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Abstract

A rich source of chemical–protein interactions (CPIs) is locked in the exponentially

growing biomedical literature. Automatic extraction of CPIs is a crucial task in biomedical

natural language processing (NLP), which has great benefits for pharmacological and

clinical research. Deep context representation and multihead attention are recent devel-

opments in deep learning and have shown their potential in some NLP tasks. Unlike

traditional word embedding, deep context representation has the ability to generate

comprehensive sentence representation based on the sentence context. The multihead

attention mechanism can effectively learn the important features from different heads

and emphasize the relatively important features. Integrating deep context representation

and multihead attention with a neural network-based model may improve CPI extraction.

We present a deep neural model for CPI extraction based on deep context representation

and multihead attention. Our model mainly consists of the following three parts: a

deep context representation layer, a bidirectional long short-term memory networks

(Bi-LSTMs) layer and a multihead attention layer. The deep context representation is

employed to provide more comprehensive feature input for Bi-LSTMs. The multihead

attention can effectively emphasize the important part of the Bi-LSTMs output. We

evaluated our method on the public ChemProt corpus. These experimental results

show that both deep context representation and multihead attention are helpful in CPI

extraction. Our method can compete with other state-of-the-art methods on ChemProt

corpus.
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Introduction

Accurately detecting the interactions between chemicals
and proteins is a crucial task that plays a key role in preci-
sion medicine, drug discovery and basic clinical research (1).
Currently, PubMed contains >28 million articles, and its
annual growth rate is more than a million articles each year.
A large amount of valuable chemical–protein interactions
(CPIs) are hidden in the biomedical literature. There is an
increasing interest in CPI extraction from the biomedical
literature.

Since manually extracting biomedical relations such as
protein–protein interactions (PPI) and drug–drug interac-
tions (DDI) is costly and time-consuming, some compu-
tational methods (2–6) have been successfully proposed
for automatic biomedical relation extraction. For example,
Kim et al. (4) proposed using a subsequence kernel for
PPI extraction that matches the e-walk and v-walk on the
shortest dependency to capture the noncontiguous syntac-
tic structures. Segura-Bedmar et al. (7) employed linguis-
tic patterns to extract DDIs. Currently, models based on
deep neural networks have exhibited surprising potential
in biomedical relation extraction (8–10). Rois et al. (11)
proposed an adversarial domain adaptation method to
extract PPIs and DDIs. Zhang et al. (12) proposed a hybrid
deep neural model for biomedical relation extraction from
the biomedical literature, which integrates the advantages
of convolutional neural networks (CNNs) and recurrent
neural networks (RNNs).

To date, most studies on the biomedical relation
extraction have focused on the PPIs and DDIs, but a few
attempts have been made to extract CPIs. The BioCreative
VI ChemProt shared task (13) released the ChemProt
dataset for CPI extraction, which is the first challenge for
extracting CPIs. The ChemProt dataset (13) provided an
opportunity to compare current CPI extraction methods on
the same benchmark corpora. Peng et al. (14) proposed an
ensemble method to integrate the support vector machines
(SVMs) and deep neural networks and achieved an F-
score of 0.641 on the ChemProt dataset. Corbett and
Boyle (15) employed transfer learning and specialized word
embeddings to extract CPIs and achieved an F-score of
0.615 on the ChemProt dataset.

From the BioCreative VI ChemProt track, neural
network-based methods achieved state-of-the-art perfor-
mance in CPI extraction. Compared with feature-based
and kernel-based methods, the deep neural networks
can automatically learn latent features. So far, the best
performance of CPI extraction is an F-score of 0.641 on
the ChemProt corpus (14). One of the bottlenecks of neural
networks in natural language processing (NLP) is word
embeddings that are generally the input layer of various

neural networks. Pretrained word embeddings (16, 17)
are of great importance for the performance of neural
network-based methods in NLP tasks. Learning high-
quality distributed word embeddings is very challenging.
Although great efforts have been made in distributed word
representations, current word embeddings still cannot
effectively vary across linguistic contexts. Most recently,
Peters et al. (18) proposed deep contextualized word
representations called ELMo based on a deep bidirectional
language model. Traditional word embeddings represent
each token as a unique embedding vector. However, ELMo
represents each token as a function of the entire input
sentence, which makes the representation of each token
dependent on the sentence context. Therefore, integrating
the ELMo representation with deep neural networks can
provide more comprehensive input representation for the
following neural network models and may improve the
performance of CPI extraction.

