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Data obtained with cytometry are increasingly complex and their interrogation impacts the
type and quality of knowledge gained. Conventional supervised analyses are limited to
pre-defined cell populations and do not exploit the full potential of data. Here, in the
context of a clinical trial of cancer patients treated with radiotherapy, we performed
longitudinal flow cytometry analyses to identify multiple distinct cell populations in
circulating whole blood. We cross-compared the results from state-of-the-art
recommended supervised analyses with results from MegaClust, a high-performance
data-driven clustering algorithm allowing fast and robust identification of cell-type
populations. Ten distinct cell populations were accurately identified by supervised
analyses, including main T, B, dendritic cell (DC), natural killer (NK) and monocytes
subsets. While all ten subsets were also identified with MegaClust, additional cell
populations were revealed (e.g. CD4+HLA-DR+ and NKT-like subsets), and DC profiling
was enriched by the assignment of additional subset-specific markers. Comparison
between transcriptomic profiles of purified DC populations and publicly available
datasets confirmed the accuracy of the unsupervised clustering algorithm and
demonstrated its potential to identify rare and scarcely described cell subsets. Our
observations show that data-driven analyses of cytometry data significantly enrich the
amount and quality of knowledge gained, representing an important step in refining the
characterization of immune responses.
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INTRODUCTION

The identification of biomarkers and correlates of immune
control and protection are key to advance immunotherapy.
Flow Cytometry - and more recently Mass Cytometry - have
become methods of choice due to their polyvalence, accessibility
and throughput. The virtually-unlimited combinations of
fluorescent labelled or barcoded antibodies allow rapid
profiling of different cell populations or qualitative features in
large numbers of samples (1–3). Individual cell subsets including
rare cell populations can be distinguished based on combinations
of specific markers. Several qualitative cell states can also be
captured and those may potentially represent valuable
biomarkers that correlate with disease status or clinical
outcome (4). During the past decade, technical improvements
in instrumentation and reagents led to a massive increase in the
volume and complexity of data (5, 6). Consequently, analyses of
immunological data obtained by multiparametric cytometry
became increasingly complex (7). Not only standard working
procedures and instruments need to be increasingly precise, but
the complexity of datasets requires specific analytical tools.
Distinct analytical strategies were established, in many cases
dependent on the nature of the expected outcome. The amount
and quality of knowledge gained from these analyses vary and
depend on study design and robustness of the workflow.

The application of cytometry is associated with considerable
intra- and inter-laboratory variability (8). Harmonization is
challenged by the relative lack of golden standards (9). Experts
in the field did massive efforts to establish state of the art
guidelines (10) to harmonize instruments and operating
procedures (11), but also data analysis (12, 13). To increase
reproducibility, comparability and accuracy, alternative solutions
need to be developed to allow operator-independent, reliable and
rapid data processing, including quality-controls and analyses.
For years, mathematical algorithms were established and trained
to analyse cytometry data in an un-supervised data-driven way,
helping researchers to improve the quality of knowledge gained
(14). In 2010, the community launched an initiative: Critical
Assessment of Population Identification Methods (FlowCAP) to
push the development and application of automated tools by
organizing tests using yet unpublished raw data made available
for research groups to apply their method of choice. Predictions
by independent groups were collected to assess how automated
methods reproduce state of the art manual analyses. Results were
presented and discussed at conferences organized by the
FlowCAP consortium and summarized in subsequent articles
(15). Since then, numerous additional clustering softwares were
developed and their relative performance was reviewed recently
(16–18).

In this study, in the context of a prototypic clinical trial, we
have performed a comprehensive cross-comparison between two
distinct analytical strategies, a state-of-the-art recommended
supervised approach (5) and a data-driven unsupervised
approach. Longitudinal samples (n=20) from a cohort of five
Abbreviations: DC, dendritic cells; mDC, myeloid DCs; pDC, plasmacytoid DCs;
NK, natural killer; MFI, mean fluorescence intensity; MGC, MegaClust.
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prostate cancer patients under treatment were analysed by flow
cytometry to monitor the different cell types identified in
peripheral blood (19). Unsupervised analyses were performed
in parallel with the clustering algorithm MegaClust, which has
been specifically designed to identify clusters in large
multidimensional datasets containing various shapes of various
densities [https://github.com/sib-swiss/megaclust].

