates the asymmetry of the data, showing whether pollutant concentrations tend to 
exceed or fall below the mean. Kurtosis quantifies the “tailedness” of the distribution, emphasizing the presence 
of outliers and the potential risks associated with extreme values. Therefore, these statistical factors enhance 
the understanding of data variability and trends, supporting informed decision-making and efficient WQ 
management strategies.

Concerning PI, the variable measures how water affects soil aeration and water infiltration, which are vital 
for plant growth. In fact, PI is used to evaluate the long-term impact of irrigation water on soil structure and 
permeability. High PI levels in water can hinder soil aeration and water penetration, negatively affecting plant 
development. When determining whether or not irrigation water is suitable for agricultural use, the MAR 

Fig. 1. Karun River location and selected two stations (Ahvaz and Molasani)27.
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provides a useful metric to consider. An evaluation of the potential effects of magnesium content in water on 
soil and plant life is now part of the research process. To sustain fertile soil and achieve peak crop production, 
managing the MAR in irrigation water is critical. Here are the steps to compute the PI and MAR:

 
PI =

(
[Na] +

√
[HCO3]

[Ca] + [Mg] + [Na]

)
× 100 (1)

 
MAR =

(
[Mg]

[Ca] + [Mg]

)
× 100 (2)

PI and MAR were determined using parameters Ca, Na, and Mg, HCO3, which were not suitable to be employed 
as input parameters in ML models. Consequently, SO−2

4 , TDS, Q, EC, and Cl were the factors that were used 
as inputs.

Generalized ridge regression
The proposed generalized ridge regression (GRM) method is designed to resolve issues associated with 
multicollinearity and overfitting. GRM integrates ridge regression with generalized linear models (GLM)28 to 
yield a powerful and flexible model. This hybrid approach updates the model coefficients continually through 
an iteratively reweighted least squares (IRLS) procedure. The IRLS chooses the appropriate link function, its 
derivative, and a variance function to be used in any given distribution namely: normal, binomial, Poisson, or 
gamma. The link function is used to compute the mean response at each iteration and the linear predictor. Then, 
it makes a weight matrix and a pseudo-response variable. The main formulas in GLM can be defined as,

 η = Xα  (3)

where η  represents the linear predictor for the observation in a GLM. X  indicates the matrix of explanatory 
variables and α  denotes the vector of coefficients.

The link function connects the expected outcome of the dependent variable with its linear component. The 
aforementioned function transforms a mean value for the response variables into a linear combination, even if 
they are not directly related to the predictors28. This transformation facilitates an efficient modeling using linear 
regression methods. The link function of GLM is expressed as,

 f (µ ) = η  (4)

where µ  represents the mean of the response variables. For different GLM distributions (such as normal, 
binomial, or Poisson), there are different link functions f  according to µ  and η   appropriately. Various link 

Station Variables MAX Mean MIN Median SD Skew Kur

Ahvaz

SO4 (mg/L) 11.80 3.93 0.90 3.60 1.82 0.96 3.99

Cl (mg/L) 17.80 6.87 0.50 6.70 2.73 0.97 4.66

EC ( µ S/cm) 3045.00 1362.70 128.00 1320.50 419.00 0.69 3.77

TDS (mg/L) 1954.00 858.84 68.00 828.00 279.27 0.67 3.59

Q (m3/s) 4387.00 701.41 37.00 514.00 603.94 2.55 10.84

Na (mg/L) 34.60 7.41 0.10 6.50 3.98 1.49 7.11

Mg (mg/L) 7.80 2.55 0.20 2.30 1.07 1.19 4.94

Ca (mg/L) 29.10 4.57 1.50 4.20 1.85 4.85 56.71

HCO3 (mg/L) 33.90 2.94 1.20 2.90 1.39 19.44 432.94

PI 89.77 63.21 42.40 63.54 4.82 -0.64 6.83

MAR 69.23 36.01 7.32 36.62 9.10 -0.06 3.78

Molasani

SO4 (mg/L) 9.50 3.69 1.10 3.30 1.60 0.79 3.16

Cl (mg/L) 35.40 6.40 1.80 5.80 3.21 2.54 17.92

EC ( µ S/cm) 4510.00 1292.38 537.00 1234.00 442.56 1.59 9.29

TDS (mg/L) 2490.00 813.84 278.00 771.00 280.03 1.24 6.29

Q (m3/s) 4656.00 684.36 0.00 504.00 596.46 2.67 11.82

Na (mg/L) 23.80 8.03 0.33 7.15 3.85 1.05 3.97

Mg (mg/L) 6.50 2.72 0.10 2.50 1.15 0.75 3.24

Ca (mg/L) 15.60 4.77 0.80 4.30 1.75 1.38 6.08

HCO3 (mg/L) 4.90 2.92 0.20 2.90 0.54 -0.56 5.51

PI 83.71 62.80 46.52 62.99 5.00 -0.19 3.82

MAR 67.21 35.83 5.36 36.37 7.86 -0.30 3.71

Table 1. Statistical characteristics of Ahvaz and Molasani stations.
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functions are used to connect the mean response ( µ ) to the linear predictor ( η ) in a GLM method. Each 
distribution, such as normal, binomial, or Poisson, requires a specific link function to accurately represent the 
relationship between the response variable and the predictors.

Based on Eq. (3), the coefficient α  is formulated by using GLM approach. Consequently, α  is obtained by 
the standard weighted least squares method. In order to minimize the weighted sum of squared residuals, the 
mentioned method optimizes the coefficients α . In this step, the residuals are weighted by the diagonal matrix 
w. This method is very helpful in the GLM because the distribution of response variable may not be normal 
and the variance might be non-constant across observations. Consequently, the weights w are adjusted to align 
with these model features, which after accurate approximations of α  are obtained. The coefficient α  can be 
calculated as,

 α = (XT × w × X)−1 × (XT × w × z) (5)

in which

 
w = diag

(
f ′ (µ ))
V ar (Y )

)
 (5.1)

and

 
z = η + y − µ

f ′ (µ ))  (5.2)

where (f ′ ( µ )) expresses the derivative of the link function f  with respect to µ . V ar (Y ) represents the 
variance function associated with the distribution of the response variable Y  .

