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Abstract

Genome sequencing of Tricholoma matsutake revealed its unusually large size as 189.0

Mbp, which is a consequence of extraordinarily high transposable element (TE) content. We

identified that 702 genes were surrounded by TEs, and 83.2% of these genes were not tran-

scribed at any developmental stage. This observation indicated that the insertion of TEs

alters the transcription of the genes neighboring these TEs. Repeat-induced point mutation,

such as C to T hypermutation with a bias over “CpG” dinucleotides, was also recognized in

this genome, representing a typical defense mechanism against TEs during evolution. Many

transcription factor genes were activated in both the primordia and fruiting body stages,

which indicates that many regulatory processes are shared during the developmental

stages. Small secreted protein genes (<300 aa) were dominantly transcribed in the hyphae,

where symbiotic interactions occur with the hosts. Comparative analysis with 37 Agaricomy-

cetes genomes revealed that IstB-like domains (PF01695) were conserved across taxo-

nomically diverse mycorrhizal genomes, where the T. matsutake genome contained four

copies of this domain. Three of the IstB-like genes were overexpressed in the hyphae. Simi-

lar to other ectomycorrhizal genomes, the CAZyme gene set was reduced in T. matsutake,

including losses in the glycoside hydrolase genes. The T. matsutake genome sequence pro-

vides insight into the causes and consequences of genome size inflation.

Introduction

Tricholoma matsutake is an ectomycorrhizal (ECM) basidiomycete that establishes a symbiotic

relationship with the roots of Pinus densiflora, giving it the name “pine mushroom” [1]. ECM

fungi build an aggregated hyphal sheath that encases the whole root tip of its symbiotic partner
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and mediates the root’s external interactions with the soil [2]. This encasing or root coloniza-

tion is formed through a hyphal network called the “Hartig net”, which is located inside the

root cells–an anatomical pattern that is shared by the majority of ECM fungi [3,4]. The fruiting

body of T. matsutake is a highly valued edible mushroom in many countries [1,5]. Unfortu-

nately, attempts to cultivate the fruiting body have been unsuccessful, and the mechanism of

mushroom development has not yet been fully understood.

Mushroom formation is proceeded by distinct developmental stages that include the vege-

tative hyphae stage, the dikaryotic primordia stage, and the mature fruiting body stage [6].

Various genes, including transcriptional factors [7], hydrophobins [8], and light receptors [9],

have been suggested as critical genetic factors for fruiting body formation in basidiomycetes.

Systematic transcriptomic surveys on fruiting body formation have been carried out for vari-

ous basidiomycetes [10].

Transposable elements (TEs) play an important role in genome evolution by causing chro-

mosomal rearrangements or by reshaping the regulatory networks [11,12]. Many ECM

genomes show a high TE content, leading to comparably larger genome sizes [13], and contain

more TEs than their asymbiotic relatives [14]. The effect of the presence of TEs in mushrooms

is transcriptional repression, particularly when genes are surrounded by the TEs [15]. In a

recent comparative genomic study of two mushroom strains, Pleurotus ostreatus PC15 and

PC9, the genes surrounded by transposons in one strain showed strong transcriptional repres-

sion, whereas their orthologs in the other strain were normally expressed [15]. Despite the

higher TE content in ECM genomes, the transcription tendency of the ECM genes affected by

TEs has not been thoroughly examined.

Here, we report the genome sequence of T. matsutake and the transcriptional dynamics

over three distinct developmental stages. The most distinct features of the T. matsutake
genome were genome expansion by the many TEs and prevailing transcriptional suppression

in all developmental stages. In addition, we performed comparative analyses on the T. matsu-
take and 37 Agaricomycetes genomes to identify potential gene clusters involved in symbiosis.

