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Abstract 

Human pluripotent stem cell (hPSC)-derived cardiac organoid is the most recent three-dimensional tissue 

structure that mimics the structure and functionality of the human heart and plays a pivotal role in 

modeling heart development and disease. The hPSC-derived cardiac organoids are commonly 

characterized by bright-field microscopic imaging for tracking daily organoid differentiation and 

morphology formation. Although the brightfield microscope provides essential information about hPSC-

derived cardiac organoids, such as morphology, size, and general structure, it does not extend our 

understanding of cardiac organoids on cell type-specific distribution and structure. Then, fluorescence 

microscopic imaging is required to identify the specific cardiovascular cell types in the hPSC-derived 

cardiac organoids by fluorescence immunostaining fixed organoid samples or fluorescence reporter 

imaging of live organoids. Both approaches require extra steps of experiments and techniques and do not 

provide general information on hPSC-derived cardiac organoids from different batches of differentiation 

and characterization, which limits the biomedical applications of hPSC-derived cardiac organoids. This 

research addresses this limitation by proposing a comprehensive workflow for colorizing phase contrast 

images of cardiac organoids from brightfield microscopic imaging using conditional Generative 

Adversarial Networks (GANs) to provide cardiovascular cell type-specific information in hPSC-derived 

cardiac organoids. By infusing these phase contrast images with accurate fluorescence colorization, our 

approach aims to unlock the hidden wealth of cell type, structure, and further quantifications of 

fluorescence intensity and area, for better characterizing hPSC-derived cardiac organoids. 

 

Keywords: Generative Adversarial Networks, U-Net, Image colorization, Human pluripotent stem cell 

(hPSC), Cardiac Organoids 
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Introduction 

Various human organ-specific organoids, including recent cardiac organoids, have been developed and 

employed in cardiovascular disease modeling and drug screening 1–5. To comprehend organoid 

differentiation and structure, microscopic imaging becomes essential with both phase contrast and 

fluorescence. In our previous study, a triple reporter human pluripotent stem cells (hPSC) line (3R) was 

created with three fluorescence reporters for labeling three different types of cardiovascular cells. Upon 

hPSC differentiation into vascularized cardiac organoids (VCOs), three essential cardiovascular cells can 

be visualized by live-cell imaging: green (Green Fluorescent Protein - GFP) representing cardiomyocytes 

(CMs), red/orange (Red Fluorescent Protein/Monomeric Orange Protein - RFP/mOr) representing 

endothelial cells (ECs), and blue (Cyan Fluorescent Protein - CFP) representing smooth muscle cells 

(SMCs) 6. Since each fluorescence signal corresponds to a specific cell type and corresponding cellular 

network, this 3R hPSC line has been extremely helpful in tracking cardiac organoid formation in a 

temporospatial manner for potential applications of disease modeling and drug screening. However, it 

holds a very obvious limitation, only one cell line is utilized and enabled to visualize the colorful 

cardiovascular cells in the hPSC-derived cardiac organoids. A diverse and large number of hPSC lines are 

typically required for achieving more generalized outcomes from biomedical applications. While phase 

contrast microscopic imaging is routinely applied and conveniently used in every biomedical lab for 

organoid examination, generating accurate fluorescence information or image colorization on phase 

contrast images of cardiac organoids would potentially broaden the characterization and analysis of hPSC-

derived cardiac organoids in a high-throughput and time-efficient manner. 

 

Numerous approaches have been explored to tackle the challenge of image colorization by artificial 

intelligence (AI). Traditional machine learning (ML) techniques extract similar features from a reference 

image to predict colors in a new image 7–9  while the efficacy of such methods is contingent on the 
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similarity between the reference image and the target. The advent of Convolutional Neural Networks 

(CNNs) marked a significant shift, allowing for the automatic extraction of features from images. 

Pretrained CNNs have gained prominence in image colorization, leveraging feature maps to predict pixel 

colors 10–12. The capabilities of Generative Adversarial Networks (GANs) 13 in various generative tasks 

have prompted their use in colorization. In this context, Conditional GANs, exemplified by Pix2Pix GAN 

14, have emerged, mapping grayscale inputs to corresponding ground truth images. In our work, we 

employed Pix2Pix GAN, augmented with the Convolutional Block Attention Module (CBAM) 15, 

enhancing the network’s focus on critical features and elevating colorization realism. Despite the 

technological advancement of image colorization on generic image categories, there is a lack of research 

focused specifically on colorizing hPSC-derived tissue constructs, such as cardiac organoids. Small color 

discrepancies that might be tolerable for generic image generation might be detrimental to cardiac 

organoids’ images with much smaller features. Even minor color variations in this context can introduce 

significant misinformation, rendering the task of organoid colorization exceptionally challenging. 

 

Currently, there are three existing techniques for image colorization, including Reference Image-based 

colorization, which is based on the color information from a reference image. Gupta et al. 16 colorized the 

target images using a reference-colored image, where feature mapping is done for the features extracted 

using SURF and Gabour filters, and image space voting based on the neighboring pixels is done to obtain 

the plausible pixel color. This technique suffered at image boundaries and caused color bleeding. To solve 

this problem, a patch-based feature extraction and colorization technique was proposed in 17, that produced 

more robust colors. With the breakthrough of CNN performance in image processing tasks, CNN is used 

widely because of its capability to automatically extract the features to find the relations between them and 

produce more realistic colors. Larsson et al. 11 used an architecture from the Visual Geometry Group, 

VGG-16, in which the first convolution layer was modified to operate on a single channel, and the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.01.15.575724doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.15.575724
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

classification layer was removed. This architecture was fine-tuned on the ImageNet dataset of gray images 

for one epoch. The grayscale images were passed to this modified network to generate spatially localized 

multicolumn layers referred to as hypercolumns, which were used to predict the color of the pixel. 