Based on the main formula for GLM (Eq. (3)), the GRM can be obtained by incorporating ridge regularization. 
We add the regularization term ( λ 1) to the original equation (Eq.  (4)). Therefore, the coefficient of GRM 
method is defined as,

 α = (XT × w × X + λ 1 × I)−1 × (XT × w × z) (6)

where λ 1 indicates the regularization term. I  denotes the unit matrix. To calculate the predicted value based 
on the GRM model (

′
yGRM ), Eq. (7) is employed.

 
′
yGRM = Xα  (7)

Kernel ridge regression with regularized locally weighted method
Kernel ridge regression (KRidge) is built on ridge regression (Ridge) by enhancing its efficiency, particularly 
in modeling non-linear relationships through kernel methods29. Ridge regression effectively addresses linear 
models and mitigates overfitting via a penalty term that shrinks coefficients; the KRidge enhances this approach 
by integrating kernel approaches, enabling the capturing of non-linear correlations in the data. This new 
feature allows the KRidge to model complicated datasets with comparability, in contrast to conventional ridge 
regression. Thus, the KRidge serves as a significant enhancement of the original methodology, especially for 
non-linear variables. Equation (8) is employed to achieve the predicted value (

′
yKRidge).

 
′
yKRidge = Xβ  (8)

In which

 β = (KrF + λ 2I)−1XT y (9)

Where β  expresses the regression coefficient of the KRdige, and λ 2 indicates the regularization factor of the 
KRidge model. KrF  represents the kernel function. The wavelet kernel function was employed, formulated as,

 
KrF ik = cos

(
ρ × − (xi − x′

k)
ν

)
× exp

(
−||xi − x′

k||2

4 × δ

)
 (10)

where ρ , ν , and δ  indicate the kernel function factors. The RUN optimization method was applied to derive 
optimal values for these factors.

This research used the regularized locally weighted (RLW) approach to compute new input variable 
coefficients, which improved the KRidge forecasting accuracy even more. The main formula of RLW can be 
formulated as,

 ψ = (XT × ω × X + λ 3 × I)−1 × (XT × ω × y) (11)
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where ω  denotes a kernel function based on the wavelet kernel. λ 3 indicates the regularization factor for the 
RLW method. The factor ψ  is used to create a new kernel function based on the following formulas,

 Xnew = ψ X  (12)

 KrF new = KrF (Xnew, Xnew,k) (13)

where KrF new  is a new version of KrF , which is calculated based on Xnew .
Equation (9) can be reformulated as,

 β new= (KrF new + λ 2I)−1XT y (14)

and

 
′
yKRidge = Xβ new

 (15)

where β new  is a new version of β , which is calculated based on KrF new .

The proposed hybrid model
A new hybrid regression model for IWQI forecasting was created in this study. It is based on two successful 
regression models, the GRM (sometimes called the GRKR model) and the KRidge (described above). The 
following relationship was defined,

 
′
yGRKR = a ×

′
yKRidge + (1 − a) ×

′
yGRM

 (16)

where 
′
yGRKR denotes the predicted value calculated based on 

′
yKRidge and 

′
yGRM . a indicates a number 

in the interval of [0, 1]. a is achieved by optimization method (RUN). Figure 2 displays the schematic of the 
proposed GRKR model.

Runge-Kutta optimization (RUN)
RUN algorithm with two main operators, namely the Runge-Kutta search (RKS) engine and the enhance 
solution mechanism (ESM), is a mathematics-based optimization method30. The RUN algorithm was developed 
based on the Rung-Kutta method (RKM). The main components of the algorithm are described in the following 
sub-sections.

RKS operator
RUN algorithm uses the RKS operator to search globally and locally in the feasible space of each problem. The 
RKS’s solution is calculated as follows,

Fig. 2. Schematic of GRKR model.
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xRKS =

{ (xa + σ 1.A.c.xa) + A.RKS + ϕ .randn.(xb − xa) if rand < 0.5
(xb + σ 1.A.c.xb) + A.RKS + ϕ . randn. (xe1 − xe2) otherwise  (17)

where σ 1 indicates an integer number with the value of 1 or -1. c expresses a random value within the interval 
of [0, 2]. A is an adaptive factor. xe1 and xe2 express two random solutions ( e1 ̸= e2 ̸= n), which are selected 
within the range of [1, Np]. Np indicates the number of populations and ϕ  expresses a random number. RKS 
is defined based on the Runge-Kutta method. The RKS is thoroughly formulated in30.

ESM operator
In order to enhance the quality of solutions and escape from local optima solutions, the ESM operator is 
embedded in the RUN. The solution achieved by the ESM ( xESM ) is defined as,

 

if rand < 0.5
if ρ < 1

xESM = xp1 + σ2.ρ.| (xp − xm) + randn|
else

xESM = (xp2 − xm) + σ2.ρ.| (2.rand.xp − xm) + randn|
end

end

 (18)

 
ϱ = rand (0, 2) .exp

(
−q.

(
Iter

MIter

))
 (18.1)

 
xm = xe1 + xe2 + xe3

3
 (18.2)

 xp1 = θ × xm + (1 − θ ) × xbst (18.3)

where θ  indicates a random value within the range of [0, 1]. q expresses a random value ( q = 5 × rand), and 
σ 2 denotes an integer number, equal to 1, 0, or -1.

xESM  may not exhibit a superior objective function compared to solution xn (a new solution). xp2 is 
generated to explore the possibility of obtaining more promising solution. The formulation of xp2 is as follows:

if rand< ϱ

 xp2 = (xESM − rand.xESM ) + A.(rand.xRKS + (2.rand.xbst − xESM ))  (19)

end.