Results and discussion

Genomic summary of T. matsutake
Sequencing of the dikaryotic genomic DNA of T. matsutake generated a total length of 189.0

Mbp within 5,255 scaffolds with 111.8× sequencing coverage. We predicted 15,305 gene mod-

els using the FunGAP pipeline [16]. The predicted genes were examined for their reliability by

RNA-seq, functional domains, and orthologs; thereby, the 14,528 (94.9%) genes were sup-

ported by at least one piece of evidence (Fig A in S1 File). A genome completeness test using

BUSCO v3.0.2 [17] showed >99% coverage of single-copy orthologs in Basidiomycota (1,323

of 1,335 entries), validating the complete genome assembly and annotation. Because the

genome was dikaryotic, we investigated how many genes were allelic by comparing two-mem-

ber gene families with their relative genomes. As a result, we identified that allele genes were

not frequent in the assembled genome because of its lack of two-member gene family expan-

sion (Fig A in S1 File). We also confirmed that there was no contaminated sequence in the

final assembly (Fig B in S1 File). K-mer frequency of the genomic DNA reads showed a bimo-

dality, indicating the diploidy (Fig C in S1 File).

As of September 2019, genome sizes of sequenced fungi deposited in the NCBI ranged from

2 Mbp to 2.1 Gbp, with an average of 31.0 Mbp (40.7 Mbp for basidiomycetes), and the T. mat-
sutake genome had a relatively large size (Fig 1). In contrast with the size of the genome, the

gene-to-genome ratio was comparatively low (81 genes per Mbp). This indicates the presence

of many noncoding DNA regions (e.g., repetitive elements). Data concerning genome
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assembly and predicted genes are summarized in Table 1. The species tree of T. matsutake
with 37 Agaricomycetes is shown in Fig 1.

Repeat elements in the T. matsutake genome

The T. matsutake genome had a high content of repeat elements, which has been suggested as

a concurrent feature of ectomycorrhizal genomes [2,13,14]. The repeat elements were esti-

mated to have a total size of 92.4 Mbp, representing 48.9% of the entire 189.0 Mbp genome

(Fig 2). The major classes of repeat elements were LTR/Gypsy and LTR/Copia transposable

elements, corresponding to 41 (21.9%) and 7 Mbp (3.9%) of the genome, respectively. These

two frequent elements have also been observed in other basidiomycetes genomes [14,15].

Within the repeat regions, there were 15,014 complete coding sequences (containing a start

codon, a stop codon, and no internal stop codon), which was equivalent to a total size of 10.9

Mbp. These were not included in the final predicted genes or further functional annotation.

The majority of these sequences (14,857 of 15,014, 99.0%) were transcriptionally repressed

(zero Fragments Per Kilobase of transcript per Million mapped reads (FPKMs) at all develop-

mental stages). It is consistent with the previous report in animals that most inserted TEs are

Fig 1. The genome sequencing of Tricholoma matsutake. a. Genome size vs. gene number of all available fungal genomes in the NCBI. As of

September 2019, 5,415 fungal genome assemblies had been deposited, and 1,618 had gene predictions. We used one genome per genus to draw the

plot. Tricholoma matsutake is indicated by the arrow. b. Species tree of Tricholoma matsutake and 37 Agaricomycetes genomes. Only bootstrap values

less than 100 are marked. The scale bar that represents the mean number of amino acid substitutions per site is shown. The Aspergillus nidulans
genome (GenBank: GCF_000149205.2) was used as an outgroup. The branch to the outgroup was shortened for visualization purposes.

https://doi.org/10.1371/journal.pone.0227923.g001
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dead-on-arrival, and only a few master genes, inserted at specifically fruitful genomic loca-

tions, are transcriptionally active [18]. We presumed that meiotic silencing by the unpaired

DNA and the quelling process are the potential repression mechanisms [19] because the

genome included the genes responsible for those processes (sad-1, sms-3, and sms-2 for meiotic

silencing by unpaired DNA and qde-1, dcl2, and qde2 for the quelling process; Fig 3). Another

presumed mechanism is the repeat-induced point mutation (RIP). Despite a previous report

that states that RIP does not exist in Agaricomycotina genomes [20], we identified the pattern

of CpG hypermutations in the genome, although further studies remain to reveal whether the

actual RIP process made this pattern (Fig D in S1 File). Although the genome lacked rid/dim2
responsible for the RIP process [21] (Fig 3), its homolog, masc2, existed with two copies. This

pattern is also frequent in other basidiomycetes genomes [22]. Experimental validation

remains to be done to reveal the exact function of Masc2 in the control of the RIP process.

Intergenic region length distribution indicated that many genes were located in the gene-

sparse regions mainly because of the presence of enriched TEs (Fig E in S1 File).