Another challenge in CPI extraction is how to accurately
detect and extract the CPIs in long and complicated sen-
tences. In particular, the chemical and protein entities are
often found in different clauses. It is hard to capture the dis-
tinguished syntactic information for deep neural networks
in these long and complicated sentences. Recent studies
(19, 20) have suggested attention mechanisms can effec-
tively emphasize the relatively important parts of the input
sentences and be helpful in boosting the performance of
relation extraction. However, most studies only employed
single attention in the deep neural models. Multihead atten-
tion applies attention multiple times and divides attention
information into multiple heads (21). Thus, a multihead
attention mechanism will make it easier to capture the
relevant important information for deep neural networks
in CPI extraction.

In this work, we explore the effectiveness of deep contex-
tualized word representations and multihead self-attention
mechanisms in the CPI extraction. We introduce a deep
neural model to extract CPIs from the literature, which
includes an ELMo input layer, bidirectional long short-term
memory networks (Bi-LSTMs) and a multihead attention
layer. Liu et al. (22) integrated attention pooling into the
gated recurrent unit (GRU) model to extract CPIs. Verga
et al. (23) combined the multihead attention with CNNs to
construct transformer model to extract the document-level
biomedical relations. In this work, we combined the multi-
head attention with Bi-LSTMs. In particular, we employed
the ELMo contextualized representation in the input layer.
To the best of our knowledge, this is the first model that
used ELMo contextualized representation for biomedical
relation extraction. Our proposed model is evaluated on the
ChemProt corpus. The experimental results show that both
contextualized word representations and multihead atten-
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tion are valuable for CPI extraction. Our model can effec-
tively integrate the contextualized word representations
and multihead attention for CPI extraction and achieve
state-of-the-art performance on ChemProt corpus. We have
also shown that our model can also achieve competitive
performance on other biomedical relation extraction tasks
such as DDI extraction.

Materials and methods

CPI extraction

Computational CPI extraction is generally approached
as a task of classifying whether a specified semantic
relation holds between the chemical and protein entities

within a sentence or document. The ChemProt corpus
is a manually annotated CPI dataset, which greatly
promotes the development of CPI extraction approaches.
The ChemProt corpus includes training, development
and test sets. Each set contains the corpus file, entity
annotation file and relation annotation file. Figure 1
gives an example of the corpus file, entity annotation
file and relation annotation file from the ChemProt
training set. The corpus file gives the abstract document
and the PubMed Unique Identifier (PMID) (10480573).
The entity file gives all chemical and gene/protein entity
mentions in the abstract. The entity annotation information
includes the PMID, entity number, type of entity mention
(‘CHEMICAL’, ‘GENE-Y’ and ‘GENE-N’), start and end

Figure 1. The illustrative examples of ChemProt corpus.
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Table 1. The ChemProt corpus semantic relations

Relation class Eval. ChemProt relations

CPR:1 N Part of
CPR:2 N Regulator
CPR:3 Y Upregulator and activator
CPR:4 Y Downregulator and inhibitor
CPR:5 Y Agonist
CPR:6 Y Antagonist
CPR:7 N Modulator
CPR:8 N Cofactor
CPR:9 Y Substrate and product of
CPR:10 N Not

character offset of the entity mention and text string of
entity mention. ‘GENE-Y’ denotes the entity mention can
be associated with a biological database identifier. ‘GENE-
N’ denotes the entity mention cannot be associated with
a biological database identifier. The relation file gives
the detailed CPI annotations in the abstract. It contains
PMID, CPI relation class, evaluation type (Y: evaluated;
N: not evaluated), CPI relation and interactor arguments.
In Figure 1, it can be seen that 14 chemical or gene/protein
entities and 2 CPIs are annotated in the abstract (PMID:
10480573). In the BioCreative VI ChemProt share task, the
named entity recognition has been already done, and the
participant teams only focused on CPI extraction.

Table 1 shows the 10-type relation classes of the
ChemProt corpus. In Table 1, it can be seen that each
relation class includes one or multiple relation types.
‘Eval.’ denotes whether the relation class is evaluated in
the BioCreative VI ChemProt share task. Although the
ChemProt corpus contains 10-type relation classes, only
5-type relation classes were evaluated, including CPR:3,
CPR:4, CPR:5, CPR:6 and CPR:9. Table 2 shows the
statistics of the ChemProt corpus.

Figure 2 gives some illustrative examples of CPI extrac-
tion. In example 1, ‘Ibandronate’ and ‘FAS’ (presented
in bold) are chemical and gene entities, respectively. To
accurately extract the CPI from example 1, we need not
only to detect the interaction between ‘Ibandronate’ and
‘FAS’ but to also classify the interaction as the ‘CPR:3’
class. There are some long and complicated sentences in

ChemProt corpus. Example 6 is a long sentence instance
that contains multiple subsentences.