Feature selection
Overloading ML models with excessive parameters weakens their overall performance. Many techniques 
are employed for input selection, mainly emphasizing linear connections. They include auto-correlation, 
correlation, principal component analysis, and so on31. This research used the LGBM data filtering technique 
for improving accuracy of the potential model. This technique is a nonlinear way to select parameters for input. 
LGBM also is a well-known gradient-boosting ML approach that consistently delivers top-notch results across 
several domains32. LGBM trains decision trees using a histogram-based approach, which divides continuous 
information into bins to speed up training. This approach reduces data complexity leading to faster computation 
and lower memory usage while maintaining high accuracy during training and testing. To promote instances 
with more considerable gradients, LGBM prioritizes these and incorporates an autonomous feature-selection 
technique. This study employed LGBM to identify the optimal variables for input, to enhance the overall 
effectiveness of the model and reduce the dimensionality of the forecasting problem (specifically, the number of 
input variables that can complicate the prediction process).

Optimized multivariate variational mode decomposition (OMVMD)
Decomposition techniques break down complicated data into separate high- and low-frequency components, 
enhancing clarity and streamlining analysis. A notable multivariate variant of the VMD method is the MVMD33. 
The main parameters in MVMD are the total value of decomposition methods (K) and the quadratic penalty 
component ( ϕ ). The value of IMF and the bandwidth of IMF is determined by K and ϕ , respectively. When the 
K value is too high, mode aliasing occurs, and when it is too low, feature extraction is inadequate, and incomplete 
decomposition occurs. Therefore, the optimization of the K and ϕ  variables was achieved in the current study 
by using the RUN optimization method. RUN mitigated the negative impacts of tuning parameter selection 
processes by making sure that the MVMD decomposition factors were adequately scaled.

Employing an adaptation function as the optimization criteria is necessary for optimizing the MVMD 
variables. Therefore, developing an adaptive function compatible with strain time series is of paramount 
importance. The envelope entropy quantifies the degree of sparsity in a signal, and its numerical value exhibits 
an inverse correlation with the periodic nature of the signal. To put it simply, as the signal’s periodicity increases, 
the envelope entropy decreases. Because of the mentioned conditions, the objective function chosen for 
optimization is the minimal envelope entropy. This function aims to enhance the extraction of periodic features 
from the input parameter and increase the decomposition performance by optimizing the K and ϕ . Here is the 
formula for determining the envelope entropy34:
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Objective F unction = 1

K

∑
K
k=1EI (k) (20)

in which

 
EIpd (k) = −

∑
m
j=1 pdilog2pdi (21)

 
pdi = es (j) /

∑
m
j=1 es (j) (22)

 es (j) =
√

[x( j)]2 + {H [x( j )] }2 (23)

The equation EIpd expresses the envelope entropy of an IMF signal x, where m and pd denote the length of 
the signal and probability distribution, respectively. es and H [*] define the series of envelope signals derived 
by Hilbert demodulation of the signal x and the Hilbert transform, respectively.

The following represent the precise phases of the signal decomposing process based on RUN-OMVMD 
presented in this study, as illustrated in the flow diagram (Fig. 3):

 (1) Consider the input signal x (t) and employ the OMVMD control variable pair [K, ϕ ] as the two-dimen-
sional population of the RUN. Establish the value interval for the control factor pair, with K having a range 
of [2,10] and ϕ  having a range of [200,5000] options. Put the RUN algorithm’s parameters, such as the 
population size Np and the maximum number of iterations MIter, into the initial state.

The limits for K [2, 10] in the MVMD decomposition method prevent excessive dimensionality, balancing 
complexity and manageability. The range for ϕ  [200,5000] allows flexibility in capturing data characteristics 
while avoiding excessive smoothing. These parameters are informed by previous studies35,36 to optimize 
performance and maintain interpretability.

 (2) Use the initialized two-dimensional population [K, ϕ ] as an input variable to decompose the input features 
in OMVMD. Compute the fitness value of each mode and choose the initial solution with the least fitness 
value.

 (3) Evaluate the present iteration’s fitness value in relation to the previous iteration. Make sure to update the 
answers by substituting the current iteration’s fitness value in the prior iteration if the current iteration’s 
value is low.

 (4) Use Eqs. (17–19) to revise the best solution and existing solution locations.
 (5) To achieve the ideal fitness value of RUN and the accompanying optimal parameters [K, ϕ ], repeat steps 3 

through 4, and continue loop iterations until the maximum number of iterations MIter is achieved.
 (6) Utilize OMVMD to decompose the input signal into many IMFs by setting an ideal value [K, ϕ ] as the 

control factor.

Statistical metrics
This study employs seven statistical criteria for selecting the most effective ML models in predicting IWQI. A 
lower result for RMSE (root-mean-square error), which may range from 0 to ∞, indicates a better match. The 
correlation coefficient (R) ranges from − 1 to 1, with 1 showing perfect correlation. The uncertainty coefficient 
(U95%) at a 95% confidence level also ranges from 0 to ∞, signifying uncertainty levels. Vicis symmetric distance 

Fig. 3. Flowchart of optimized MVMD.
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(VSD) ranges from 0 to ∞, where lower values suggest better similarity. The index of agreement (IA) ranges from 
0 to 1, with 1 indicating perfect agreement. Maximum absolute error (MaxAE) and mean absolute percentage 
error (MAPE) both range from 0 to ∞, with lower values showing better performance. Despite the fact that a 
few of these measures are associated with linear models, they are useful for evaluating non-linear models as 
well. They provide insight into the consistency and accuracy of predictions made using different methods. These 
metrics are formulated as,

 

R =

∑
N
i=1

(
IW QIMs,i −

−
IW QIMs

)
×

(
IW QIF,i −

−
IW QIF

)

√
∑

N
i=1(IW QIMs,i −

−
IW QIMs)

2

×
∑
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 (24)
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V SD =

∑
N
i=1

(IW QIMs,i − IW QIF,i)
2

min(IW QIMs,i, IW QIF,i)
 (29)

 U95% = 1.96
√

SD2 + RMSE2 (30)

where IW QIMs,i and IW QIF,i express the measured and forecasted IWIQ values, correspondingly. 
−

IW QIMs and 
−

IW QIF  are the average values of the measured and forecasted IWQIs, respectively. N indicates 
the size of the dataset, and SD expresses the standard deviation of dataset.