Genes surrounded by transposable elements are transcriptionally repressed

It was previously reported that the transcription of TE-surrounded genes is highly repressed in

the fungus Pleurotus ostreatus [15]. There were 702 genes that were found to be surrounded by

transposable elements using an ad hoc algorithm, described in the Methods section. Among

these TE-surrounded genes, the transcripts of 584 genes (83.2%) were not identified at any

developmental stage. This was a much higher percentage than the overall percentage of tran-

scriptionally suppressed genes (34.4%). In an attempt to reveal that these suppressed genes

were not pseudogenes or wrongly annotated genes, we investigated their homologs and found

Table 1. Genomic features of Tricholoma matsutake.

Assembly statistics

Total contig length 144.2 Mbp

Total scaffold length 189.0 Mbp

Average base coverage 109.8×
Number of contigs 29,547

Number of scaffolds 5,255

N50 contig length 10.2 kbp

N50 scaffold length 93.4 kbp

G+C content (overall) 45.11%

G+C content (coding region) 49.57%

G+C content (non-coding region) 44.51%

Repeat elements 92.4 Mbp

Predicted protein-coding genes

Predicted genes 15,305

Percent coding 8.94%

Average coding sequence size 1,104.04 nt

Gene density 80.97 genes/Mbp

Total exons 81,887

Total introns 66,582

Number of introns per gene (median) 4

Number of exons per gene (median) 4

Average exon length 206.35 nt

Average intron length 77.14 nt

https://doi.org/10.1371/journal.pone.0227923.t001
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that 152 of the suppressed genes (26.0%) had paralogous genes that were not surrounded by

TEs and were normally expressed in at least one developmental stage (>1 FPKM). Addition-

ally, 290 of the suppressed genes (49.7%) had orthologous genes in at least five of the Agarico-

mycetes genomes. Although 89 out of 702 silenced genes were annotated with Pfam, the

functional bias of silencing was not identified.

Transcriptomic dynamics in the hyphae, primordia, and fruiting body

developmental stages

We compared transcriptomic changes between the hyphae, primordia, and fruiting body

developmental stages (Fig 4). Of 15,305 predicted genes, 10,046 (65.6%) genes were transcribed

in at least one condition (>1 FPKM), and 5,259 genes (34.4%) were not observed in any

Fig 2. Repeat content in the Tricholoma matsutake and the 37 Agaricomycetes genomes. RepeatModeler and RepeatMasker (http://www.

repeatmasker.org) were used sequentially to predict repeat elements in the genomes.

https://doi.org/10.1371/journal.pone.0227923.g002
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developmental stage. The majority of the unexpressed genes (4,976 genes, 94.6%) were anno-

tated as hypothetical proteins that lacked known functional domains. On the contrary, 355

genes were constantly expressed during development, where the genes belonged to the top

1000 highest FPKM genes in all developmental stages. These were mostly housekeeping genes,

including ribosomal proteins, heat shock proteins, cytochrome, transporters, and ATP

synthases. In the hyphae, primordia, and fruiting body developmental stages, 2382, 765, and

884 genes were overexpressed over the other two stages, respectively (Data A in S3 File).

The transition from hyphae to primordia (H-to-P transition) upregulated 2248 genes and

downregulated 3195 genes, and the transition from primordia to fruiting body (P-to-F transi-

tion) revealed an upregulation of 1754 genes and a downregulation of 1971 genes (Fig 4). In

the H-to-P transition, the gene function related to the signal transduction, the GTPase activity,

and the nucleic acid binding transcription factor activity were enriched, whereas the genes

related to the ribosome, the mitochondrion, and the cofactor metabolic process were downre-

gulated. On the other hand, in the P-to-F transition, the enriched functional categories were

chromosome, phosphatase activity, and DNA metabolic process, whereas ribosome, RNA

binding, and intracellular genes were suppressed (P< 0.01, estimated by Fisher’s exact test).