Briefly, MegaClust is a parallel clustering algorithm that takes
a matrix of N x D dimensions as input, wherein each row (N)
contains the single cell measurements (D) of the various cell
surface fluorescent markers studied. The algorithm implements a
density-based hierarchical clustering to discover populations (i.e.
clusters or cell groups). Megaclust regroups two events in the
same cluster as soon as their Euclidian distance in the multi-
dimensional space is below a certain distance cut-off. Only
clusters containing a minimum number of events (nmin) are
retained, hence the density-based component. The clustering
process is repeated with increasingly larger Euclidian distances
allowing existing clusters to grow and new ones to be discovered,
hence the hierarchical component. It combines the strength of
DBSCAN (20) while capturing at the same time the inherent data
structure as OPTICS (21) does. The algorithm has been
previously described in detail with performance and robustness
benchmarks (22) and successfully used in the past to define
immune signature-derived groups of samples resulting in a better
stratification of tumours regarding their size compared to
manual gating (23).

Our observations from this proof of principle study show that
MegaClust captured the complexity of data with more
granularity than conventional operator-driven analyses. We
believe that the use of mathematical algorithms (e.g.
MegaClust) as analysis tool for multi-parametric datasets can
help improving data analysis from clinical trials and biomarker
identification efforts.
MATERIAL AND METHODS

Patient Material and Sample Analysis
We conducted a phase I clinical study (HYPORT, NCT0225474,
approved by the Ethical Committee of Canton Vaud and
conducted in accordance with the Declaration of Helsinki), in
which after signing an informed consent patients with prostate
cancer undergoing radiation therapy were treated proposed to
donate blood and serum samples for a translational research
analysis. Peripheral Blood Mononuclear Cells (PBMCs) from
prostate cancer patients were isolated from blood by density
gradient using Ficoll-Paque-Plus (GE Healthcare) according to
the laboratory standard SOP and immediately cryopreserved in
90% FCS (Fetal Calf Serum) and 10% DMSO (dimethyl
sulfoxide) in liquid nitrogen until analysis. Cryopreserved
PBMC were thawn in RPMI (Invitrogen), 10% fetal bovine
serum (FBS; Gibco), washed and stained with: CD3 APC (BC
IM2467, RRID : AB_130788), CD4 PE-Cy7 (BC 737660), CD8
Pacific Blue (BD 558207, RRID : AB_397058), CD14 APC-H7
(BD 641394, RRID : AB_1645725), CD16 FITC (BD 555406,
RRID : AB_395806), CD56 PE (BC A07788, RRID :
April 2021 | Volume 12 | Article 633910
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AB_2636814), CD11c Alexa Fluor700 (BD 561352, RRID :
AB_10612006), CD19 Brilliant Violet 711 (BD 563036,
RRID : AB_2737968), CD123 PerCP-Cy5.5 (eBiosciences 45-
1239-42, RRID : AB_10718981), HLA-DR ECD (BC IM3636,
RRID : AB_10643231), Zombie UV (77474 Biolegend) as
described (5). The samples were directly acquired on a BD
Fortessa instrument equipped with the FACS DiVa software
(version 8.0.1). Analysis were performed with the FlowJo 9.7.6
(FLOWJO.LLC) and GraphPad Prism v8.

Megaclust Analyses
For the pilot analysis, the longitudinal data acquired for one
patient (patient 0QZW; 4 timepoints) was pooled. After manual
gating to remove debris, doublets and dead cells, Megaclust was
run at constant events, i.e. selecting the same number of events
(25000) in each sample to ensure that each would contribute
equally to the cluster discovery phase, whereas remaining events
were attributed to the closest discovered cluster in the final phase.
Clustering was performed allowing the testing of hierarchical
clustering distances ranging from 1 to 500 by increment of 1, or
stopping as soon as 95% of events were attributed to clusters,
whichever came first. In our case, the latter was true, and
unattributed events were reported in a special cluster (cluster
0). To illustrate how the minimal number of events requested to
discover a cluster (parameter nmin) impacts the final number of
clusters reported, their quality, and their unambiguous
attribution to manually gated populations, we ran the
algorithm with nmin set to 40 and 120. For the cohort
analysis, the 20 samples (4 time points for 5 patients) were
pooled and the same process was applied. Since the number of
events is 5 times larger than for the pilot study, local clusters
densities are increased, and the nmin value requested to create
new clusters is reached more easily. Consequently, to obtain a
similar number offinal clusters as in the pilot study, a nmin value
of 80 was chosen. Manually gated reference populations were
then used to assign each cluster to a known cell population,
when possible.