Model development
The IWQI at two Iranian stations were predicted using several ML models in this research. A total of five ML 
methods, namely deep random vector functional link (DRVFL)37, GRKR, LSSVM, deep ELM (DELM)38, Ridge, 
and a stacking technique based on the regression tree model and generalized linear regression (GLM), were 
integrated into the proposed framework. They also incorporated the OMVMD decomposition method and the 
LGBM feature selection technique. The architecture that was built to anticipate IWQI is shown in Fig. 4. A three-
month advance forecast of IWQI values (t + 3) was the aim of this research. The two primary steps in developing 
the model were:

Decomposition and feature selection approach
The MAR and PI parameters represented the output elements, whereas Q, SO−2

4 , Cl, TDS, and EC constituted 
the key input variables, as stated in Sect. 2.8. A total of 50 input parameters (5 × 10 = 50) were employed with a 
10-time lag applied to each of the 5 input factors. The 10 lag-time of PI and MAR were also used as the input 
variables. Therefore, there were a total of 65 variables for input. The 65 variables were first deconstructed by the 
OMVMD approach to simplify the signals to capture different frequency patterns, isolating noise and significant 
trends. Simplifying signals can also be accomplished through OMVMD aimed at reducing complexity and 
enhancing clarity.

The mode decomposition factor (k) and the penalty parameter ϕ  were the main adjustment parameters 
for the MVMD approach. They also were crucial for achieving promising accuracy. This goal was achieved by 
optimizing the MVMD using the RUN algorithm to determine the optimal values of k and ϕ  at all the stations. 
Table 2 reports the ideal values of k and ϕ .

The OMVMD method used 65 input parameters to perform a simultaneous decomposition, resulting in the 
storage of IMFs that represented the independent variables’ constituent components. The parameters for input 
were the initial set of 65-time delays, which improved accuracy. In the case of PI-A forecasting, for example, 
65 × 8 IMFs were applied as input variables (a total of 520 variables). Then, the optimal input variables were 
specified using the LGBM, as mentioned in Sect. 2.5. The step towards dimensionality reduction in the input 
variables was the selection of the most significant features (35% of the total) for further analysis. According to 
this process, the procedure yielded the following feature counts: 73 for PI-A, 128 for MAR-A, 129 for PI-M, and 
128 for MAR-M. The features used for the PI-A and MAR-A are shown in Fig. 5. It is worth mentioning that the 
important features for the PI-M and MAR-M are found in Appendix (B).
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Model adjustment
Parameter tuning in ML algorithms is a significant part of model development for predicting. However, using 
solutions that are close to the optimal region during tuning decrease the precision of the method, which can 
lead to an inequitable evaluation of various prediction approaches. This occurs because models may appear less 
effective due to suboptimal parameter configurations. The RUN method was employed to optimize the main 
parameters of the GRKR method, ensuring a more thorough exploration of the parameter space and providing a 
fairer evaluation of forecasting techniques. The RUN method also helped to tune the tuning parameters for the 
other ML methods (DELM, LSSVM, Ridge, DRVFL, and Stacking). Tables 3 and 4 demonstrate the ideal values 
for the parameters relating to the simple-based and OMVMD-based ML methods, respectively.

Cases k ϕ

PI-A 8 1373

MAR-A 9 1190

PI-M 9 2603

MAR-M 8 2650

Table 2. Optimal values of MVMD parameters.

 

Fig. 4. Developed framework to forecast IWQIs using ML models.
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Results and discussion
Evaluate ML models using statistical metrics
Table 5 compares the performance of several models (simple-based and OMVMD-based) with R, RMSE, MAPE, 
IA, MaxAE, VSD, and U95% to forecast the PI-A index. The study like previous studies are also evaluated over 
testing stages to better demonstrate the performance of ML models21,22. Almost all criteria demonstrated that 
the OMVMD-GRKR model performed well. When the predicted amounts compared with the observed values 
of the PI-A parameter, OMVMD-GRKR achieved the highest R values (0.987), the lowest RMSE (0.761) and 

Fig. 5. Selected features for (a) PI-A and (b) MAR-A.
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MAPE (0.990). The IA value, which was near to 1, highlighted even more the strong predictive capacity of the 
OMVMD-GRKR model. To demonstrate minor prediction errors and variability, OMVMD-GRKR reported 
quite low MaxAE, VSD, and U95% values compared to other models. The OMVMD-GRKR model’s low values 
suggest that the proposed model outperforms other models in accuracy and reliability. On the other hand, 
simple-based models like GRKR, Ridge, LSSVM, DELM, DRVFL, and Stacking showed much higher error 
metrics, such as RMSE, MAPE, MaxAE, U95%, and VSD, along with lower R values. OMVMD-GRKR stood out 
among the OMVMD-based models as it successfully obtained the best outcomes for forecasting the PI-A index.

The statistical results for the simple and OMVMD-based MAR-A forecasting models are shown in Table 6. 
With an R-value of 0.981, an RMSE of 1.862, and a MAPE of 3.945, the OMVMD-GRKR retained its superior 
performance for the test data. These results demonstrated that the model maintained its reliability and accuracy 
even when faced with unknown data (the testing dataset). The IA stayed high at 0.990, which supported the 
model’s accuracy even more. Simpler models such as GRKR, Ridge, LSSVM, DELM, DRVFL, and Stacking 
had far lower R values and much larger errors. Consequently, the OMVMD-GRKR model was the best option 
among the models assessed overall for predicting MAR-A because of minimal errors, strong correlation, and a 
reasonable agreement with accurate data.

Table 7 shows PI-M forecasting outcomes with all ML models. The OMVMD-GRKR model displayed the 
highest performance in predicting PI-M, With high prediction accuracy (R = 0.963), low RMSE (1.379), and low 
MAPE and MaxAE values. It also preserved a strong IA (0.980), reflecting high model stability. Other OMVMD-
based models, such as GRKR, Ridge, LSSVM, DELM, DRVFL, and Stacking, performed better than simpler 
models that did not use OMVMD, but none of them were as effective as OMVMD-GRKR. This demonstrated 
how the OMVMD approach, combined with GRKR, improves reliability and the accuracy of forecasts.