Fig 3. Transposable-element-silencing genes over diverse fungal genomes. The orthologs were inferred using

OrthoFinder 1.0.6. Dim-2 and Masc2, Sms-3 and Dcl2, and Sms-2 and Qde2 were further differentiated from the gene

trees because they belonged to the same gene families. Reference genes are listed in Table A in S2 File.

https://doi.org/10.1371/journal.pone.0227923.g003
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Trima_09940 was the most expressed gene in the fruiting body stage (39,299 FPKM). The

translated protein had a length of 158 aa and a signal sequence for secretion. In addition, this

gene had a diedel domain (PF13164), which is related to the insect immune response [23]. The

homologs based on sequence similarity were found in Piloderma croceum (ectomycorrhizal

basidiomycete), Sistotremastrum niveocremeum (saprotrophic basidiomycete), and Fusarium
mangiferae (plant pathogenic ascomycete). The homolog in Drosophila was also identified

with 45.8% identity. Although the biological or molecular function of this gene was unclear, it

is thought that it may play an essential role in fruiting body formation.

Transcriptional regulators related to fruiting body formation:

Transcription factors, light receptors, and hydrophobins

We identified 370 transcription factor genes using a DNA-binding domain search. These

included fst4, fst3, hom1, hom2, bri1, gat1, and c2h2 homologs that play critical roles in

Fig 4. Three developmental stages of Tricholoma matsutake: Hyphae, primordia, and fruiting body. a. The Venn

diagram depicts the number of expressed genes (>1 FPKM) across the three developmental stages. b. Upregulated and

downregulated genes during development. Gene functional categorization was carried out using Gene Ontology Slim

(http://www.geneontology.org).

https://doi.org/10.1371/journal.pone.0227923.g004
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mushroom formation [7,24] (Table B in S2 File). Although the five genes (fst4, fst3, hom1,

hom2, and gat1) were overexpressed at the primordia and fruiting body developmental stages,

as reported in previous studies, the expression levels of bri1 and c2h2 were not significantly

changed over the three stages. Among 190 differentially expressed genes of the transcription

factor (fold change> 2), 53 genes (27.9%) were overexpressed at both primordia and fruiting

body developmental stages (Fig 5). This indicates that these two stages share many regulatory

processes that are not shared with the hyphae stage. The transcription factors overexpressed at

the primordia and fruiting body stages were classified as helix-turn-helix, basic helix-loop-

helix/leucine zipper, and β-scaffold factors with minor groove contacts.

Blue-light receptor complex WC1/2 is necessary for mushroom development because its

deletion prevents mushroom formation [9]. T. matsutake harbored the blue-light receptor

complex WC1/2 (encoded by Trima_13733 and Trima_03536). Although wc1 gene expression

was higher in the fruiting body stage, the level of the wc2 gene was enriched in the hyphae and

fruiting body (Data A in S3 File) developmental stages.

Hydrophobins have multiple biological roles that include fruiting body formation and

host–fungus interaction [25]. A total of eight hydrophobin genes were annotated, which was a

relatively small number compared with the other 37 Agaricomycetes genomes (Fig F in S1

File), and they ranged from 0 to 130 (average, 20). All of the hydrophobin genes were differen-

tially expressed in the three developmental stages: four were only overexpressed at the fruiting

body stage, two at the hyphae stage, and one at the primordia stage (Fig F in S1 File). A hydro-

phobin gene (Trima_02415) was overexpressed at both the hyphae and primordia stages.

Trima_15224 had the fifth highest FPKM value in the fruiting body stage among all predicted

genes. This hydrophobin gene might be involved in fruiting body formation.

Small secreted protein genes are dominantly expressed at hyphae

The small secreted protein genes of ectomycorrhizal fungi are important in symbiotic develop-

ment [26]. The number of small secreted protein genes in Agaricomycetes genomes ranged

from 196 to 1,053, but the ectomycorrhizal genomes had fewer small secreted protein genes,

ranging from 289 to 576 (Fig G in S1 File). Among the 445 predicted small secreted protein

genes, 251 genes (56.4%) were differentially expressed with at least one comparison, and 96

(21.6%) genes were not expressed (zero FPKM values) in all stages (Fig H in S1 File). Many of

the differentially expressed small secreted protein genes were overexpressed at the hyphae

stage (87 genes). There were 82 cysteine-rich small secreted protein genes (>3% of cysteine of

translated protein sequence), such as fungal specific cysteine-rich protein (PF05730), calcium-

binding protein (PF12192), peptidase inhibitor (PF03995), and various carbohydrate-binding

modules. Some cysteine-rich and calcium-binding domains are involved in fungal pathogene-

sis [27,28].