RNAseq
Blood from healthy donors were collected from the local
transfusion center following the legal Swiss guidelines under
the project P_123 with informed consent of the donors and with
Ethics Approval from the Canton of Vaud (Lausanne). PBMC
from three healthy donors were thawed and directly stained with
the aforementioned panel. mDCs (CD123-CD11c+CD4+HLA-
DR+), pDCs (CD123+CD11c-CD4+HLA-DR+) and monocytes
(CD14+) were sorted and RNA extraction was done with the
Promega Maxwell RSC instrument using the Maxwell RSC
simply RNA cell extraction kit (Promega AS 1390) following
the manufacturer instructions. RNA sequencing was performed
by the genomics Technology Facility (GTF) of the University of
Lausanne. For the gene set analysis, data were merged with
Immgen RNAseq data (GSE122597) for 5 reference profiles
containing 83 samples to assess the level of expression of CD4
in the distinct FACS-sorted subsets compared to negative control
(B cells, Macrophages and NK) and positive control (CD4
T cells).
Frontiers in Immunology | www.frontiersin.org 3
RESULTS

Longitudinal blood samples were collected from five prostate
cancer patients treated by radiotherapy (19). In brief, studied
patients receive radiation to the prostate at standard doses of 78
Gy in 39 fractions with curative intent. PBMCs were taken
isolated at baseline before RT (V1), day 5 of radiation
treatment (V2), 15 days after last RT (V3) and 40 to 60 days
after the last RT (V4). Peripheral blood mononuclear cells
(PBMC) were cryopreserved. All PBMCs (n=20) were thawn,
labelled with an antibody panel as described (5) and acquired in
one batch to optimize consistency in data acquisition.

Pilot Analysis: Impact of nmin Parameter
To better illustrate the behaviour of the algorithm upon
parameter change, we first compared two clustering runs
performed on the same data (pooled samples of patient
0QZW) setting the minimal number of events necessary to
detect a cluster (nmin) to 40 and 120 (see methods for details).
The first run identified 58 clusters, whereas the second run
reported 21 clusters. A cell type was assigned to each cluster by
comparing their MFI against the manually gated populations.
One can observe, for instance, the repartition of CD4+ cells into 6
clusters using nmin = 120, whereas 15 clusters are reported for
CD4+ cells using nmin = 40 (Tables 1A, B). Despite this clear
overclustering with low value of nmin, once regrouped by cell
type, these clusters roughly recapitulate the proportion of CD4+

events determined by the manual gating analysis (Table 1A). We
note that using a low nmin value is even beneficial in the case of
rare populations. For example, with nmin = 120, cluster 18
contains a mix of events from mDC and CD4+ populations
(Supplementary Figure 1A), whereas with nmin = 40, a clean
cluster of mDC cells exempt of CD4+ cells is detected (cluster
#54, Supplementary Figure 1B). Thus, increasing the
granularity of the detection by overclustering using low nmin
values resolves the difficulty to identify rare populations by
reporting a large number of clean smaller clusters, which can
subsequently be reassigned to their corresponding cell type. This
behaviour is further illustrated in Supplementary Figure 1C.

Conventional Gating Strategy and Cohort
Analysis With MegaClust
The entire dataset was then analysed following a conventional
supervised gating strategy and, in parallel, using MegaClust
(Figure 1A). Using the supervised analysis, 10 distinct cell
types were identified (Figures 1B, C), including B cells, CD3+