Multiple CNN architectures, one to extract global-level features of the image and the other to extract mid-

level features, created a fusion layer that combined these two global and mid-level features now the final 

color predictions were generated based on the correlation of those two features 10. Moreover, Generative 

Adversarial Network (GAN) based image colorization is also widely used. Pix2Pix 14, a type of 

Conditional GAN, becomes a popular choice for image colorization because of its ability to find 

information in pair-to-pair image translation. GAN network consists of a generator, which generates the 

colorized image from a conditional input image, and a discriminator, which tries to identify if the 

generated image is real or fake 18, GAN architecture was used to generate colored images from infrared 

images in RGB color space. The pix2pix architecture with U-Net was applied for image colorization on the 

CIFIAR-10 dataset, where the grayscale image was given as the conditional input to the U-Net generator 

to generate a colored image, which was then passed to the discriminator to identify if the generated image 

is a real or fake one 19 20. 

 

Accordingly, we established a novel framework utilizing cGANs with adversarial training between the 

generator and discriminator 14 for training on cardiac organoid images (phase contrast and corresponding 

fluorescence images in green, red, and blue) directly differentiated from 3R, a triple-reporter hPSC line. To 

address the dynamic nature of cardiac organoid images, we incorporated an attention mechanism, the 

CBAM 15, ensuring an increased emphasis on crucial details and generating more accurate colors. Through 

an extensive training process on our dataset, the model learned to intricately map grayscale cardiac 

organoid images (phase contrast) to the corresponding color images (fluorescence). We conducted a 

thorough evaluation of the proposed method’s effectiveness in preserving biological details and introduced 
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a new evaluation metric, the Weighted Patch Histogram (WPH), designed to capture the color histogram 

information from small patches of the image, allowing us to obtain a spatially aware color histogram. 

Collectively, our work demonstrates its efficacy in preserving cell-level information, presenting a 

promising advancement for the visualization and analysis of hPSC-derived cardiac organoid cell types and 

structures in biomedical research. 

 

RESULTS  

After hPSC-derived cardiac organoids were differentiated from the 3R triple-reporter hPSC line 21, we 

imaged the entire organoids with live-cell fluorescent microscopy based on three fluorescence reporters: 

Green (G) – GFP – TNNT2 – CM; Red (R) – mOrange – CDH5 – EC; Blue (B) – CFP – TAGLN – SMC 

and phase contrast. The 3R hPSC-derived cardiac organoids on day 16 expressed green, red, and blue 

fluorescence in circular morphology as indicated in Figure 3. To increase the diversified results of cardiac 

organoid differentiation, we included the organoids successfully differentiated into all three cell types 

(CM, EC, and SMC) and also the organoids composed of two cell types (CM and EC, or CM and SMC, or 

EC and SMC) and single cell type (CM or EC or SMC). Within this experimental setup, a total of 1,374 

paired images (phase contrast and fluorescence) were used for training, while 79 paired images were used 

for testing and evaluation. To make the model capture the intricate fluorescence details from a limited 

dataset, the majority of the data was allocated for training. This approach aims to maximize the model’s 

exposure to diverse examples and the remaining subset of data was used for testing and evaluation to 

assess the model’s performance. 

 

First, we designed three U-Net-based models for optimizing the image colorization of hPSC-derived 

cardiac organoids: 
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Model 1, U-Net generator only: This generator architecture is based on Supplementary Fig. 1 without a 

CBAM block. 

Model 2, U-Net generator with CBAM as shown in Supplementary Fig. 1 

Model 3, U-Net with CBAM and Generator Iteration. The generator iteration employed the architecture in 

Model 2 was trained twice in an epoch. With an intuition of making the generator stronger compared to the 

discriminator as it was trained multiple times to produce more realistic colors. 

 

After three models were trained efficiently with the training dataset of paired phase contrast and 

fluorescence images from the same organoids, we applied the three models for predicting the hPSC-

derived cardiac organoid images in merged phase contrast and fluorescences of green, red, and blue 

channels as shown in Fig. 3a based on the phase contrast images of cardiac organoids. Those organoids 

used for image prediction and fluorescence colorization were not previously included in the training 

dataset but from the same batch of organoid differentiation.  Three evaluation metrics: the Peak Signal-to-

Noise Ratio (PSNR), Structural Similarity Index (SSIM), and WPH were employed to quantitatively 

evaluate the performance of our models. Fig. 3b presents the outcome of evaluation scores achieved on 

those metrics.
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The range of PSNR is [0, ∞], where 0 represents no similarity between images and infinity is for the 

same images. For a comparison of lossy images, the PSNR score typically ranges between 30 to 50 

where the higher the score higher the similarity 22. Values over 40 are usually considered to be very 

good and anything below 20 is unacceptable 23. The well-established techniques achieved a PSNR score 

of 29.52 on the COCO-stuff dataset 24, whereas our models achieved PSNR scores are over 32. The 

COCO-stuff dataset platform is well-known for annotating images or using textual image descriptions 

by comparing the predicted images to the ground truth of COCO-Stuff at the pixel level. The Structural 

Similarity Index (SSIM) score ranges in (1, 1) 25 where -1 represents no similarity and 1 represents very 

high similarity. Therefore, a higher score indicates higher similarity. The state-of-the-art techniques 

have an SSIM score of 0.94 on the coco-stuff dataset 24, whereas our models achieved SSIM scores of 

0.96. Weighted Patch Histogram ranges in [0,1] where 0 represents no similarity in the histograms of the 

images, therefore no similarity, and 1 represents full similarity in histograms resulting in a very high 

similarity of the images. The similarity increases from 0.73 to 0.77 from Model 1 to Model 3. 