The model architecture

Figure 3 is a schematic overview of our model. In a nutshell,
our model mainly includes three parts: the deep contex-
tualized representation layer, the Bi-LSTMs layer and the
multihead attention layer. The inputs of our model are
sentence sequences. The deep contextualized representation
layer will generate the contextualized representation vec-
tor for each word based on the sentence context. Some
recent studies (8, 24) have suggested that the position and
part of speech (POS) of each word in the sentence are
crucial to biomedical relation extraction. Hence, the word
contextualized representation is concatenated with position
and POS embeddings. The Bi-LSTMs layer will learn the
latent features based on the whole word representations.
The multihead attention layer applies a self-attention mech-
anism to capture the relative important features in the
CPI extraction. After the multihead attention layer, we
employed attention pooling and a softmax function to
implement the detection and classification of the candidate
CPIs in the sentences. In the following section, our CPI
extraction model will be described in detail.

Contextualized word representations

In our model, we used deep contextualized word (ELMo)
representations instead of the traditional word embeddings.
Unlike word embeddings, ELMo representations are func-
tions of the input sentences based on bidirectional language
models. Therefore, ELMo has the ability to generate differ-
ent representation vectors for the same word according to
the sentence context.

Given a sentence S, {w1, w2, . . . , wn} denotes the word
sequence in the sentence. Given a word wk, the forward
language model calculates the probability of the word wk

based on the front words {w1, w2, . . . , wk−1} of wk in S as
follows:

Pforward(w1, w2, . . . , wn)=
∏n

k=1
p
(
wk|w1,w2,. . . ,wk−1

)
.

(1)

Table 2. The statistics of the ChemProt corpus

Dataset Abstracts Chemicals Genes/proteins Evaluated CPIs

Training 1020 13 017 12 735 4157
Development 612 8004 7563 2416
Test 3399 10 810 10 018 3458
Total 5031 31 813 30 316 10 031
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Figure 2. The illustrative examples of CPR classes.

Similarly, the backward language model calculates the
probability of the word wk based on the behind words
{wk+1, wk+2, . . . , wn} of wk in S as follows:

Pbackward (w1, w2, . . . , wn)

=
∏n

k=1
p

(
wk|wk+1, wk+2, . . . , wn

)
. (2)

A bidirectional language model combines the forward
and backward language models and jointly maximizes the
log likelihood as follows:

∑n

k=1

(
logp

(
wk|w1, w2, . . . , wk−1

)

+ logp
(
wk|wk+1, wk+2, . . . , wn

))
. (3)

ELMo representation is a function of a combination of
the intermediate layer representations in the bidirectional
language model. Therefore, ELMo can learn the different
representation vector of each word in different sentences.
More details about ELMo can be found in the study (18).

In our experiments, we employ the ELMo module from
TensorFlow Hub.

Bi-LSTMs model

The LSTM model is currently one of the most powerful
RNN models, which has been successfully applied in many
NLP. Compared with traditional RNN models, the LSTM
model employs the gate mechanism to solve the vanish-
ing gradient problem (25). The LSTM model is a time
sequential model and is explicitly designed to remember the
information for long time periods. Therefore, the LSTM
model is suitable to capture the long-term dependency
feature in NLP tasks. At the time step t, each LSTM unit
calculates the input word xt, the previous hidden state ht−1

and the memory cell ct−1 to generate the current hidden
state ht and memory cell ct (25). The current hidden state
ht and memory cell ct can be calculated based on the
equations (4)∼(9). W∗, U∗ and b∗ denote weight and bias
parameters of the LSTM units, and � denotes element-wise



Page 6 of 14 Database, Vol. 2019, Article ID baz054

Figure 3. The schematic overview of our model.

multiplication. ft and ot are the state of the current forget
and output gate, respectively.

ft = sigmoid
(
Wf xt + Uf ht−1 + bf

)
(4)

ot = sigmoid
(
Woxt + Uoht−1 + bo

)
(5)

gt = tanh
(
Wgxt + Ught−1 + bg

)
(6)

it = sigmoid
(
Wixt + Uiht−1 + bi

)
(7)

ct = ft � ct−1 + it � gt (8)

ht = ot � tanh
(
ct−1

)
(9)

The Bi-LSTMs model combines the forward LSTM and
backward LSTM. Givenhf

t and hb
t denote the hidden state of

the forward LSTM and backward LSTM, the final hidden
state of the Bi-LSTMs will be concatenated into ht=hf

t

∥∥∥hb
t .

The Bi-LSTMs model can deal with the input sequence from
the two-way approach and capture more comprehensive
features.