T cells divided in CD4 and CD8 T cells, natural killer (NK) cells,
monocytes and dendritic cell (DC) subsets. The un-supervised
analysis identified 68 clusters, of which 50 were retained as good
quality (i.e. unimodal distribution). Most of these clusters (i.e. 40
out of 50) corresponded to subgroups of the 10 subsets identified
in the supervised analysis. However, 10 clusters could not be
assigned or associated to any of the supervised subset but did
contain a sufficient number of similar cells to be identified as
individual clusters (Figures 2A, B). We then investigated several
examples of discrepancies in the definition of the different cell
subsets, including CD4 T cells, CD8 T cells and DCs.
April 2021 | Volume 12 | Article 633910
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CD4 T Cell Subsets
One and ten CD4 T cell subsets were identified in the supervised
and unsupervised analyses, respectively (Figure 3A). By
dissecting the ten clusters identified with MegaClust, we
noticed that all subsets expressed roughly similar levels of CD4
while striking differences were observed in CD3 expression
(Figure 3B). Of interest, major differences were observed in
HLA-DR expression level, in particular for three of the ten
clusters (Figure 3B). HLA-DR expression was not taken into
consideration in the supervised analyses of CD4 T cells, although
a re-analysis confirmed its partial expression on CD4 T cells
(Figure 3C). This observation was also confirmed by supervised
reanalysis with data from all patients together (Figure 3D). The
differential expression of all markers in these ten clusters
indicates that although not all ten clusters are fundamentally
unique, CD3 expression levels and, more importantly HLA-DR
expression levels, allow the identification of biologically-different
subpopulations (Figure 3E). Collectively, these observations
indicate that distinct CD4 T cell subpopulations were missed
with the supervised analysis while those were captured with the
unsupervised analysis of MegaClust (Figure 3F).

CD8 T Cell Subsets
Six CD8 T cell clusters were identified in the unsupervised
analysis as compared to one population captured in the
supervised analysis (Figure 4A). The differences between the
clusters were based on a differential expression of CD8, CD56
Frontiers in Immunology | www.frontiersin.org 4
and CD16 for three out of the six clusters (Figure 4B). Re-
analysis of cytometry data confirmed the heterogeneous
expression of CD56 and CD16 within the CD8 T cell
populations, indicating the presence of NKT-like cells (Figure
4C). The observation was confirmed by analysing cumulative
data collected for all patients (Figure 4D). The differential
expression of all markers in all six clusters indicates that
although not all clusters are fundamentally unique, CD8
expression levels and, more importantly CD16 and CD56
expression levels, allow the identification of biologically-
different subpopulations (Figure 4E). Collectively, these
observations indicate that several real CD8 cell subpopulations
were missed with the supervised analysis (e.g. NKT-like) while
those were properly captured with the unsupervised analysis of
MegaClust (Figure 4F).

mDC and pDC Subsets
The unsupervised analysis by MegaClust identified two clusters
for mDC (CD11c+CD123-) and two of pDCs (CD11c-CD123+)
(24) (Figure 5A). The different mDC and pDC clusters expressed
different levels of CD123 and CD11c (Figure 5B) as well as of
HLA-DR and CD4 (Figure 5C). Collectively, these clusters were
also distinct from CD4 T cells and monocytes (Figure 5C). One
of the cluster assigned to pDC (#53, CD123+CD11c-CD4-HLA-
DR-) could be identified as basophils given the expression of
CD123 and the lack of expression of CD4 and HLA-DR (25)
(Figure 5D). Supervised re-analysis of the dataset confirmed the
expression of CD4 in mDCs and pDCs (Figure 5E) which offered
the opportunity to purify (FACS sorting) these three populations
(i.e. HLA-DR+CD4+ expressing CD11c+CD123- mDC,
CD123+CD11c- pDC and CD14+CD16- classical monocytes)
from three healthy donors for downstream RNA sequencing
analysis (Figure 5F). Of interest, the comparison of the
transcriptomic profiles of purified populations with publicly
avai lable datasets showed that CD4 expression on
CD11c+CD123- mDC and CD123+CD11c- pDC could be
confirmed, indicating the accuracy of the unsupervised
algorithm used by MegaClust to identify rare and unexpected
populations (Figure 5G).

Following this observation, we did a meta-analysis of mDCs
and HLA-DR+CD4+ pDCs in PBMCs from prostate cancer (PC)
and ovarian cancer (OvCa) patients and frequencies were
TABLE 1B | Table of detected cell numbers and clusters in comparison to MG
populations.

population count.ref prop.ref count.pred prop.pred clusters n°

classical 25528 0.087 24793 0.105 10,11,21
Bcell 13833 0.047 14248 0.060 4,5
CD56di 14426 0.049 16232 0.069 8,9
CD8+ 23525 0.081 25208 0.107 6,7
CD4+ 119640 0.410 112396 0.476 1,2,3,12,13,16
mDC 376 0.001 1197 0.005 18
pDC 820 0.003 3383 0.014 19,20