 

Since all three models provide good prediction results based on the similarity of the predicted image to 

the ground truth and evaluation metrics, they were further applied to predict the organoids from different 

batches of organoid differentiation. As visualized in Fig. 4a and quantified in Fig. 4b, the predicted 

organoid images from Model 2 demonstrate the highest similarity in comparison to the other two Models 

with a higher PSNR (25.26 of Model 2 vs. 24.92 of Model 1 vs. 24.02 of Model 3) and Weighted Patch 

Histogram (0.52 of Model 2 vs. 0.49 of Model 1 vs. 0.44 of Model 3). However, the results of evaluation 

metrics in Figure 4b indicate that the scores decrease in terms of all the metrics in comparison to the 

prediction shown in Figure 3b. Since model 2 generated relatively better results than the other two 

models, model 2 was further fine-tuned by re-training it with one third of images from the new batches 
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of organoid differentiation. After Model 2 was fine tuned, Fig. 5a shows the prediction results of the 

organoids from a new batch of differentiation. It was found that the color generation capability of Model 

2 increased after fine-tuning with improved evaluation metrics of PSNR at 29.82, SSIM at 0.94, and 

WPH at 0.84 (Fig. 5b) 

 

To further validate the predicted organoid images by analyzing and quantifying the fluorescence image 

of each color, which represents one type of cardiovascular cells (CM-green, EC-red, and SMC-blue). 

The single-channeled fluorescence images were quantified by Organalysis, which is an image processing 

software for cardiac organoid fluorescence images in high throughput recently developed in our lab 26. 

Table 1 shows the average results of Organalysis-based analysis 26 by comparing the generated images 

with different metrics like Organoid area, Percentage of Image Covered by Organoid, Total Intensity of 

Organoid, and Total intensity of Organoid-by-Organoid Area for 70 organoids that were used for the 

prediction of the same batch of organoid differentiation as shown in Fig. 3. The difference% compares 

the difference between the generated fluorescence and the ground truth of the same organoids, and 

difference% lower than 25% are highlighted in green blocks and higher than 25% is highlighted in red 

blocks in Table 1. Accordingly, the fluorescence information from the red and green channels generated 

by Model 1 is close to the ground truth, but not the blue channel. The fluorescence measurements on the 

red, green, and blue channels generated by Model 2 were close to the Ground truth with difference% in 

lower or close to 25% in Organoid Area and Percentage of Image Covered by Organoid. Model 3 

performed well showing low difference% in all the metrics except for the Total intensity of the Organoid 

in the Blue channel. 
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Moreover, the cGAN-generated fluorescence information of additional 25 cardiac organoids from a new 

batch of differentiation in Fig. 4a was further extracted and quantified by Organalysis. In Table 2, 

nearly all the models generated the fluorescence information for all three channels at high difference%, 

which matches with the results of evaluation metrics in Fig. 4b. After fine tuning Model 2, Table 3 

shows the results of Organalysis-based analysis by comparing the generated images with different 

metrics like Organoid area, Total Image Area, Percentage of Image Covered by Organoid, Total 

Intensity of Organoid, Total intensity of Organoid-by-Organoid Area, and Total Intensity of Organoid 

by Total Image Area of the organoids in Fig. 5. The blue channel for SMC prediction was excluded 

further due to the inconsistency of the predicted results. More effects in improving the prediction 

outcome of the blue channel will be achieved in future studies with additional dataset. The image of 

green fluorescence-labeled CMs in the cardiac organoids generated by the fine-tuned Model 2 is very 

close to the ground truth with less than a 16% difference to the ground truth in both organoid area and 

intensity in green fluorescence. The red fluorescence-labeled generated by the GAN model is also close 

to the ground truth ECs regarding the cardiac organoid area, however, the total intensity of generated red 

fluorescence is over 30% difference in comparison to the ground truth. 

 

DISCUSSION 

hPSC-derived cardiac organoids are the most emerging in vitro human heart model, which has been used 

from basic developmental biology to translational drug discovery and regenerative medicine, however, 

how to characterize hPSC-derived cardiac organoids in high efficiency and efficacy at examining 

cardiovascular cell type-specific expression and networks without additional fluorescence 

immunostaining and imaging has not achieved yet. This study filled this gap by introducing a novel 
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strategy for fluorescently colorizing cardiac organoids from phase contrast images by utilizing cGANs 

and CBAM. The findings of the study illustrate the efficiency of this framework in capturing 

fluorescence intricacies of the cardiovascular cells (CMs, ECs, and SMCs) in the hPSC-derived cardiac 

organoids. 

 

To better evaluate the prediction outcomes from the algorithms of cGANs+ CBAM, three different 

evaluation metrics were applied with varied emphasis and focus on image recognition and comparison. 