Multihead attention

The Bi-LSTMs layer can effectively and automatically learn
the latent features from the input sequences. However,
only a small part of these latent features are crucial in
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the CPI extraction. In our model, multihead attention (21)
is employed to further emphasize the relatively important
features by adjusting the weights. The intuition behind the
multihead attention is that applying the attention multi-
ple times may learn more important features than single
attention. In short, the attention mechanism calculates the
output based on the query and a set of key–value pairs.
The multihead attention is also based on query, key and
value matrixes that are denoted as Q, K, V ∈ R

n×d. In our
study, we used the multihead self-attention to deal with the
output of Bi-LSTMs. The self-attention is a special case of
multihead attention, which only requires a single input.

Given X ∈ R
n×d denotes the input sequence matrix, the

Q, K and V will be generated by applying linear projec-
tions. Instead of the standard additive attention mechanism
(26), the multihead attention uses dot-product attention to
increase the parallel computation as follows:

Attention
(
Q, K, V

) = softmax
(
QKT/

√
d
)

V (10)

where
√

d is the scaling factor. The key point of the mul-
tihead attention is employing the above attention multiple
times. If the multihead attention contains h heads, the k-th
head attentionMk can be calculated as follows:

Mk
(
Q, K, V

) = Attention
(
QWQ, KWK, VWV

)
(11)

where WQ, WK, WV ∈ R
n×d/h. The final multihead atten-

tion M is the concatenation of {M1, M2, . . . , Mh}.

M
(
Q, K, V

) = Concat (M1, M2, . . . , Mh) WO (12)

where WO ∈ R
d×d. Thus, the output of the multihead

attention M(Q, K, V) is a matrix of Rn×d.

Classification and training

In the pooling layer, the attention pooling (22) is applied to
map the multihead attention matrix to the sentence vector
representation. The ‘softmax’ function is used in the output
layer to implement the detection and classification of CPIs.

In the experiments, our model is implemented by the
Keras with the TensorFlow backend. We chose the categor-
ical cross-entropy as the object function and use RMSProp
to optimize the proposed model. A dropout mechanism was
employed before the contextualized representation layer
and output layer to alleviate the overfitting of the neural
networks model (27). The hyperparameters used in our
experiments are listed as follows. The hidden unit number
of forward and backward LSTM is both 300. The mini-
batch size is set as 64. The learning rate of RMSProp is
set as 0.001. The dropout rate before the embedding layer

and output layer is both set as 0.5. The early stopping
strategy (28) is used to choose the number of epochs on
the validation set.

Results and discussion

Datasets and evaluation metrics

The ChemProt corpus (13) is the major dataset for CPI
extraction, which was released on the BioCreative VI share
task. In Table 1, the ChemProt corpus is annotated for 10
relation classes, but only 5 relation classes (CPR:3, CPR:4,
CPR:5, CPR:6 and CPR:9) were evaluated. To maintain the
same evaluation with other studies, we also focused on the
five-type relation classes. The statistics of the ChemProt
corpus are listed in Table 2.

In the experiments, we combined the training and devel-
opment sets as a whole training set. The validation set was
randomly chosen from the training samples with a 10%
rate. We used the validation to choose the parameters of
our model. The test set was just used for evaluating the
performance of our model.

The F-score, ‘precision’ and ‘recall’ are widely used as
the evaluation metrics in CPI extraction. In particular, the F-
score is the harmonic mean of both ‘precision’ and ‘recall’,
which can quantify the overall performance. Therefore, the
F-score was chosen as the major metric in our experiments.
Since the CPI extraction is a multiclass classification task,
we compute the micro average to assess the overall perfor-
mance (14). To reduce the potential bias, we repeated each
experiment five times and reported the average F-score,
‘precision’ and ‘recall’.

In the comparison experiments, we used the pretrained
biomedical word embedding (29), which is available at
https://github.com/cambridgeltl/BioNLP-2016. For ELMo
model, we used pretrained ELMo embeddings from
TensorFlow hub (https://tfhub.dev/google/elmo).

Experimental results on ChemProt corpus

We first evaluated the effectiveness of different input repre-
sentations of our method. In this experiment, we used the
same Bi-LSTMs and changed the input representations. The
comparison performance of different input representations
are listed in Table 3. To focus on input representation evalu-
ation, all models in Table 3 do not use attention strategy.

• ‘Word’: the input representation of the model is word
embedding.