Manual gating MegaClust
The number of detected clusters decrease depending on the criteria of minimum cell
number per cluster (nmin=120).
TABLE 1A | Table of detected cell numbers and clusters in comparison to MG populations.

population count.ref prop.ref count.pred prop.pred clusters n°

classical 25528 0.087 25267 0.107 31,32,34,35,49,57
intermed 1286 0.004 1197 0.005 46
non-classical 1602 0.005 4484 0.019 44,45,50
Bcell 13833 0.047 13821 0.059 15,16,21
CD56bri 1022 0.003 1492 0.006 37,53
CD56di 14426 0.049 15837 0.067 12,13,14,24
CD8+ 23525 0.081 24460 0.104 10,11,17,18,19,27,29,37,42,43,58
CD4+ 119640 0.410 113532 0.481 1,2,3,4,5,6,7,8,9,20,22,23,28,38,48
mDC 376 0.001 890 0.004 54
pDC 820 0.003 3200 0.014 55,56

Manual gating MegaClust
April
The number of detected clusters decrease depending on the criteria of minimum cell number per cluster (nmin=40).
2021 | Volume 12 | Article 633910
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A B

FIGURE 2 | Expression of different markers in all clusters. (A) Heatmap of the mean fluorescence intensity (MFI) for each marker in all identified clusters. Cumulative
data of all patients and time points (n=20). (B) Heatmap representation of 50 good quality clusters identified per patient and time point with the unsupervised analysis
using MegaClust. From the 50 clusters, 40 could be attributed to the 10 predefined cell subsets from the supervised analysis while 10 clusters could not be
assigned.
A

B

C

FIGURE 1 | Study design and cross-comparison between supervised and un-supervised data analysis. (A) Study design. Longitudinal blood samples were taken
from patients initiating treatment. Peripheral blood mononuclear cells were labelled with an antibody panel and FACS data were processed in parallel with a
supervised and an un-supervised data analysis. The cross-comparison of data lead to data-driven revised gating strategy and discovery. (B) Representative example
of the supervised gating and analysis strategy of flow cytometry data. Arrows describe the hierarchical sequences of analysis (i.e. gating strategy). Identified cell
subsets: lymphocytes (I), T cells (III) (CD3+ CD19-), CD4+ (IV) and CD8+ (V) T cells, B cells (VI) (CD19+CD3-), cytokine secreting NKbright (VII) (CD56hiCD16+/-) and
cytotoxic NKdim (VIII) (CD56dimCD16+) NK cells, mDCs (IX) (CD123-CD11c+) and pDCs (X) (CD123+CD11c-); monocytes (II): classical (XI) (CD14+CD16-), intermediate
(XIII) (CD14+/-CD16+/-) and non-classical monocytes (XII) (CD14-CD16+). Ten cell subsets are identified and highlighted with a red dotted frame. (C) Heatmap
representation of the frequencies of the 10 different predefined cell subsets per patient and time point after supervised data analysis.
Frontiers in Immunology | www.frontiersin.org April 2021 | Volume 12 | Article 6339105
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A B

C
D

E

F

FIGURE 4 | Analysis of CD8+ subsets identified by MegaClust. (A) Comparison of the different CD8+ clusters identified by MegaClust. Left panel shows one
population of CD8+ cells obtained by supervised analysis, whereas the unsupervised analysis identified 6 clusters within the CD8+ population. Four timepoints (visits,
V1-V4) are shown for representative patient 0QZW. (B) Expression of CD8, CD56 and CD16 on the 6 CD8+ clusters on V1 from one representative patient.
(C) Expression of CD16 and CD56 on CD8+ cells on V1 from patient 0QZW from the supervised dataset. (D) Cumulative analysis on all patients and timepoints
(n=20) of the expression of CD8, CD56 and CD16 on the 6 CD8+ clusters. (E) Cumulative analysis on all patients and timepoints (n=20) of the expression level (mean
fluorescence intensity, MFI) of different markers on all CD8+ cell clusters. (F) tSNE of all CD8+ cell clusters identified with Megaclust. The NKT-like cell clusters 28,
34.and 66 are clearly separated from the remaining CD8 T cell clusters.
A B C