IstB-like domain is conserved in mycorrhizal genomes

To examine the ectomycorrhizae-specific functional domains, we performed the enrichment

test over the T. matsutake and 37 Agaricomycetes genomes. Among those 21 Pfam domains

enriched in the T. matsutake genome (P< 0.01, estimated by Fisher’s exact test), the IstB-like

ATP-binding domain (Pfam: PF01695), which is a putative transposase [29], was highly con-

served over taxonomically diverse mycorrhizal species (Fig I in S1 File). Interestingly, in the

gene tree, the IstB-like genes from Basidiomycota, including T. matsutake, are closer to the

ones from Mucoromycota than those from Ascomycota. This might indicate that the gene

transfer between Basidiomycota and Mucoromycota occurred during evolution. It might also

indicate that the gene transfer between mycorrhizae from different groups occurred during

Genome expansion and transcription suppression by insertions of transposable elements
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evolution. Although this domain is frequent in bacteria (http://pfam.xfam.org/family/IstB_

IS21), fungal IstB-like domains were found to have low sequence similarity with the bacterial

domains (<6% matched length coverages). There was lack of evidence for bacterial sequence

insertion, such as the HTH-like domain in the protein sequences or the repeats on the flanks.

Additionally, their homologs were conserved across the fungal kingdom. Three were overex-

pressed in the hyphae stage, and one was in the fruiting body stage.

We examined other outstanding functional domains that were enriched in T. matsutake:
cadmium resistance transporter (PF03596), neprosin (PF03080); and carbohydrate-binding

domain (PF10645, CBM52 family) (Data B in S3 File). These were mainly distributed over

ascomycete genomes, and only a few basidiomycete genomes possessed them (Figs J–L in S1

File). Neprosin, a peptidase that cleaves C-terminal to proline residues under highly acidic

conditions [30], is usually found in plant genomes, although few bacterial genomes have it.

Among fungi, only the Tricholoma and Laccaria genomes contained neprosin (PF03080)

domain. The gene tree of this domain showed the grouping between basidiomycetes and sev-

eral actinobacteria genes (Fig K in S1 File). This implies that the source of this gene could be

the gene transfer from actinobacteria. The CBM52 module is required for septum localization

in Schizosaccharomyces pombe binding to β-1,3-glucan [31]. This domain (PF10645) was also

contained in the Gymnopus luxurians and Sistotremastrum suecicum genomes with six and

one copies, respectively. The cadmium resistance transporter (PF03596) and CBM52 gene

trees were mostly consistent with their species phylogeny. Therefore, the origin of this gene

Fig 5. Transcription factor expressions at the three developmental stages. Differentially expressed genes were

determined based on logFC (>1 or<−1), calculated by IsoEM2 and IsoDE2. When two conditions were more

expressed than the other but there was no difference between them (−1< logFC< 1), we assigned this gene as being

co-overexpressed in these two conditions. Row-wise Z-scores of fragments per kilobase of transcript per million

mapped reads were used.

https://doi.org/10.1371/journal.pone.0227923.g005
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family could be the common ancestor of fungi, and deletion events have occurred to make the

current gene tree. Further research to verify their exact function remains to be carried out. The

functional domains in the T. matsutake and other genomes are summarized in Data B in S3

File.

CAZymes are reduced in the genome and differentially expressed during

development

The T. matsutake genome had a reduced number of carbohydrate-active enzymes (CAZymes)

compared with other Agaricomycetes genomes. A total of 394 predicted CAZyme genes

included 143 glycoside hydrolases (GHs), 33 carbohydrate-binding modules (CBMs), 90 glyco-

syl transferases (GTs), nine polysaccharide lyases (PLs), 59 carbohydrate esterases (CEs), and

60 auxiliary activities (AAs). Many CAZymes are involved in plant cell wall degradation. For

example, some AAs, such as manganese peroxidases, versatile peroxidases, and lignin peroxi-

dases, degrade lignin, and some GHs and CEs degrade cellulose and hemicellulose. CBMs

often attach to other CAZyme domains to help them bind to target substrates. The genome

had one of the lowest numbers of total CAZymes compared with the other 38 Agaricomycetes.