For example, the WPH was included as a new metric to highlight the efficacy of our approach in 

preserving biological details compared to traditional metrics like PSNR and SSIM. Typically, the images 

generated with evaluation scores of PSNR over 30, SSIM over 0.92, and a WPH score over 0.75 are the 

most accurate and similar to the ground truth. 

 

Initially, the prediction of fluorescence images within the same batch of organoid differentiation was 

highly accurate, especially by integrating the CBAM into the conditional GAN framework of Model 2, 

which captured salient features in phase contrast cardiac organoid images with significant improvement. 

This attention mechanism enhances the quality and fidelity of the generated colorizations by directing 

the model’s focus toward critical regions within the image and generating realistic and accurate 

colorizations of grayscale organoid images 27. To further test the prediction outcome of organoids 

differentiated from different batches, we included additional organoids from the other two new batches 

of organoid differentiation. However, the prediction accuracy was greatly reduced in PSNR and WPH. 

To address this problem and bolster the prediction accuracy of organoids from the different batches of 

differentiation, we did fine tuning by incorporating one third of organoid images from the new batches 
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of differentiation into the training dataset. This step of fine turning did improve the prediction outcome 

with higher evaluation metrics.  

 

Finally, to meet the important need for organoid characterization in image quantification, we conducted 

the fluorescence image analysis and comparison between prediction and ground truth. We adapted the 

most common measurement of organoid images focusing on cardiovascular-specific cell types: 

Organoid area, Percentage of Image Covered by Organoid, Total Intensity of Organoid, and Total 

intensity of Organoid-by-Organoid Area. The percentage of differences (difference%) in Organoid area, 

Percentage of Image Covered by Organoid, Total Intensity of Organoid, and Total intensity of 

Organoid-by-Organoid Area are all lower than 25% in the prediction of the same batches of organoids in 

G (GFP-CMs) and R (mOrange- ECs), however, the difference% of B (CFP-SMCs) in Total Intensity of 

Organoid is larger than 25% due to the insufficient dataset containing blue fluorescence information in 

hPSC-derived cardiac organoids. Moreover, the intensity of blue fluorescence was significantly lower 

than the other fluorescence channels making it highly sensitive in the quantification of blue 

fluorescence. Similar to the results of evaluation metrics, the difference% in the organoid 

characterization measurement is more than 25% prior to the fine tuning. Through the optimization of 

fine tuning, the difference% in green and red fluorescences becomes lower than 10% in the Organoid 

area and Percentage of Image Covered by Organoid with significant improvement in the fluorescence 

colorization of hPSC-derived cardiac organoids, however, the prediction of fluorescence intensity-

related measurements needs further improvements due to the variation of microscopic imaging at 

different days and batches even using the same imaging setup and parameters. 
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LIMITATIONS AND FUTURE WORKS 

While the established cGAN+CBAM algorithm has achieved satisfied predictions of hPSC-derived 

cardiac organoid fluorescence images from the corresponding phase contrast images, a few limitations 

still need to be further addressed to improve the prediction accuracy with additional functions. For 

example, the prediction of blue-SMC fluorescence is still insufficient in both image visualization and 

quantification, and the cellular network prediction of green-CM and red-EC fluorescence could be 

further improved as well. To overcome this limitation, we will increase the dataset size with more 

images at varied sample categories, such as including the cardiac organoids with varied and defined 

ratios of each fluorescence through controlled organoid differentiation. Also, we will consider 

employing ensemble learning techniques, where multiple models are trained, and their predictions are 

combined to improve overall accuracy and robustness. As supported by the results of fine tuning, the 

prediction accuracy was enhanced significantly, however, how to achieve a promising prediction 

outcome without fine turning has not been achieved yet. We will try incorporating the Progressive GAN 

28 technique in our training approach to enhance training stability and capture intricate details of hPSC-

derived cardiac organoids to skip the step of fine tuning and still achieve high accuracy of fluorescence 

colorization. Accordingly, the predicted image quantification related to fluorescence intensity 

measurement will be improved further for the organoids from a new batch of differentiation. Another 

limitation of the current study is only epi-fluorescence images were included in the training dataset. In 

consideration of the three-dimensional (3D) structure of hPSC-derived cardiac organoids, the confocal 

fluorescence microscopic imaging with a 3D image stack will be considered to predict the 3D structure 

of organoids with cell-type specific expressions and networks. Lastly, the prediction of cardiac 

organoids differentiated from more hPSC lines will be included and evaluated to extend the application 

of this technology.  
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CONCLUSIONS 

In conclusion, a novel model was established to address the critical challenge of colorizing phase images 

of hPSC-derived cardiac organoids using cGANs and CBAM. This framework has demonstrated its 

efficacy in capturing intricate multichannel fluorescence information within the hPSC-derived cardiac 

organoids, enhancing the interpretability and analysis of cardiovascular cell type and biomarker 

expression in both images and quantification for biomedical research and applications. The cGAN 

model, enriched by the CBAM module, outperformed the other two models, showcasing its adaptability 

and effectiveness by evaluating and comparing three evaluation metrics. Notably, for optimal results on 

the organoid from new batches of differentiation, fine tuning the model is suggested, ensuring that 

accurate and faithful fluorescence information is generated. Moreover, the quantification of fluorescence 

information in predicted organoid images brings extensive validation of hPSC-derived cardiac organoids 

for broader and impactful biomedical applications, such as the prediction of cell type-specific drug 

cardiotoxicity, prediction of cardiovascular development, sex, race, and genetic/mutation-specific 

disease evaluations, if more diverse hPSC cell lines are included in the training dataset. A similar 

algorithm or strategy can also be applied to the brain, liver, kidney, and cancer organoids for automatic 

fluorescence colorization and quantification. 