D

E

F

FIGURE 3 | Analysis of CD4+ T cell subsets identified by MegaClust. (A) Comparison of the different CD4+ cell clusters identified by MegaClust. Left panel shows
one population of CD4+ T cells obtained by supervised analysis, whereas the unsupervised analysis identified 10 clusters within the CD4 T cell population. Four
timepoints (visits, V1-V4) are shown for representative patient 0QZW. (B) Expression of CD4, CD3 and HLA-DR on the 10 CD4 T cell clusters on V1 from one
representative patient 0QZW. (C) Expression of HLA-DR on CD4 T cells from patient 0QZW from the supervised dataset. (D) Cumulative analysis on all patients and
timepoints (n=20) of the expression of CD4, CD3 and HLA-DR on the 10 CD4+ cell clusters. (E) Cumulative analysis on all patients and timepoints (n=20) of the
expression level (mean fluorescence intensity, MFI) of different markers on all CD4 T cell clusters. (F) tSNE of all CD4+ T cell clusters identified with Megaclust.
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compared to those identified in healthy donors (HD)
(Supplementary Figure 2). A significant increase of mDCs in
OvCa patients relative to HD was observed.

tSNE of All Clusters Identified
by MegaClust
Finally, a tSNE analysis of all clusters obtained with the
unsupervised analysis showed how most subsets were well
defined and associated to known immune cell subsets (Figure
6A). We also compared the distribution of the populations
identified by MegaClust with a tSNE of those identified by
manual gating (Supplementary Figure 3) and observed a
similar distribution, although identified populations are more
compact and do not highlight the differences uncovered by
MegaClust (i.e. inside a given population, groups of cells were
less well separated). This could especially be observed in the CD4
T cell and in the NK cell population. Furthermore, by design,
manual gating assigns all events in the pre-defined cell
populations, and no unassigned clusters were reported. In the
unsupervised analysis, 10 clusters could not be assigned to any of
those predefined cell populations (Figure 6C). These unknown
clusters were broadly distributed and expressed heterogeneous
levels of common markers (Figure 6B), yet they were clearly
separated from known cell subsets on a tSNE plot (Figure 6C).
Frontiers in Immunology | www.frontiersin.org 7
For example, one of the unassigned cluster (#50) shows a high
level of CD3+, CD4+ and CD8+ (Figure 6B), and it thus
represents CD4+ CD8+ double positive cells, which are well
separated from other populations and projected in-between the
CD4+ and CD8+ groups in the tSNE map (Figure 6C).

By dissecting each cell subset within identified clusters and by
analysing these clusters per patient and over time, no major
longitudinal trends could be observed, however some fine
differences between patients in the relative proportion of events in
the various clusters identified for each cell type are apparent
(Supplementary Figure 4). For example, patient 0Q17 (blue) and
patient 0O17 (red) have a high proportion of non-classical
monocytes that fell in cluster #55, compared to patients 0R2U
(green), IPC004 (grey) and IPC007 (black), that have a high
proportion of their non-classical monocytes that fell in cluster #57
and #58 (Supplementary Figure 4A left panel). Although these
three clusters have been assigned to non-classical monocytes
because they have CD14-CD16+ markers, they exhibit clear
differences in their level of expression of other markers (Figure
2A). Cluster #55 has a higher level of expression of CD123+ and
CD11c+ than other non-classical monocytes clusters indicating a
population with DC- or MDSC-like characteristics. The red patient
0O17 also exhibits more differences compared to other patients. For
example, this patient has a higher relative proportion of CD8+
A B C