• ‘Word + Position’: the input representation of the model
is the concatenated of word embedding and position
embedding.

https://github.com/cambridgeltl/BioNLP-2016
https://tfhub.dev/google/elmo
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Table 3. The effect of the input representation on performance

Input representation Train vs validation Train vs test

Precision Recall F-score Precision Recall F-score

Word 0.554 0.585 0.569 0.492 0.624 0.55
Word + Position 0.524 0.633 0.573 0.511 0.643 0.569
Word + Position + POS 0.601 0.596 0.598 0.586 0.57 0.578
Context 0.592 0.641 0.616 0.596 0.628 0.611
Context + Position 0.627 0.643 0.635 0.578 0.677 0.624
Context + Position + POS 0.629 0.66 0.644 0.621 0.64 0.629

Notes: ‘Word’, ‘Position’, ‘POS’ and ‘Context’ denote word embedding, position embedding, POS embedding and deep context representation, respectively. ‘Train vs validation’ and ‘Train
vs test’ denote the results on validation and test sets, respectively. Attention mechanism is not used in this experiment.

• ‘Word + Position + POS’: the input representation of the
model is the concatenated of word embedding, position
embedding and POS embedding.

• ‘Context’: the input representation of the model is deep
context embedding.

• ‘Context + Position’: the input representation of the
model is the concatenated of deep context embedding
and position embedding.

• ‘Context + Position + POS’: the input representation of
the model is the concatenated of deep context embedding,
position embedding and POS embedding.

In Table 3, it can be seen that the Bi-LSTMs model
achieved an F-score of 0.55 when only using pretrained
word embedding as the input representation. Both position
embedding and POS embedding are helpful to improve the
performance in CPI extraction. When combining the word,
position and POS embedding, the F-score was improved
from 0.55 to 0.578. Compared to the word embedding,
deep context representation ELMo greatly improved the
F-score from 0.578 to 0.629. The results suggest that the
ELMo can generate a more comprehensive representation
of the words from the intermediate layer based on the
sentence contexts. This makes the ELMo outperform pre-
trained word embedding for the performance of CPI extrac-
tion. Moreover, combining the position and POS embed-

dings with deep context representation can further improve
the performance. Overfitting is a common issue in this
domain. We also report the performance measures on the
validation set. Compared with the results on the vali-
dation set, the F-score only slightly decrease (≤0.015).
This indicates that the models do not suffer much from
overfitting.

Then, we evaluated the effectiveness of the multihead
attention in CPI extraction. In this experiment, all models
employed the multihead attention mechanism and used the
concatenated of word embedding, position embedding and
POS embedding as the input representation. Since multi-
head self-attention was employed, the dimensions of the
query Q, key K and value V are the same. As shown in
Table 4, we varied the number of attention heads and the
dimensions of Q, K and V. In Table 4, we can see multihead
attention can effectively improve the performance of CPI
extraction. The experimental results indicate that multi-
head attention can combine the important features from
the different heads to construct a comprehensive feature
representation. We also noticed that the F-score ranged
from 0.646 to 0.659 when setting different head numbers.
When the number of heads is set too small or too large,
the performance will drop off. Overall, our model achieved
the highest F-score of 0.659 when the number of heads was

Table 4. The effect of the attention heads and the dimensions on performance

Heads Dimensions Train vs validation Train vs test

Precision Recall F-score Precision Recall F-score

2 300 0.692 0.619 0.653 0.663 0.634 0.648
4 150 0.685 0.634 0.659 0.691 0.62 0.653
6 100 0.697 0.642 0.668 0.706 0.618 0.659
12 50 0.69 0.651 0.67 0.696 0.622 0.657
20 30 0.674 0.648 0.661 0.67 0.629 0.649

Notes: ‘Heads’ and ‘Dimensions’ denote the number of heads and the dimensions of Q, K and V, respectively. ‘Train vs validation’ and ‘Train vs test’ denote the results on validation and
test sets, respectively. The input representation is the combination of deep context embedding, position embedding and POS embedding.



Database, Vol. 2019, Article ID baz054 Page 9 of 14

Figure 4. The learning curve of two models on ChemProt corpus. The simple model contains the combination input of the word, position and POS

embeddings and Bi-LSTMs. The complicated model contains the combination input of deep context, position and POS embeddings, Bi-LSTMs and

multihead attention mechanism.

set as 6, which outperformed the F-score of 0.629 without
using multihead attention.