 

 

METHOD and MATERIALS 
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A. Framework Overview 

In this section, we presented an overview of our research on image colorization of phase contrast or 

grayscale images of hPSC-derived cardiac organoids using cGAN, specifically the Pix2Pix model 14.  

Our methodology was built on the utilization of the Pix2Pix conditional GAN 14, the Pix2Pix model, 

short for “Pixel-to-Pixel Translation,” is a notable example of a cGAN. To achieve this, we adopt the 

CIELAB color space, consisting of three channels: Lightness, a*, and b*. In CIELAB, Lightness 

represents the grayscale channel, while a* and b* represent the two-color channels. This Lightness 

channel will serve as the conditional input to the generator, and the a* and b* channels will be the target 

channels for generating colorized versions of the grayscale images. The objective of using CIELAB 

color space is to extract only the color information from the cardiac organoid and train the model to 

generate the plausible colors of a* & b* that will be merged on the grayscale input, to obtain the 

colorized cardiac organoid. 

Additionally, we incorporated the CBAM 15 to increase the channel and spatial attention of the GAN 

model to focus on the relevant features. CBAM is an innovative enhancement introduced to the 

architecture of deep neural networks, particularly CNNs. CBAM integrates both channel and spatial 

attention mechanisms, facilitating the model’s ability to focus on pertinent features within the input data. 

Channel attention enables the network to adaptively assign importance to different channels, 

emphasizing relevant information while suppressing noise. Simultaneously, spatial attention ensures that 

the network allocates its focus to meaningful spatial regions within an image.  

The primary motivation for incorporating conditional GANs, CIELAB color space, and CBAM is to 

increase the model’s attention to relevant features and limit the model’s predictions to only two channels 

(i.e a* & b*), thereby reducing the number of predictions compared to the RGB color space, where the 
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model would have to make predictions for the R, G, B channels. The synergy between Pix2Pix, 

CIELAB, and CBAM contributes to notable colorization outcomes. Figure 1 illustrates the main 

components and steps of the process of the image colorization workflow, which depicts the 

transformation of a grayscale cardiac organoid image to a fully colorized output using Pix2Pix 

conditional GAN. The conditional input passed to the Generator is the Lightness channel and the 

Discriminator was trained on the a* & b* channels. 

 

B. Individual Models 

U-Net generator  

The U-Net generator consists of an encoder and a decoder, connected by a bottleneck layer. 

Supplementary Figure 1 demonstrates the architecture of our U-Net generator where the encoder 

progressively reduces the spatial dimensions of the input grayscale image while extracting features. The 

decoder then upsamples these features to produce the final colorized output. Skip connections between 

corresponding encoder and decoder layers facilitate the flow of low-level features, enhancing the 

network’s ability to capture fine details. 

One distinctive feature of the U-Net generator here is its utilization of the Lightness (L) channel from 

the CIELAB color space as a conditional input. This L channel represents the grayscale information of 

the input image. By incorporating this channel, the generator can focus on producing color information 

(a* and b* channels) that is coherent with the grayscale content. 

 

Convolutional Block Attention Module (CBAM) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.01.15.575724doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.15.575724
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

The Generator’s ability was enhanced using the CBAM, which integrates channel and spatial attention 

mechanisms, enabling the discriminator to adaptively assign importance to different channels and 

meaningful spatial regions within the image. CBAM as shown in Supplementary Figure 1 is an integral 

component incorporated into our U-Net Generator architecture to enhance its ability to capture and 

emphasize relevant features within grayscale organoid images. The input feature map is � � ������ 

and CBAM extracts 1D channel attention map M�� � ����������� and a 2D spatial attention map �� �

������. In summary, the overall attention processes can be explained as: 

�	 � �
��	 
 �, �		 � ����		 
 �	    (1) 

where ⊗ denotes the element-wise multiplication and the resulting F” is the final refined output map 

that includes the details from both channel attention and spatial attention. This operation allows the 

model to focus on relevant features while suppressing irrelevant information 15. 

Channel attention enables the network to adaptively assign importance to different channels of feature 

maps, emphasizing relevant information while suppressing noise. Channel attention is essential when 

dealing with multi-channel images such as the L*a*b* color space we operate in. This selective channel 

weighting allows the model to focus on the most informative colorization components. 

Spatial attention is another crucial aspect of CBAM. It ensures that the network allocates its focus to 

meaningful spatial regions within an image. In the context of colorization, this is especially important as 

it guides the model to concentrate on the relevant regions where colorization details are essential. Spatial 

attention complements channel attention by pinpointing critical areas in the input. 

 

Patch Discriminator 
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The Patch Discriminator is a CNN designed to operate on image patches rather than entire images as 

shown in Supplementary Figure 2. This approach allows the discriminator to focus on local details and 

textures, making it well-suited for assessing the quality of colorizations at a fine-grained level. It 

consists of multiple convolutional layers to produce a single feature map that is used to classify the patch 

as real or fake. The final classification result for the entire image is obtained by averaging the 

predictions from the patches across the entire image. The result is a global classification score that 

represents the discriminator’s assessment of the overall image 

The Patch Discriminator engages in adversarial training with the U-Net generator. It aims to distinguish 

between real colorized organoid patches and fake patches generated by the generator. Through this 

adversarial process, the discriminator provides feedback to the generator, encouraging it to produce 

colorizations that are indistinguishable from real color images. 