D E

F

FIGURE 5 | Identification of multiple mDC and pDC subsets by MegaClust. (A) Comparison of the different clusters identified by MegaClust as mDCs and pDCs
(example for one patient for four time points). (B) Expression level of CD123 and CD11c of the two mDC clusters and the two pDC clusters identified by MegaClust.
(C) Expression levels of HLA-DR and CD4 for the two pDC clusters and the two mDC clusters identified by MegaClust. Cluster 53 could be assigned as basophils
due to the lack of expression of CD4 and HLA-DR (25). The expression of CD4 is shown for CD4 T cells and CD14+ monocyte clusters for comparison. (D) Overlay
of CD4 and HLA-DR of MegaClust identified clusters for mDC, pDC, basophils, CD4 and monocytes. (E) mDCs and pDCs were discriminated according to CD11c
and CD123 expression in the supervised flow cytometry re-analysis according to the new gating strategy described in Supplementary Figure 5 (one representative
patient 0QZW). (F) Representative illustration of HLA-DR and CD4 co-expression on mDCs and pDCs prior to FACS sorting CD11c+CD123-CD4+HLA-DR+ mDCs
and CD123+CD11c-CD4+HLA-DR+ were FACS sorted (dotted lines). (G) Gene expression profiles of flow cytometry sorted CD11c+CD123-CD4+HLA-DR+ mDCs,
CD123+CD11c-CD4+HLA-DR+CD4+HLA-DR+ pDC and CD14+CD16- monocytes from 3 healthy donors are shown in comparison to the RNA expression profile of
public available RNAseq datasets (Immgen) indicating the gene expression profile of B cells, macrophages, CD4 T cells, gd T cells and NK cells.
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T-cells originating from clusters #19 and #34 (Supplementary
Figure 4C right panel), which bear a high level of HLA_DR
marker (Figure 4E). Although aggregated counts of the manual
gating (Supplementary Figure 4A left panel and D) also highlight
differences for the patient 0O17 (red), the level of details brought by
unsupervised analysis is not captured.

Taken together, our observations indicate that supervised
analyses have limitations, underestimate the complexity of
cellular heterogeneity and hamper discovery. Conversely,
unsupervised analyses using mathematical algorithms like
MegaClust better capture cell diversity and lead to discovery.
These data-driven analyses allowed us to generate an improved
and more comprehensive supervised analysis strategy that can be
easily implemented (Supplementary Figure 5).
DISCUSSION

Technological advances in the cytometry field drive the inherent
needs of novel computational, data-driven approaches, which in
turn enable the identification of an unprecedented number of
singular cell populations. For a long time, the community has
been focused on identifying algorithms that would accurately
reproduce results obtained by manual gating and those were
considered successful when clustering methods qualitatively and
quantitatively identified the same cell populations as the manual
gating strategy. This probably has its roots in the way that flow
cytometry panels used in clinical setting were carefully designed
and validated. These panels are used to quantify the relative
amount of specific cell populations determined by the presence
of specific surface markers selected based on current knowledge.
Marker selection and gating strategy evolved in parallel and
predefine cell populations to be profiled. Gating strategies were
Frontiers in Immunology | www.frontiersin.org 8
thus only meant to capture and quantify known cell populations,
based on the sequential application of a tree of 1- or 2-dimention
gates. In contrast, automated clustering algorithms consider the
data as a whole and use all markers simultaneously to assess the
similarity between cells. There is a large variety of clustering
algorithms with distinct advantages and limitations (26–28), and
each algorithm will return different partitions depending on the
parameters used. Hence reproducing exactly the same partition
as a manually gated analysis (e.g. same number of clusters as
target populations) will remain difficult, if not impossible, and
may in fact not be desirable. As pointed by Saeys and colleagues
(29): “most clustering techniques handle this gracefully by
overclustering the data, which assures that all the main
structures will be captured, even if they are further split up
into smaller populations”. In fact, using unsupervised clustering
analysis opens up the possibility to partition the data more finely
and can “facilitate the finding of novel and unexpected
populations” which can be used to extend and improve gating
strategies, as illustrated in this study (16, 29).

Here, we usedMegaClust, a hierarchical density-based clustering
algorithm where the number of predicted populations depends on
the minimum number of events necessary to define a cluster
(parameter nmin). Although there is some level of subjectivity in
the choosing of this parameter, it is easy to understand and can be
conceptually linked to the minimal population size that could ever
be reported (e.g. setting nmin to 1000 on a dataset of 100’000 events
will never identify populations less frequent than 1%, and in practice
report only much larger populations). From there the number of
clusters returned depends only on the inherent data structure,
considering all dimensions at the same time. This departs from
supervised flow cytometry data analysis, which relies on sequential
gating of populations identified visually using pairs of markers,
which also comports some level of subjectivity. In that sense,
A B