Interestingly, ectomycorrhizal fungi, including T. matsutake, showed similar CAZyme profiles,

as shown in Fig 6, except for Piloderma croceum. It has been reported that ectomycorrhizal

basidiomycetes have lost major gene families, such as plant-cell-wall-degrading enzymes [13],

which includes almost all GH families, especially the GH6 family that enzymatically degrades

crystalline cellulose [13,32]. This lack of GH6 family was also observed in the T. matsutake
genome. The CAZymes in the T. matsutake and other genomes are summarized in Data C in

S3 File. Interestingly, we identified two CAZyme submodules that are uniquely found in the T.

matsutake genome, and other ectomycorrhizal genomes lacked CBM16 and CBM52. CBM16

is common in bacteria and binds to glucomannan and kappa-carrageenan [33]. The

Trima_13517 with this module has a chitin biosynthesis protein CHS5 domain (PF16892),

implying its role in cell wall biosynthesis. CBM52 binds to β-1,3-glucan [31] and is often asso-

ciated with GH81 (endo-β-1,3-glucanase), although the Trima_00904 with the CBM52 lacked

any other known functional domains. Further investigation is needed to shed light on their

biological functions.

Different numbers of CAZymes were expressed during development, and 57 at the hyphae

stage, 44 at the primordia stage, and 47 at the fruiting body stage were more transcribed than

in other conditions (Fig 7). Four of nine PL families were overexpressed in the fruiting body

stage. Several of the GH subfamilies, such as GH5, GH17, and GH20, were only, or mostly,

expressed in the fruiting body stage (4 of 15 for GH5, 2 of 2 for GH17, and 2 of 2 for GH20).

GH5 has a role in the degradation of lignocellulose [32]. Interestingly, 15 of 44 (34%) primor-

dia-activated genes were auxiliary activities (AAs), and 11 of 57 (19%) and 5 of 47 (11%) were

overexpressed at the hyphae and fruiting body stages, respectively. The AA families activated

at the primordia stage included AA1, AA3, AA7, and AA9. Although many AAs are involved

in lignin degradation [34], their functions in primordia development are unknown.

Methods and materials

Strain and culture conditions

Tricholoma matsutake KMCC04578 at the primordia and fruiting body phases were harvested

from Gachang, located near Daegu, South Korea. The dikaryotic mycelia were isolated from

the gills of the fruiting bodies and cultured in potato-dextrose broth (PDB; 4 g/L potato pep-

tone, 20 g/L glucose, and pH 5.6 ± 0.2) for 30 days at 25˚C.
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Isolation of genomic DNA and total RNA

The genomic DNA was extracted from the mycelium using a cetyl trimethyl ammonium bro-

mide (CTAB)-based fungal DNA isolation protocol [35]. The total RNA was extracted from T.

matsutake (mycelium, primordium, and stipe of the fruiting body) using an RNeasy mini iso-

lation kit (Qiagen, Valencia, CA, USA). The samples were ground to a fine powder using a

mortar and pestle under liquid nitrogen. The resulting samples were homogenized with 15 mL

of buffer RLT containing β-mercaptoethanol. After centrifugation for 10 min at 3,000 g, the

upper phase was mixed with 15 mL of 70% EtOH, and the total RNA was isolated using an

RNA Binding Spin Column under centrifugation for 5 min at 3,000 g. After two wash steps,

the total RNA was extracted using DEPC-treated water. The RNA samples (A260/A280 > 1.8)

were collected and subjected to further experiments.

Genome sequencing and genome assembly

Three sequencing libraries were generated for T. matsutake: two Illumina paired-end libraries

(500 and 250 bp insert sizes) and an Illumina mate pair library (5 kbp insert size) (Table C in

S2 File). Raw reads were quality-controlled by trimming the low-quality bases (<30 Phred

quality score) and removing short reads after trimming (<50 bp for MiSeq reads and<30 bp

for HiSeq reads) using Trim Galore 0.4.4 (https://www.bioinformatics.babraham.ac.uk/

projects/trim_galore/). The mitochondrial genomic reads were removed by aligning all of the

Fig 6. CAZyme genes in Tricholoma matsutake and 37 Agaricomycetes. All available CAZyme modules were counted. Scaled values based on

row Z-scores were used to fill each cell.

https://doi.org/10.1371/journal.pone.0227923.g006
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reads against the reported T. matsutake mitogenome sequence (GenBank ID: JX985789.1) [36]

using Bowtie2 (-k 1—very-sensitive—end-to-end) [37]. As a result, 1.1% of the total reads were

removed.