The primary objective of the Patch Discriminator is to guide the U-Net generator in generating high-

quality colorizations. Assessing the local realism of colorized patches helps ensure that fine-grained 

details and textures are faithfully preserved in the output. 

 

Loss Functions 

Discriminator Loss: The Discriminator, a key component of our conditional GAN, serves the crucial role 

of assessing the authenticity of colorized organoid images. To fulfill this role, the Binary Cross-Entropy 

Loss (BCEWithLogitsLoss) was used. 

Mathematically, the discriminator loss can be expressed as: 

�� �  �

�
∑ �� � log����	� � �1  �	 � log �1  �����	����
��     (2) 
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Here, �� represents the discriminator loss, where   is the batch size, �  denotes the ground truth 

colorized organoid images, �  represents labels for real images �� � 1	 and fake images ��� �

0	, ���	� signifies the discriminator’s output for real images, and ���	 signifies the generator’s output 

for the corresponding grayscale input ��	. The BCEWithLogitsLoss computes the binary cross-entropy 

loss by comparing the discriminator’s predictions with the ground truth labels. 

The discriminator aims to maximize this loss, which encourages it to correctly classify real and fake 

patches within the images. Simultaneously, the generator minimizes this loss during adversarial training 

to produce colorizations that are indistinguishable from real images. 

Generator Loss: The Generator, a pivotal component of our conditional GAN, is tasked with generating 

plausible colorizations. To achieve this, a combination of two loss functions: Binary Cross-Entropy Loss 

(BCEWithLogitsLoss) and L1 Loss (Mean Absolute Error), were used. Similar to the discriminator, 

BCEWithLogitsLoss as its adversarial loss function was used. It encourages the generator to produce 

colorizations that convincingly fool the discriminator into classifying them as real. 

Mathematically, the generator’s adversarial loss is defined as: 

�����
�  �

�
∑ log ������	���
��       (3) 

This loss drives the generator to produce colorizations that are perceptually similar to real color images. 

L1 Loss (Mean Absolute Error): In addition to the adversarial loss, the L1 Loss was incorporated to 

ensure that the generated colorizations closely match the ground truth images in terms of pixel-wise 

similarity. 

Mathematically, the generator’s L1 loss is expressed as: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.01.15.575724doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.15.575724
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

����
� �

�
∑ |�
�� ���	  #|�       (4) 

Here, ����  represents the generator’s L1 loss, where   is the batch size, � denotes the grayscale input 

images, ���	 represents the generator’s colorized output, and #  denotes the corresponding ground truth 

color images. The L1 loss encourages the generator to produce colorizations that closely match the 

ground truth, focusing on fine-grained pixel-level details. 

By combining these two loss components, the generator was trained to produce colorized organoid 

images that are both visually convincing and pixel-wise accurate, ultimately enhancing the quality and 

realism of the generated colorizations 

 

C. Image Similarity Measurement Metrics 

Evaluating the accuracy and quality of the generated image is a challenging task and on top of that, we 

have a limited dataset of 1300 images so we used non-deep-learning metrics to obtain a similarity score. 

We applied 3 different evaluation metrics: PSNR, SSIM, and WPH to compare the similarity between 

ground truth and colorized images. 

PSNR was used to measure the quality of reconstructed or compressed images and this metric is used for 

comparing the similarity of the colorized image with ground truth 24,29–32. It objectively measures how 

well a colorization technique preserves the details and visual fidelity of the original image. By 

calculating the PSNR value, we can evaluate the accuracy and fidelity of colorization algorithms. Its 

range is (0, ∞), 0 represents no similarity between images, and the higher the score higher the similarity.  

PSNR score of an m x n (width x height) image I and its compressed image K can be determined by: 

 20 � log���MAX�	  10 � log���MSE	                               (5) 
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Where �)*� is the maximum possible pixel value of the image and MSE is the mean square error of the 

Original Image I and its compressed image K, it can be calculated by: 

�

��
∑ ∑ +,�-, .	  /�-, .	0����

���
���
��        (6) 

 

The SSIM is a widely used evaluation metric for assessing the visual quality of the colorized image with 

ground truth 24,29–32. It considers global and local image characteristics, capturing the perceptual 

differences and structural similarities between the colorized and ground truth images. To be specific, 

SSIM compares three components in an image pair, suppose x and y are the two patches of the true and 

compressed image respectively that are aligned with each other, the luminescence comparison function 

l(x,y) captures the differences in brightness, the contrast comparison function c(x,y) accesses variation in 

image contrast and the structure comparison function s(x,y) measures differences in image structure and 

texture. SSIM is a combination of all these three factors 33. 

11,���, �	 � +2��, �	 � 3��, �	 � 4��, �	0     (3) 

By evaluating the preservation of underlying structures and textures, SSIM provides a comprehensive 

measure of the algorithm’s ability to maintain visual coherence and realism. The SSIM score typically 

falls within the range of (-1, 1) 25, where a higher score signifies greater similarity. 