Next, we evaluated the performance with different sizes
of training data. Generally, more labeled training samples
are always helpful for the supervised learning model. How-
ever, in the biomedical domain, annotating labeled data is
expensive and time-consuming. The key point is how many
training data are required for competitive performance
on biomedical relation extraction. Since we combined the
training and development sets of the ChemProt corpus
as a whole training set, the labeled training samples are
∼27 000. We experimented with the differently labeled
training samples that ranged from 1000 to 27 071. The
evaluation results of the two models are shown in Figure 4.
The simple model contains the combination input of the
word, position and POS embeddings and Bi-LSTMs. The
complicated model contains the combination input of deep
context, position and POS embeddings, Bi-LSTMs and mul-
tihead attention mechanism. For the complicated model, the
training sample size ranges from 1000 to 27 071, with a
corresponding F-score of 0.128 to 0.659. Similarly, the cor-
responding performance of the simple model was increased
from 0.222 to 0.578 in F-score. We made the observation
that the performance increase slowed down when the num-
ber of training samples increased. For example, the corre-
sponding performance of the complicated model increased
from 0.128 to 0.483 when the training sample size increased
from 1000 to 5000. However, the performance increase
of the complicated model is only 0.011 when the training
sample size increases from 20 000 to 27 071. Similar trends

can be found for the simple model. Our results show that
both models with ∼ 5000 training samples can achieve
>70% of the best performance. In addition, we can see
the simple model outperforms the complicated model in
F-score when using 1000 or 3000 training samples. The
main reason is that the complicated model has much more
parameters need to train than the simple model because of
the ELMo representation and multihead attention layers.
Therefore, the complicated model requires more training
samples to train than the simple model. When the number
of training samples is >5000, the complicated model can
outperform the simple model significantly.

Analysis of the word-level attention weights

Figure 5 shows the attention weight distribution of some
instances from ChemProt test set. Darker background color
(dark red) on the word indicates higher attention weights.
It can be seen that the attention mechanism can highlight
some important keywords, such as ‘agonist’, ‘inhibiting’
and ‘reduced’. These keywords are greatly helpful to classify
the semantic relation type.

Table 5 gives the top 5 attention keywords in each
relation type among the ChemProt test set. The recent study
(22) has suggested that CPR:4, CPR:5 and CPR:6 have
high concentration of keywords. We also found similar
results. In Table 5, we can see, in CPR:4 (downregulator
and inhibitor), all the top 4 key words are the variations
of ‘inhibitor’. In CPR:5 (agonist) and CPR:6 (antagonist),
the top words concentrate in the variation of ‘agonist’
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Figure 5. Examples of attention weight distribution.

Table 5. Top 5 attention keywords in each relation type

CPR:3
(upregulator and activator)

CPR:4
(downregulator and inhibitor)

CPR:5
(agonist)

CPR:6
(antagonist)

CPR:9
(substrate and product of)

Expression Inhibitor Agonist Antagonist Metabolism
Increased Inhibition Selective Antagonists Catalyzes
Induced Inhibitors Activity Selective Metabolized
Activation Inhibited Agonists Receptor Uptake
Activity Cells Antagonist Binding Enzyme

and ‘antagonist’, respectively. These top words such as
‘inhibitor’, ‘agonist’ and ‘antagonist’ are the strong indi-
cator of CPR:4, CPR:5 and CPR:6. For CPR:3 (upreg-
ulator and activator) and CPR:9 (substrate and product
of), our model identified deeper semantic variants such as
‘increased’, ‘expression’ and ‘enzyme’.

Performance comparison on ChemProt corpus

We compared our method with other state-of-the-art meth-
ods on ChemProt corpus in Table 6. Warikoo et al. (30)
employed a linguistic interaction pattern learning method
to capture the CPI and achieved an F-score of 0.526 on
ChemProt corpus. Lung et al. (31) used a three-stage model
to integrate the semantic and dependency graph features
and achieved an F-score of 0.567. Liu et al. (22) applied
the GRU model with attention pooling and achieved an F-
score of 0.527. Similarly, Corbett et al. (15) also used a Bi-
LSTMs model with pretrained LSTM layers to achieve a
high F-score of 0.615. Peng et al. (14) proposed an ensemble
method to combine three system results including SVM,
CNN and Bi-LSTMs. This method achieved an F-score
of 0.641, which was the top rank in the BioCreative VI
ChemProt share task.