ALLPATHS [38] was used for the assembly using the three Illumina libraries with

PLOIDY = 2 option. We identified and removed the four scaffolds derived from vector con-

tamination obtained by the BLASTn search against the UniVec database (https://www.ncbi.

nlm.nih.gov/tools/vecscreen/univec/). One scaffold of human DNA contamination was also

removed. Additional sequence contaminations were examined by drawing a scatterplot of GC

contents and sequence coverages using Blobology [39] with alignment of all scaffolds against

the NCBI nt database. Thus, we corroborated that there was no additional sequence contami-

nation in the final assembly.

Gene prediction

FunGAP [16] was used to predict the protein-coding genes in the assembly. The genome

assembly and RNA-seq reads from the hyphae stage were inputted into the program. A Laccar-
ia_bicolor gene model was selected for Augustus inside the FunGAP. This generated 17,018

preliminary predicted genes. We manually removed 1,707 transposable element genes, such as

retrotransposon gag protein (Pfam: PF03732) and reverse transcriptase (Pfam: PF07727) based

Fig 7. Differentially expressed CAZymes at each of the developmental stages. The pie graphs depict the number of

CAZyme families for each specific expression type. Abbreviations for CAZyme families are as follows: glycoside

hydrolase (GH), carbohydrate-binding module (CBM), glycosyl transferase (GT), polysaccharide lyase (PL),

carbohydrate esterase (CE), and auxiliary activity (AA). Row-wise Z-scores of fragments per kilobase of transcript per

million mapped reads were used.

https://doi.org/10.1371/journal.pone.0227923.g007
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on Pfam annotation by InterProScan 5.25–64 [40]. Targeted Pfam domains are listed in

Table D in S2 File.

The remaining 15,305 genes were examined for their reliability by RNA-seq reads align-

ment, functional domain annotation, and ortholog search against relatives. RNA-seq reads

from the three developmental stages (hyphae, primordia, and fruiting body) were aligned into

the genome assembly using HISAT2 [41], and FPKM values were calculated using IsoEM2

[42]. Only >1 FPKM genes were considered as RNA-seq-supported genes. Pfam domains

were annotated by InterProScan 5.25–64, and the genes containing at least one Pfam domain

were considered as functional domain-supported genes. An ortholog search was performed by

OrthoFinder 1.0.6 [43] using T. matsutake and 37 Agaricomycetes genomes. When a gene

belonged to a gene family that contains members from more than five genomes, we considered

that the gene was supported by the ortholog search. To check for genome completeness, we

used BUSCO v3.0.2 [17], in which the basidiomycota_odb9 database was used. Because the

assembled genome was dikaryotic, we estimated how many genes were allelic by comparing

the numbers of two-member gene families with the five Agaricales genomes. This was

obtained by parsing the OrthoFinder output.

Comparative analysis

We chose 37 Agaricomycetes genomes for comparative analyses (Table E in S2 File). In the

NCBI database, as at the time of writing, there are 59 Agaricomycetes genome assemblies with

predicted genes. We eliminated three incomplete genomes based on BUSCO calculations

(<90% completeness). We also sampled two genomes from each order, excluding Agaricales

(to which T. matsutake belongs), to reduce computing time. This yielded 38 genomes as the

final targets for comparative analysis. A species tree was built using RAxML 8.1.3 [44] from

the concatenated single-copy orthologs obtained by OrthoFinder 1.0.6 [43]. We used -f a -x
12345 -p 12345 -# 100 -m PROTGAMMAWAG options for RAxML. Mafft 7.273 [45] and

Gblocks 0.91b [46] were used to align the concatenated sequences and extract the conserved

regions.

RNA-sequencing

Illumina RNA sequencing generated 108, 133, and 127 million RNA-seq reads from the

hyphae, primordia, and fruiting body stages, respectively (Table F in S2 File). Trim Galore

0.4.4 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) was used for adapter

removal, low-quality base trimming (<20 Phred score), and short-reads filtering (<40 bp).