Table  8 shows the detailed statistical findings for MAR-M forecasting. The OMVMD-GRKR model 
outperformed the others in predicting MAR-M. Its high R and IA values, low RMSE, and MAPE demonstrate 
good alignment between predicted and actual values, and lower MaxAE and VSD values show better handling of 
severe errors. Though they were not as successful as the OMVMD-GRKR model, other OMVMD-based models 
also outperformed their simpler equivalents. These analyses show that OMVMD-based methods, especially 
when coupled with the GRKR model, were the most successful in predicting the IWQI with high accuracy.

Figure  6 presents the ARAS (additive ratio assessment (ARAS))39 scores for all ML models. The ARAS 
method is a multi-criteria decision-making (MCDM) method, which is used to evaluate and prioritize several 
options based on multiple criteria40. The ARAS technique evaluates and ranks OMVMD- and simple-based 

Cases Models Tuning parameter models

PI-A

GRKR ρ = 4.92E + 04, ν = 2.00E + 06, δ = 8.55E + 05, λ 1 = 9.71E − 01
λ 2 = 1.67E + 00

DRVFL LN*= 5, NeN* =20, SF* = 2, AF = sign, C = 0.023

LSSVM gam = 1.00E − 06, sigma = 33.30
Ridge Ridge coefficient = 0.44

DELM NeN = [100, 20], AF = selu, regularization factor = 0.80

Stacking Number of trees = 105, learning rate = 0.045

MAR-A

GRKR ρ = 1.83E + 07, ν = 1.92E + 08, δ = 6.03E + 07, λ 1 = 7.67E − 01
λ 2 = 3.90E + 02

DRVFL LN*= 6, NeN* =15, SF* = 2, AF = sign, C = 1.00E-4

LSSVM gam = 0.011, sigma = 103
Ridge Ridge coefficient = 0.51

DELM NeN = [100, 24], AF = relu, regularization factor = 0.016

Stacking Number of trees = 120, learning rate = 0.31

PI-M

GRKR ρ = 6.71E + 05, ν = 1.75E + 08, δ = 2.00E + 08, λ 1 = 1.02
λ 2 = 20.3

DRVFL LN*= 4, NeN* =10, SF* = 2, AF = sign, C = 1.00E-04

LSSVM gam = 9.20E + 8, sigma = 9.82E + 8
Ridge Ridge coefficient = 25.3

DELM NeN = [40, 40], AF = selu, regularization factor = 1.00E-06

Stacking Number of trees = 100, learning rate = 1.00E-05

MAR-M

GRKR ρ = 8.54E + 08, ν = 1.72E + 10, δ = 1.20E + 10, λ 1 = 1.1
λ 2 = 1.45E + 00

DRVFL LN*= 5, NeN* =20, SF* = 2, AF = sign, C = 5.00E-04

LSSVM gam = 1.2, sigma = 2.20E + 4
Ridge Ridge coefficient = 502

DELM NeN = [100, 100], AF = selu, regularization factor = 1.00E-04

Stacking Number of trees = 132, learning rate = 0.052

Table 3. Control parameter values of simple-based ML models for four cases. LN*: layer number, NeN*: 
neuron number, SF**: scaling factor, AF*: activation function.
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models with considering seven performance criteria (R, RMSE, MAPE, IA, MaxAE, VSD, and U95%). The 
models’ relative efficacy is graphically shown in a cumulative bar graph that compares their overall performance. 
Each bar represents the entire ARAS score, and higher cumulative scores suggest better performance. The goal of 
this research is to identify the model type that performs best overall. The cumulative scores for OMVMD-GRKR, 
OMVMD-Ridge, OMVMD-LSSVM, OMVMD-DELM, and OMVMD-Stacking were 2.998, 1.977, 1.935, 1.198, 
2.143, and 1.126, respectively. Consequently, the OMVMD-GRKR model achieved the best ARAS score to 
forecast the IWQI.

Evaluate ML models using scatter plot
An essential tool for evaluating model performance in regression analysis is the scatterplot of predicted values 
compared to actual values. A well-fitting linear correlation model is represented by points along a diagonal line. 
large variations also refer to predicting trends or biases. This graph offers valuable insights for assessing the 
reliability and accuracy of the model. Figure 7 shows the scatter plot representing all models at the Ahvaz station. 
The best ML method in Fig. 7 is the one that exhibits the least disparity between the lower and upper bounds 
(UB-LB) of the data samples. It can be seen that the OMVMD-GRKR model for PI-A had the lowest (UB-LB) 
of 3.62, demonstrating its high precision in predicting compared to the other ML methods. The LSSVM and 
DRVFL methods had a (UB-LB) value of 4.92, which was somewhat lower than the DELM model’s (UB-LB) 
value of 5.83. The Ridge and Stacking models exhibited larger (UB-LB) values of 7.27 and 13.17, respectively, 
suggesting less accurate projections for the PI-A index. For MAR-A forecasting, the UB-LB values for OMVMD-
GRKR, OMVMD-DELM, OMVMD-DERVFL, OMVMD-LSSVM, OMVMD-stacking, and OMVMD-Ridge 
were 12.38, 14.44, 14.93, 14.98, 18.11, and 21.32, respectively. These findings showed that the OMVMD-GRKR 
model could achieve the smallest UB-LB, resulting in the best model to forecast the MAR-A and PI-A index.

Scatter plots of PI-M and MAR-M is presented in Appendix C. In the case of PI-M and MAR-M forecasting, 
the proposed OMVMD-GRKR indicated the best performance compared with the other models. The OMVMD-
GRKR was able to yield the smallest values of UB-LB for PI-M (6.41) and MAR-M (13.06), indicating high 
accuracy and reliability compared to the other models.