In Table 6, neural network-based methods achieved
highly competitive performance in the CPI extraction

task. Compared with other methods, our model effectively
integrated the deep context representation, Bi-LSTMs and
multihead attention and achieved the highest F-score of
0.659. We noticed that some studies (14, 15, 22) also
applied Bi-LSTMs in CPI extraction. The Bi-LSTMs model
can automatically learn the long-term latent features from
the sentence. For CPI extraction, some sentences are long
and complicated. Moreover, some chemical and protein
entities are in different clauses. Thus, it is difficult to learn
enough features for Bi-LSTMs to distinguish and classify
the candidate CPI. To solve this problem, we applied the
deep context representation instead of word embedding to

Table 6. Performance comparison with other methods on

ChemProt corpus

Methods Precision Recall F-score

Warikoo et al. (30) 0.592 0.474 0.526
Lung et al. (31) 0.632 0.512 0.567
Liu et al. (22) 0.574 0.487 0.527
Corbett et al. (15) 0.561 0.678 0.615
Peng et al. (14) 0.727 0.574 0.641
Our method 0.706 0.618 0.659

Notes: the input representation is the combination of deep context embedding, position
embedding and POS embedding. The number of the attention heads and dimensions are
set as 6 and 100, respectively.
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generate the comprehensive sentence representation, which
provided much more comprehensive information to the Bi-
LSTMs. Furthermore, we employed a multihead attention
layer to effectively enhance the important distinguishing
features based on the Bi-LSTMs output. Therefore, both
the deep context representation and multihead attention
strategies were helpful to improve the performance in CPI
extraction. Our experiments were performed on NVIDIA
GPU GeForce GTX Titan Xp with 12 GB GDDR5X
memory. The training time for one epoch of our model
was ∼317 s.

Overall, our method took advantage of the deep context
representation and multihead attention strategies to achieve
state-of-the-art performance on the ChemProt corpus.

Performance breakdown and error analysis

Table 7 gives the performance breakdown of each CPI type.
It can be seen that the performance of different CPI type
vary significantly. Our model achieved a high F-score of
0.725 and 0.718 on CPR:6 (antagonist) and CPR:4 (down-
regulator and inhibitor), respectively. On the contrary, the
F-score on CPR:9 (substrate and product of) is only 0.501.
This indicates that it is the most difficult for our model
to accurately classify CPR:9 type CPIs. Table 8 shows the
confusion matrix for our model on the test set. The x-axis
is the predicted label by our model, and the y-axis is the
gold standard label. In Table 8, we can see that the major
challenge is nonrelations being mistaken for relations and
vice versa. Besides that, there is something of a problem
with CPR:3 (upregulator and activator) being mistaken
for CPR:4 (downregulator and inhibitor). This suggests
that accurately distinguishing between CPR:3 and CPR:4
is another challenge for our model.

In addition, we also manually analyzed what sentences
lead to false negatives. In Figure 6, we gave some examples
of false negatives. The chemical and protein entities are in
bold. We noted that the passive structure is a frequent cause
of false negatives. For example, in FN1, the chemical entity
‘estradiol’ is in passive. In this case, our model misclassified

Table 7. Performance breakdown of our model on the test

set

Label Support Precision Recall F-score

CPR:3 664 0.662 0.539 0.594
CPR:4 1661 0.704 0.732 0.718
CPR:5 194 0.737 0.593 0.657
CPR:6 281 0.759 0.694 0.725
CPR:9 643 0.735 0.379 0.501

Notes: the input representation is the combination of deep context embedding, position
embedding and POS embedding. The number of attention heads and dimensions are set
as 6 and 100, respectively.

Table 8. Confusion matrix for our model on the test set

Gold False CPR:3 CPR:4 CPR:5 CPR:6 CPR:9

False 10 267 164 415 32 51 84
CPR:3 220 358 80 3 2 1
CPR:4 427 14 1216 0 1 3
CPR:5 66 2 3 115 8 0
CPR:6 77 0 3 6 195 0
CPR:9 386 3 10 0 0 244

Notes: the input representation is the combination of deep context embedding, position
embedding and POS embedding. The number of attention heads and dimensions are set
as 6 and 100, respectively.

the relation between ‘ERÎ±’ and ‘estradiol’ as false. Another
frequent cause of false negatives is the sentence is long and
complicated. For example, in FN3, the chemical and protein
entities are in different clauses and the sentence is relatively
complicated. In this case, our model failed in identifying the
relation between ‘Fas-associated death domain-containing
protein’ and ‘paclitaxel’. In the future plan, more effort
should be made on how to identify CPIs from passive
structures and long sentences accurately.

Experimental results on DDI 2013 corpus

We also evaluated our model on DDI 2013 corpus (6, 32)
that contains four DDI types: ‘Advice’, ‘Effect’, ‘Mecha-
nism’ and ‘Int’. Table 9 shows the detailed statistics of DDI
2013 corpus. In this experiment, we used the same hyper-
parameters. Since the recent studies (8, 24) have suggested
that the position and POS embedding can improve the per-
formance of DDI extraction, we concatenated the word or
deep context embedding with position and POS embedding
as the input representation in this experiment. We mainly
focused on the effectiveness of context representation and
multihead attention strategy in the ablation study. Table 10
gives the ablation study results on the DDI 2013.