 

PSNR and SSIM are widely used metrics in evaluating Image Colorization tasks. Still, they are not 

exactly appropriate for the problem, because PSNR is designed to identify the quality of the compressed 

image with the original image. Similarly, SSIM primarily focuses on structural similarity rather than 

color which is the main part of Image colorization. So, we tested the WPH to compare the similarity of 
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generated colors. With regular Histogram comparison, valuable spatial information of the color is lost, 

so in our approach, we split the image into a 16x16 grid (Figure 2(a)) to have multiple small patches of 

the image and compare these small patches individually to the corresponding patch from the ground 

truth. This patch histogram comparison increased the spatial information of the pixel’s value. 

As patch histogram comparison increases spatial color information, therefore, reducing the patch size to 

the smallest possible value may produce the best results. The smallest size possible to compare is 1x1 

pixels, which leads us to a pixel-to-pixel comparison of the images and it would be highly sensitive to 

noise and unreliable. So, the optimized balance between the patch size and the number of bins in the 

histogram comparison was tested and validated, and a patch size of 32x32 pixels and 32 bins was found 

ideal for histogram comparison in cardiac organoid images. Since most of the cardiac organoids were 

centered in the image, and were the region of interest (ROI), which provides enhanced significance in 

color comparison without the excessive background.  The weightage for the patches inside the ROI in 

Figure 2(b) was increased by 50% to give more importance to the colors in the organoids. 

 

D. Comparison and quantification of prediction image in each cell type 

According to our recently published organoid image pre-processing and analysis platform – Organalysis 

26, the Organoid area, Percentage of Image Covered by Organoid, Total Intensity of Organoid, and Total 

intensity of Organoid-by-Organoid Area were quantified from the predicted images and paired ground 

truth of each organoid with the following measurements: 

 

Organoid area: total pixel numbers of fluorescence per cell type in each organoid 
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Percentage�of�Organoid�Coverage � Total�Area�of�Organoid
Total�Area�of�Image  

Total�Intensity�of�Organoid�by�Organoid�Area� � � Total�Intensity�of�Organoid
Pixel�Area�of�Organoid  

Total�Intensity�of�Organoid�by�Total�Image�Area� � � Total�Intensity�of�Organoid
Total�Area�of�Image  

Difference between predicted image and ground truth%

�  Measurement of predicted image  measurement of ground truth 
Measurement of ground truth  100% 

 

Source Code: For complete access, please reach out to Yunhe Feng, Yunhe.Feng@unt.edu, and 

Huaxiao Yang, Huaxiao.yang@unt.edu 
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Figure legends 

Figure 1. GAN architecture overview of fluorescence colorization of hPSC-derived cardiac organoids. 

 

Figure 2. (a) Image divided into 8x8 grid of small patches, (b) Highlighted in red is the ROI, which is 

given more weightage for histogram comparison. The image size is 256x256, which breaks into a 

16x16 grid with multiple patches of size at 32x32 pixels. Scale bar:  2 mm 

 

Figure 3. (a) Images of hPSC-derived cardiac organoids from input, ground truth, and predicted 

images generated by Model 1, Model 2, and Model 3 respectively. hPSC-derived cardiac organoids 

were not included in the training dataset but from the same batch of experiments. Scale bar: 2 mm (b) 

Evaluation scores by three different evaluation metrics. 

 

Figure 4. (a) Images of hPSC-derived cardiac organoids from input, ground truth, and predicted 

images generated by Model 1, Model 2, and Model 3 respectively. hPSC-derived cardiac organoids 

were from different batches of experiments. Scale bar: 2 mm. (b) Evaluation score on new batches of 

organoids. 

 

Figure 5. (a) Images of hPSC-derived cardiac organoids after fine tuning from input, ground truth, 

and Model 2. hPSC-derived cardiac organoids were from different batches of experiments. Scale bar: 

2 mm. (b) Evaluation score on new batches of organoids after fine tuning.  
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Supplementary materials 

Supplementary Fiure 1. U-Net generator Architecture with CBAM 

 

Supplementary Figure 2. Patch Discriminator Architecture 

 

Table 1. Quantification and comparison of the individual fluorescence channels in ground truth and 

predicted images of hPSC-derived cardiac organoids of the same batch of differentiation 

 

Table 2. Quantification and comparison of the individual fluorescence channels in ground truth and 

predicted images of hPSC-derived cardiac organoids of a new batch of differentiation 

 

Table 3. Summary of the quantification and comparison of the individual fluorescence channels in the 

ground truth and predicted images of hPSC-derived cardiac organoids on a new batch of organoid 

differentiation 
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Figure 1 
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Figure 2. 
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Figure 3 
 

 
 
  

Input Model 1
Ground 

Truth
Model 2 Model 3

Organoid 1

Organoid 2

Organoid 3

Organoid 4

Organoid 5

Organoid 6

Metrics Model 1 Model 2 Model 3 
PSNR 32.38 32.15 32.16 
SSIM 0.96 0.96 0.96 
Weighted Patch Histogram 0.73 0.75 0.77 

a

b
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Figure 4 
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Input Model 1
Ground 

Truth
Model 2 Model 3

Organoid 1

Organoid 2

Organoid 3

Organoid 4

Organoid 5

Organoid 6

METRICS MODEL 1 MODEL 2 MODEL 3 
PSNR 24.92 25.26 24.02 
SSIM 0.95 0.92 0.92 
Weighted Patch Histogram 0.49 0.52 0.44 

a

b
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Figure 5 
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Supplementary Materials 
 