C

FIGURE 6 | tSNE of all clusters identified by MegaClust. (A) tSNE plot showing all clusters and populations identified by MegaClust. The different cell populations
are color-coded and listed on the right. One group contains clusters of cells that where not assigned. (B) Cumulative analysis on all patients and timepoints (n=20) of
the expression level (mean fluorescence intensity, MFI) of different markers on the 10 unassigned clusters. (C) tSNE plot showing all clusters and populations
identified by MegaClust, with the 10 clusters identified by MegaClust that could not be assigned to known reference populations highlighted with distinct colours.
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MegaClust, as well as any other clustering algorithms, are unbiased,
meaning not biased by human subjective visual perception, since
they rely on mathematical computations (i.e. distance metric) and
can potentially detect undescribed biological populations (e.g.,
populations in state transition or rare populations) (30). However,
the parameter responsible directly or indirectly for the number of
clusters (nmin in the case of MegsClust) will have to be fine-tuned,
so that the number of clusters reported exceeds the number of
biological populations described in the literature. Adequate values
are dataset dependent, and our recommendation is to select values
which will result in the identification of 50 to 100 clusters. In the
subsequent interpretation, identified clusters may be grouped into
known cell subpopulations according to common characteristics.
These groups of clusters were termed “meta-clusters” (31) or
“families” (23). The benefit of overclustering is that it does not
preclude the subsequent grouping of clusters to increase the
consistency of results compared to manually-gated reference
populations (Table 1A and Supplementary Figure 1) and, at the
same time, leaves the possibility to inspect each cluster individually
to discover biologically-meaningful subpopulations.

Here, in the context of a clinical trial of prostate cancer
patients treated with radiotherapy, we cross-compared state-of-
the-art supervised analyses with an unsupervised data-driven
analysis. All subsets from the supervised analyses were also
captured with MegaClust and their characteristic combination
of markers was validated. The MegaClust analysis allowed in
addition to distinguish activated from not activated CD4 T cells
due to the expression of HLA-DR in three out of ten identified
CD4 T cell clusters. Furthermore, a deep inspection of the CD8
clusters clearly confirmed the identification of NKT-like cell
subpopulations within the CD8 T cells, a hurdle in supervised
analysis based on the various expression level of CD8 during T
cell activation. In addition, MegaClust detected the expression of
CD4 on HLA-DR+ mDC and pDC demonstrating its capacity to
identify rare and infrequently reported populations (24, 32).

The overall attempt of this study was to cross-compare supervised
and data-driven analysis to determine if unsupervised analysis could
bring additional insights, an objective clearly satisfied by MegaClust.
The capacity of the algorithm to identify cell subsets considering the
expression profile of all markers at the same time departs from the
traditional manual gating strategy restricted to the inspection of
successive pairs of markers and place MegaClust as a powerful
discovery tool that potentially allows discovery of unknown cell
populations. The identification of non-targeted (e.g. unknown or
not well characterized) low abundance populations in our study is a
relevant function in the context of clinical immune monitoring.
Although we analysed only a relatively limited cohort of patients,
we believe that the use ofMegaClust in the discovery analysis phase of
clinical trial trials with large cohorts of patients (6, 33) can lead to
better interpretation of the data. Our observations indicate that data-
driven analyses of cytometry data significantly enrich the amount and
quality of knowledge gained which represents an important step in
the field of experimental immunotherapies.

Taken together, our study indicates that established supervised
(gated) analyses have limitations, underestimate the complexity of
cellular heterogeneity and, by design, only capture known
Frontiers in Immunology | www.frontiersin.org 9
populations. Conversely, unsupervised analyses can better capture
cell diversity and allow discovery, ultimately leading to improved
data-driven supervised analyses able to capture subsets missed in
the initial analysis (Supplementary Figure 5).

However, one limitation of these methods is that an over-
clustering is necessary to capture all populations of interest.
Hence, they will generate a number of clusters with very similar
characteristics. To limit the effect of over-clustering, it is
indispensable to work with datasets acquired under well-
standardized conditions and on good calibrated instruments to
avoid an impact of batch effect on the clustering. Despite this, the
intervention of the researcher will be necessary to decide, which
clusters belong to the same cell subset and can be pooled and which
clusters belong to a subset of cells with a distinct characteristic
expression profile. This step is the frontier between discovery of new
cell populations and re-assignment of clusters with only minor
differences in the expression of characteristic cell subset markers to
already known populations. Although the regrouping of clusters is
subject to interpretation, it can be documented and result in the
discovery of interesting aspects that would be missed with the
conventional gating analysis.

In conclusion, this study demonstrates the added-value of
unsupervised algorithms such as MegaClust in the context of
biomarker discovery using cytometry data. This is highly
relevant to enrich the amount and quality of knowledge gained
from discovery efforts and clinical trials, and represents an
important step in the field of immune monitoring.
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