Evaluate ML models using density plot
ML models’ relative error distribution for PI-A and MAR-A forecasting is shown in Fig. 8. A mix of box and strip 
graphs is used to display the relative error distribution of all the ML models. The figure illustrates that the relative 

Cases Models Tuning parameter models

PI-A

GRKR ρ = 1.07E + 04, ν = 2.00E + 05, δ = 1.05E + 05, λ 1 = 7.31E − 01
λ 2 = 1.90E − 02

DRVFL LN*= 10, NeN* =45, SF* = 2, AF = sign, C = 0.15

LSSVM gam = 401, sigma = 2010.50
Ridge Ridge coefficient = 0.025

DELM NeN = [1500, 1100], AF = selu, regularization factor = 0.01

Stacking Number of trees = 150, learning rate = 0.5

MAR-A

GRKR ρ = 2.66E − 03, ν = 1.67E + 05, δ = 4.34E + 04, λ 1 = 7.67E − 01
λ 2 = 7.47E + 01

DRVFL LN*= 8, NeN* =52, SF* = 2, AF = sign, C = 0.05

LSSVM gam = 4.50, sigma = 7.38
Ridge Ridge coefficient = 0.021

DELM NeN = [4800, 4800], AF = relu, regularization factor = 0.001

Stacking Number of trees = 1000, learning rate = 0.11

PI-M

GRKR ρ = 3.67E + 07, ν = 1.26E + 08, δ = 8.73E + 06, λ 1 = 2.08E − 02
λ 2 = 2.65

DRVFL LN*= 5, NeN* =100, SF* = 2, AF = sign, C = 0.11

LSSVM gam = 105, sigma = 3000.45
Ridge Ridge coefficient = 5.1

DELM NeN = [6100, 6100], AF = selu, regularization factor = 8E-04

Stacking Number of trees = 700, learning rate = 0.41

MAR-M

GRKR ρ = 3.96E + 05, ν = 1.68E + 08, δ = 6.76E + 06, λ 1 = 7.08E − 01
λ 2 = 1.38E − 01

DRVFL LN*= 8, NeN* =62, SF* = 2, AF = sign, C = 0.05

LSSVM gam = 182, sigma = 2000.30
Ridge Ridge coefficient = 30

DELM NeN = [2500, 2500], AF = selu, regularization factor = 0.001

Stacking Number of trees = 130, learning rate = 0.75

Table 4. Control parameter values of OMVMD-based ML models for four cases. LN*: layer number, NeN*: 
neuron number, SF**: scaling factor, AF*: activation function.
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Model Metric R RMSE MAPE IA MaxAE VSD U95%

OMVMD-GRKR
Train 0.995 0.884 2.224 0.997 3.519 8.070 2.453

Test 0.981 1.862 3.945 0.990 7.974 15.141 5.171

GRKR
Train 0.660 6.380 15.985 0.758 24.761 575.220 17.695

Test 0.442 8.713 21.979 0.609 29.841 439.040 24.119

OMVMD-Ridge
Train 0.994 0.901 2.135 0.997 3.580 8.034 2.499

Test 0.967 2.529 4.623 0.983 12.040 34.012 7.018

Ridge
Train 0.642 6.502 16.536 0.752 24.999 601.495 18.035

Test 0.262 10.312 26.662 0.509 31.289 636.788 28.225

OMVMD-LSSVM
Train 0.983 1.621 3.852 0.990 8.410 27.374 4.495

Test 0.961 2.665 6.034 0.978 7.790 31.192 7.396

LSSVM
Train 0.585 7.084 17.948 0.587 27.424 731.331 19.650

Test 0.270 9.193 23.410 0.329 31.895 511.943 25.489

OMVMD-DELM
Train 0.995 1.157 3.111 0.995 3.890 17.144 2.999

Test 0.920 4.968 10.834 0.899 19.440 108.370 13.222

DELM
Train 0.537 7.150 18.040 0.646 28.595 721.910 19.834

Test 0.230 9.727 23.586 0.442 34.500 524.854 26.537

OMVMD-DRVFL
Train 0.985 1.478 3.516 0.992 9.533 22.282 4.099

Test 0.968 2.420 5.292 0.984 8.476 25.948 6.719

DRVFL
Train 0.588 6.860 17.271 0.701 26.092 671.925 19.029

Test 0.272 10.524 27.815 0.509 34.485 694.293 28.220

OMVMD-stacking
Train 0.994 0.950 2.558 0.997 3.140 11.439 2.632

Test 0.895 4.623 11.118 0.919 15.530 104.424 12.685

Stacking
Train 0.666 6.321 16.208 0.773 22.930 554.675 17.533

Test 0.281 9.846 25.685 0.509 32.800 586.958 27.136

Table 6. Statistical metrics achieved by ML models for MAR-A case.

 

Model Metric R RMSE MAPE IA MaxAE VSD U95%

OMVMD-GRKR
Train 0.989 0.668 0.791 0.995 3.250 2.333 1.853

Test 0.987 0.761 0.990 0.994 1.801 1.312 2.108

GRKR
Train 0.229 4.487 5.416 0.288 18.583 121.331 12.447

Test 0.317 4.555 5.683 0.312 14.802 51.610 12.649

OMVMD-Ridge
Train 0.987 0.736 0.912 0.994 2.780 2.849 2.040

Test 0.969 1.197 1.403 0.984 4.460 3.362 3.322

Ridge
Train 0.401 4.224 5.107 0.515 18.013 106.590 11.718

Test 0.171 5.439 6.970 0.439 16.802 71.462 15.099

OMVMD-LSSVM
Train 0.986 0.782 0.956 0.992 3.420 3.242 2.170

Test 0.971 1.167 1.416 0.984 4.460 3.110 3.216

LSSVM
Train 0.375 4.276 5.179 0.494 18.121 109.205 11.862

Test 0.192 5.175 6.656 0.452 14.425 65.089 14.370

OMVMD-DELM
Train 0.957 1.536 1.926 0.965 5.867 13.215 4.260

Test 0.929 2.085 2.561 0.932 7.183 10.520 5.790

DELM
Train 0.421 4.182 5.049 0.530 17.872 104.520 11.602

Test 0.167 5.748 7.332 0.435 19.143 79.231 15.933

OMVMD-DRVFL
Train 0.976 1.025 1.265 0.987 3.473 5.647 2.844

Test 0.973 1.115 1.426 0.985 3.118 2.828 3.096

DRVFL
Train 0.248 4.499 5.404 0.400 18.660 121.880 12.479

Test 0.242 4.852 6.142 0.469 14.330 57.998 13.463

OMVMD-Stacking
Train 0.992 0.579 0.729 0.996 1.750 1.750 1.607

Test 0.934 1.730 1.923 0.964 9.160 7.108 4.777

Stacking
Train 0.257 4.917 5.953 0.327 20.350 61.779 13.589

Test 0.135 4.752 5.931 0.239 15.370 56.111 13.196

Table 5. Statistical metrics achieved by ML models for PI-A case.
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Model Metric R RMSE MAPE IA MaxAE VSD U95%