• ‘Word + Position + POS’: the input representation of the
model is the concatenated of word embedding, position
embedding and POS embedding. Attention mechanism is
not used in this model.

• ‘Context + Position + POS’: the input representation of
the model is the concatenated of deep context embed-
ding, position embedding and POS embedding. Attention
mechanism is not used in this model.

• ‘Context + Position + POS + Attention’: the input repre-
sentation of the model is the concatenated of deep con-
text embedding and position embedding. The multihead
attention strategy is employed in this model. The number
of attention heads and dimensions are set as 6 and 100,
respectively.

In Table 10, it can be seen that both context represen-
tation and multihead attention strategy are also helpful on



Page 12 of 14 Database, Vol. 2019, Article ID baz054

Figure 6. Examples of false negatives.

Table 9. The statistics of the DDI extraction 2013 corpus

Corpus Advice Effect Mechanism Int Negative

Training set 826 1687 1319 188 23 772
Test set 221 360 302 96 4737
Total 1047 2047 1621 284 28 554

Table 10. The ablation study on DDI 2013 corpus

Models Precision Recall F-score

Word + Position + POS 0.774 0.62 0.688
Context + Position + POS 0.787 0.658 0.716
Context + Position + POS + Attention 0.782 0.674 0.724

Notes: ‘Word’, ‘Position’, ‘POS’, ‘Context’ and ‘Attention’ denote word embedding, posi-
tion embedding, POS embedding, deep context representation and attention mechanism,
respectively.

DDI 2013 corpus. In particular, compared to word embed-
ding, the context representation embedding improved the
F-score from 0.688 to 0.716.

In Table 11, we compared our model with other state-
of-the-art methods on DDI 2013 corpus. Zhao et al. (8)
employed CNN model to extract DDIs and achieved an F-
score of 0.686. Raihani and Laachfoubi (33) constructed
rich features and employed feature-based method to extract
DDIs and achieved a high F-score of 0.711. Quan et al.
(34) used multichannel CNN model to extract DDIs, which
can effectively integrate multiple input representation for

Table 11. Performance comparison with other methods on

DDI 2013 corpus

Methods Precision Recall F-score

Zhao et al. (8) 0.725 0.651 0.686
Raihani and Laachfoubi (33) 0.737 0.687 0.711
Quan et al. (34) 0.76 0.653 0.702
Sahu and Anand (35) 0.734 0.697 0.715
Zhang et al. (12) 0.75 0.725 0.737
Our method 0.782 0.674 0.724

Notes: the input representation is the combination of deep context embedding, position
embedding and POS embedding. The number of attention heads and dimensions are set
as 6 and 100, respectively.

DDI extraction task. Sahu and Anand (35) applied Bi-
LSTM model and attention pooling to extract DDIs, which
achieved a high F-score of 0.711. Zhang et al. (12) proposed
a hybrid model to combine CNNs and Bi-LSTM for DDI
extraction task. To boost the performance, the hybrid model
input not only the token sequence of sentences but also the
shortest dependency path between the two drug entities.
The hybrid model achieved the highest F-score of 0.737 on
DDI 2013 corpus. All these methods focused on the DDI
extraction task. Compared with other methods, our model
can achieve competitive performance on DDI 2013 without
fine-tuning hypermeters. This indicated that our model
can be applied to other biomedical relation extraction
task.
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Conclusion

Accurately detecting and extracting CPIs from the literature
is a crucial task in the biomedical domain. However, the best
performance of CPI extraction is ∼0.64 in F-score. Both the
deep context representation and multihead attention strate-
gies are the most recent advantages of deep learning, which
could improve the performance of CPI extraction. The deep
context representation can effectively generate the sentence
representation according to the sentence contexts. The mul-
tihead attention mechanism learns the important features
from different heads and has the ability of generating more
comprehensive and distinguished feature representation. In
this work, we proposed a neural networks-based method
to integrate the deep context representation, Bi-LSTMs
and multihead attention in CPI extraction. The proposed
method was evaluated on the recent ChemProt corpus.
The results show that both deep context representation
and multihead attention improve the performance in CPI
extraction. It is encouraging to see that the proposed model
achieved the highest performance of 0.659 in F-score on the
ChemProt corpus. The experimental results on DDI 2013
also suggest our methods can be applied to other biomedical
relation extraction tasks.

Generally, supervised learning methods depend on suf-
ficient labeled training data. However, annotating training
data is expensive and time-consuming, especially so in
biomedicine as domain knowledge is required. In the future,
we will explore the effectiveness of semi-supervised learning
or transfer learning in CPI extraction.
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