 
Supplementary Figure 1 
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Supplementary Figure 2 
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Table 1. Quantification and comparison of the individual fluorescence channels in ground truth 
and predicted images of hPSC-derived cardiac organoids of the same batch of differentiation 
 

  
Organoid Area 

Percentage of 
Image 

Covered by 
Organoid 

Total Intensity of 
Organoid 

Total Intensity 
of Organoid by 
Organoid Area 

 
Metric R G B R G B R G B R G B 

M
od

el
 1

 

Average of 
Model 1 

5,287.3 
12,346
.3 

3,890
.1 

8.1 18.8 5.9 
191,92
9.2 

647,300
.4 

5,310
.3 

29.8 56.9 1.9 

Average 
Ground truth 

4,813.0 
12,176
.6 

2,950
.6 

7.3 18.6 4.5 
185,27
3.8 

674,256
.1 

7,351
.5 

31.3 58.0 2.9 

Difference%* 9.9 1.4 31.8 9.9 1.4 
31.
8 

3.6 4.0 27.8 4.9 2.0 35.1 

M
od

el
 2

 

Average of 
Model 2 

6,057.4 
14,409
.4 

3,325
.4 

9.2 22.0 5.1 
197,16
7.2 

704,817
.9 

4,025
.1 

28.4 59.6 2.5 

Average 
Ground truth 

4,813.0 
12,176
.6 

2,950
.6 

7.3 18.6 4.5 
185,27
3.8 

674,256
.1 

7,351
.5 

31.3 58.0 2.9 

Difference%* 25.9 18.3 12.7 25.9 18.3 
12.
7 

6.4 4.5 45.2 9.5 2.7 13.5 

M
od

el
 3

 

Average of 
Model 3 

5,615.3 
13,963
.3 

2,360
.0 

8.6 21.3 3.6 
190,03
1.7 

675,796
.4 

3,643
.2 

28.5 58.7 3.0 

Average 
Ground truth 

4,813.0 
12,176
.6 

2,950
.6 

7.3 18.6 4.5 
185,27
3.8 

674,256
.1 

7,351
.5 

31.3 58.0 2.9 

Difference%* 16.7 14.7 20.0 16.7 14.7 
20.
0 

2.6 0.2 50.4 9.1 1.2 3.7 

*: Green blocks show low difference% less than 25% and red blocks show high difference% more than 
25% 
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Table 2: Quantification and comparison of the individual fluorescence channels in the ground 
truth and predicted images of hPSC-derived cardiac organoids of a new batch of differentiation 

*: Green blocks show low difference% less than 25% and red blocks show high difference% more than 
25% 
  

 
Organoid Area 

Percentage of 
Image Covered by 

Organoid 

Total Intensity of 
Organoid 

Total Intensity 
of Organoid by 
Organoid Area 

Metric R G B R G B R G B R G B 

M
od

el
 1

 

Average of 
Model 1 

3,909.
8 

25,471
.5 

3,024.
1 

6.0 38.9 4.6 
29,111
.6 

381,39
1.7 

3,029
.6 

14.7 20.3 0.9 

Average 
Ground 
truth : 

5,164.
9 

3,258.
8 

300.7 7.9 5.0 0.5 
145,95
3.5 

212,73
6.2 

305.8 29.3 65.4 0.8 

Difference
%* 

24.3 681.6 905.8 24.3 681.6 905.8 80.1 79.3 890.6 49.8 68.9 9.0 

M
od

el
 2

 

Average of 
Model 2 

4,658.
3 

12,125
.7 

10,13
0.4 

7.1 18.5 15.5 
50,595
.1 

232,75
2.4 

10,62
3.4 

12.1 37.5 0.8 

Average 
Ground 
truth 

5,164.
9 

3,258.
8 

300.7 7.9 5.0 0.5 
145,95
3.5 

212,73
6.2 

305.8 29.3 65.4 0.8 

Difference
%* 

9.8% 272.1 
3269.
2 

9.8 272.1 
3269.
2 

65.3 9.4 
3373.
5 

58.8 42.7 4.1 

M
od

el
 3

 

Average of 
Model 3 

1,333.
9 

39,878
.6 

6,444.
3 

2.0 60.8 9.8 
22,187
.4 

570,51
2.7 

7,885
.9 

16.4 13.8 0.8 

Average 
Ground 
truth 

5,164.
9 

3,258.
8 

300.7 7.9 5.0 0.5 
145,95
3.5 

212,73
6.2 

305.8 29.3 65.4 0.8 

Difference
%* 

74.2 1123.7 
2043.
2 

74.2 
1123.
7 

2043.
2 

84.8 168.2 
2478.
4 

44.0 78.9 1.3 
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Table 3. Summary of the quantification and comparison of the individual fluorescence channels 
in the ground truth and predicted images of hPSC-derived cardiac organoids on a new batch of 
organoid differentiation 
 

Organoid Area 
Percentage of 

Image Covered 
by Organoid 

Total Intensity of 
Organoid 

Total Intensity of 
Organoid by 

Organoid Area 
Metric R G R G R G R G 

Average of Model 2 4,232.5 2,946.3 6.5 4.5 56,174.0 121,931.8 15.6 40.4 
Average Ground 
truth 4,606.7 3,178.5 7.0 4.9 103,742.0 166,253.0 22.2 52.9 

Difference%* 8.1% 7.3% 8.1% 7.3% 45.9% 26.7% 29.7% 23.7% 
*: Green blocks show low difference% less than 25% and red blocks show high difference% more than 
25% 
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