OMVMD-GRKR
Train 0.981 1.442 3.444 0.990 5.023 21.873 4.000

Test 0.964 2.293 5.331 0.982 7.896 22.821 6.366

GRKR
Train 0.565 6.144 16.548 0.671 25.414 562.533 17.041

Test 0.388 8.016 19.044 0.534 26.002 313.627 22.256

OMVMD-Ridge
Train 0.966 1.953 4.833 0.981 6.695 44.606 5.418

Test 0.947 2.893 6.751 0.970 11.081 36.825 7.866

Ridge
Train 0.591 6.014 16.086 0.698 24.431 541.240 16.682

Test 0.112 9.626 23.625 0.426 36.006 508.858 26.368

OMVMD-LSSVM
Train 0.981 1.490 3.702 0.989 5.439 26.301 4.132

Test 0.948 2.765 6.528 0.972 9.643 33.866 7.669

LSSVM
Train 0.438 7.221 19.869 0.148 28.550 813.038 20.030

Test 0.176 8.874 20.710 0.288 31.773 385.385 24.251

OMVMD-DELM
Train 0.974 2.001 5.462 0.979 9.740 64.911 5.429

Test 0.877 5.204 11.220 0.858 18.030 117.530 13.888

DELM
Train 0.459 7.254 20.325 0.192 29.518 840.909 20.067

Test 0.158 8.802 20.664 0.257 31.281 382.005 24.167

OMVMD-DRVFL
Train 0.969 1.847 4.520 0.983 6.570 38.723 5.123

Test 0.950 2.775 6.433 0.973 9.497 33.432 7.613

DRVFL
Train 0.565 6.149 16.374 0.695 25.266 558.116 17.056

Test 0.170 9.354 22.987 0.451 35.876 477.016 25.686

OMVMD-stacking
Train 0.988 1.141 2.835 0.994 3.484 13.778 3.165

Test 0.777 6.211 13.427 0.846 16.322 173.539 16.268

Stacking
Train 0.489 6.492 17.479 0.604 24.865 651.163 18.008

Test 0.198 8.682 19.942 0.395 30.661 384.000 23.990

Table 8. Statistical metrics achieved by ML models for MAR-M case.

 

Model Metric R RMSE MAPE IA MaxAE VSD U95%

OMVMD-GRKR
Train 0.968 1.237 1.565 0.983 3.505 8.273 3.429

Test 0.963 1.379 1.704 0.980 4.140 4.314 3.828

GRKR
Train 0.202 4.799 5.978 0.247 21.487 130.222 13.312

Test 0.362 4.847 6.015 0.327 15.074 58.227 13.421

OMVMD-Ridge
Train 0.968 1.245 1.591 0.983 3.713 8.318 3.453

Test 0.952 1.675 2.025 0.971 8.517 6.580 4.494

Ridge
Train 0.454 4.373 5.386 0.547 18.461 106.832 12.1319

Test 0.125 6.105 7.703 0.441 14.495 91.163 15.733

OMVMD-LSSVM
Train 0.965 1.325 1.705 0.979 3.859 9.503 3.675

Test 0.937 1.863 2.384 0.962 6.139 8.111 5.086

LSSVM
Train 0.513 4.205 5.319 0.627 17.521 98.391 11.665

Test 0.087 6.414 8.034 0.424 15.425 101.146 16.658

OMVMD-DELM
Train 0.989 0.926 1.232 0.990 2.567 4.748 2.490

Test 0.885 2.762 3.367 0.896 10.004 17.738 7.396

DELM
Train 0.247 4.916 6.254 0.113 20.979 137.548 13.613

Test 0.082 5.184 6.544 0.217 16.219 66.203 14.274

OMVMD-DRVFL
Train 0.964 1.312 1.678 0.980 3.839 9.297 3.640

Test 0.949 1.630 1.950 0.972 7.350 6.196 4.508

DRVFL
Train 0.356 4.602 5.717 0.502 18.616 119.329 12.764

Test 0.222 5.052 6.222 0.385 18.127 63.725 13.982

OMVMD-Stacking
Train 0.999 0.237 0.301 0.999 0.694 0.300 0.657

Test 0.787 3.559 4.279 0.850 10.429 29.382 9.328

Stacking
Train 0.508 4.225 5.326 0.605 17.738 99.440 11.721

Test 0.100 6.186 7.770 0.428 14.296 93.446 16.108

Table 7. Statistical metrics achieved by ML models for PI-M case.
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errors of the OMVMD-GRKR model for PI-A forecasting were tightly distributed around zero, with the range 
of [-0.03, 0.03]. The predicted values of PI-A were quite accurate and consistent, as seen by the tightly packed 
data points around the zero-error line in the strip plot. For the OMVMD-Ridge, OMVMD-DRVFL, OMVMD-
Stacking, OMVMD-DELM, and OMVMD-LSSVM models, the ranges of relative error were [-0.05, 0.07], [-0.05, 
0.04], [-0.10, 0.14], [-0.15, 0.09], and [-0.04, 0.05], respectively, indicating a broader range of relative errors. 
The proposed OMVMD-GRKR model was able to achieve the smallest range of relative error ([-0.15, 0.23]) 
compared with the other models for the MAR-A forecasting.

Appendix D shows the relative error distribution of PI-M and MAR-M forecasting. The figure clearly indicates 
that the OMVMD-GRKR method outperformed the others, demonstrating the smallest range of relative error 
for PI-M ([-0.07, 0.04]) and MAR-M ([-0.28, 0.22]) compared to the other ML methods.

Evaluate ML models using violin plot
The violin plot (in Fig. 9) shows the distribution of PI-A, MAR-A, PI-M, and MAR-M for all ML models. The 
mentioned plots present a comparison between a measured reference and six prediction models (GRKR, Ridge, 
dRVF1, Stacking, DELM, and LSSVM) for the distribution of all IWQI (PI-A, MAR-A, PI-M, and MAR-M) 
values. Each plot shows the IWQI range and density; the median and the interquartile range are shown by a 
white dot and box. The PI-A value distribution for the GRKR model showed a high degree of resemblance by 
being somewhat near to the measured values. For measured, GRKR, Ridge, DRVFL, Stacking, DELM, LSSVM, 
PI-A ranges were [46.91, 73.70], [46.80, 73.60], [46.77, 73.28], [49.13, 72.86], [48.57, 73.23], [53.34, 70.03], 
and [47.84, 72.84]. Both showed the lowest minimum PI-A values (Measured = 46.91 and GRKR = 46.80). In 
contrast, other models such as DELM had higher minimum values (53.34) and lower maximum values (70.03). 
The GRKR’s efficiency in accurately reproducing the measured data is shown by its general near match to the 
PI-A value distribution.

When it came to the other IWQI, such as MAR-A, PI-M, and MAR-M, the GRKR model consistently 
performed better. Predictions of IWQI made by the model showed remarkable agreement with the actual data. 
The ranges of suggested model (MAR-A (GRKR = [10.75, 63.33]), PI-M (GRKR = [47.16, 73.02]), and MAR-M 
(GRKR = [15.23, 67.83])) were somewhat comparable to the observed values (MAR-A = [11.29, 65.35], PI-M 

Fig. 6. ARAS score calculated for ML models.

 

Scientific Reports |        (2025) 15:16313 16| https://doi.org/10.1038/s41598-025-99341-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


= [46.52, 72.77], and MAR-M = [13.74, 67.21]). This made the GRKR model a useful ML model for forecasting 
IWQI as it showed its accuracy and dependability in estimating these parameters.

Evaluate ML models using residual density distribution
Figure 10 illustrates the residual density distribution across all IWQI (PI-A, MAR-A, PI-M, and MAR-M) for 
several predictive models (GRKR, Ridge, dRVFI, Stacking, DELM, and LSSVM). The colorful curves represent 
the residual distributions of the various models. Vertical dashes show all of the models’ 95% confidence intervals. 
The residuals are spread uniformly about the average with varying degrees of dispersion and concentration since 
the distributions often have a central tendency around zero. the figures showed that the GRKR model with the 
narrowest and tallest distributions exhibited a higher density of residuals near zero for all IWQI (namely: (a) 
PI-A, (b) MAR-A, (c) PI-M, and (d) MAR-M). This model was able to provide more accurate and error-free 
predictions of the IWQI. Conversely, models with broader distributions (e.g., DELM and LSSVM) exhibited a 
higher variability in their prediction errors.

Evaluate ML models using Taylor plot
Figure 11 shows a comparison of six ML models’ Taylor diagrams with a reference model. These models are 
DELM, DRVFI, Stacking, Ridge, LSSVM, and GRKR. The position of each model on the plot was estimated by 
the standard deviation and correlation coefficient of its data. the horizontal axis shows the standard deviation, 
and the radial lines show the correlation coefficient. The GRKR model was closest to the reference point for all 
IWQI (PI-A, MAR-A, PI-M, and MAR-M) comparing the position of ML models in the Taylor diagram. The 
closeness level between GRKR and the reference point indicated that GRKR had the most similarity to it. The 
results proved that when it came to predicting the reference dataset, the GRKR model was the most effective.

Conclusion
A complementary hybrid intelligence framework was developed for the first time to forecast monthly PI and MAR 
indices in Ahvaz and Molasani stations, Khouzestan province, Iran. The framework comprised a new hybrid ML 
model based on generalized ridge regression and kernel ridge regression with the regularized locally weighted 
method called the GRKR model. Furthermore, an optimized MVMD method was developed to decompose the 
input variables. Finally, the LGBM model was considered to select the most important features. Two stations’ PI 
and MAR indices were predicted using the suggested framework: PI-A and MAR-A for the Ahvaz station and 
PI-M and MAR-M for the Molsani station. A novel hybrid ML model (GRKR) and an optimized MVMD based 
on the RUN optimization technique were developed as the key contributions of this study. Notably, the best 
control parameters for ML models were derived using the RUN optimization technique.

The decomposed input variables were utilized in the GRKR model to design OMVMD-GRKR to forecast 
monthly PI and MAR. In this work, OMVMD-Ridge, OMVMD-DRVFL, OMVMD-DELM, OMVMD-LSSVM, 
and OMVMD-Stacking models were developed to assess the forecasting precision versus the OMVMD-
GRKR model utilizing seven statistical metrics (R, RMSE, MAPE, IA, MaxAE, VSD, and U95%). The findings 

Fig. 7. Scatter plot achieved using ML models for (a) PI-A and (b) MAR-A.
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showed that, when the suggested OMVMD-GRKR compared to other OMVMD-based models, it had better 
performance accuracy for both stations in predicting PI and MAR indices. The OMVMD-GRKR model could 
achieve the highest degree of accuracy in terms of (R = 0.987, RMSE = 0.761, IA = 0.994, VSD = 1.312, and U95% 
= 2.108) to forecast the PI index at the Ahvaz station and (R = 0.963, RMSE = 1.379, IA = 0.980, VSD = 4.314, and 
U95% = 3.828) to forecast the PI index at the Molasani station.

The results show that the OMVMD-GRKR and OMVMD-Stacking models were the most and least accurate 
for predicting PI and MAR at two stations, respectively. The simple GRKR, Ridge, LSSVM, DELM, and Stacking 
models also indicated lower accuracy as compared to the OMVMD-based methods. Therefore, the OMVMD-
GRKR model could yield superior accuracy compared to other OMVMD-based models to forecast PI and MAR 
indices. The suggested hybrid intelligence framework OMVMD-GRKR can effectively be used in the future to 
address climate change, sustainable energy, environmental and agricultural fields, and renewable energy.

Figure 7. (continued)
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Fig. 8. Relative error distribution of ML models for (a) PI-A and (b) MAR-A.
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Fig. 9. Violin plot the distribution of (a) PI-A, (b) MAR-A, (c) PI-M, and (d) MAR-M for ML models.
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Fig. 10. Residual density distribution of ML models for (a) PI-A, (b) MAR-A, (c) PI-M, and (d) MAR-M.
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