The RNA-seq reads were aligned to the genome by HISAT 2.0.5 [41]. Owing to a single repli-

cate of the RNA-sequencing libraries, differentially expressed genes were estimated by IsoEM2

and IsoDE2, performing a bootstrapping-based approach using an accurate expectation-maxi-

mization algorithm [42]. We used the—auto-fragment-distrib option for IsoEM2 and the -pval
0.05 (desired P value) option for IsoDE2. These programs generate a logarithm of fold change

(logFC) between two conditions for each gene. When the logFC value of a certain gene is less

than −1 or greater than 1, we considered that gene to be significantly differentially expressed.

We classified all of the genes into seven expression patterns: hyphae-enriched, primordia-

enriched, fruiting-body-enriched, hyphae- and primordia-enriched, primordia- and fruiting-

body-enriched, hyphae- and fruiting-body-enriched, and not significantly different among the

samples. When two conditions were more expressed than the other but there was no difference

between them, we assigned this gene as being co-overexpressed in those two conditions.

To obtain upregulated or downregulated genes during development, we accounted for the

differentially expressed genes in the hyphae–primordia comparison and the primordia–
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fruiting body comparison. The differentially expressed genes were functionally classified based

on Gene Ontology terms. First, Gene Ontology terms were assigned by running InterProScan

5.25–64 [40] against the PfamA database with the—goterms option. Second, we assigned each

Gene Ontology term to a high-level Gene Ontology term (GO slim) by running owltools

(http://code.g.,oogle.com/p/owltools/) with the—map2slim and —subset goslim_generic
options. Finally, Fisher’s exact enrichment test was carried out on each GO slim using Python

scipy.stats.fisher_exact function (https://www.scipy.org/).

Transcription factor annotation

Transcription factor genes were predicted based on the Pfam domain annotation. The tran-

scription factor Pfam domains were obtained from the DBD database (http://www.

transcriptionfactor.org) [47] in addition to the three functional domains: ARID/BRIGHT

DNA-binding domain (PF01388) and fungal specific transcription factor domains (PF04082

and PF11951). The known transcription factor homologs were identified by a BLASTp search,

where the best hit was selected. Their orthology relations were validated using OrthoFinder

1.0.6 [43].

Functional domain annotation

InterProScan 5.25–64 [40] predicted the functional domains from the protein sequences of T.

matsutake and 38 Agaricomycetes genomes with Pfam 31.0 [48]. The enriched and depleted

functions were estimated by a Fisher’s exact test with the scipy.stats.fisher_exact function of

Scipy Python module (https://www.scipy.org/). Four selected functions (PF01695, PF03596,

PF03080, and PF10645) were BLASTp-searched against the NCBI nr database, and the 50 top-

hit sequences were used to build the gene trees. Mafft 7.273 [45] was used for multiple genome

sequence alignment with the—maxiterate 1000—localpair options. FastTree 2.1.10 [49] built

the trees with default options.

CAZyme annotation

Carbohydrate-related enzymes were predicted using three different tools: dbCAN HMMs 5.0

[50], a database that uses HMM profiles of known CAZyme sequences; BLASTp, a tool for

searching the protein sequences against the CAZyme sequence database; and Pfam 31.0,

domains annotated with CAZyme entries. All three tools were run and integrated to make a

final CAZyme prediction. We assigned a gene as a CAZyme when more than two of the pro-

grams gave the same prediction on a gene.

Small secreted protein gene prediction

Referring to previous works [51–53], we combined four extracellular protein prediction pro-

grams: SignalP, WoLF PSORT, TargetP, and ProtComp. SignalP 4.1 [54] was run with the

default option, and “signal peptide = Y” and “Networks-used = SignalP-noTM” tags were used

to obtain the signal peptide-containing protein sequences. WoLF PSORT [55] was used with

“OrganismType = fungi,” and the most voted localization was used for each protein. TargetP

1.1 [56] was used with -N option for using non-plant networks, and “Loc = S” was used to

obtain the secreted proteins. ProtComp v9 (http://www.softberry.com/berry.phtml) was used

with -NODB -NOOL options, and “Integral Prediction of protein location” was used for assign-

ing the protein locations. Four programs predicted 780, 1344, 2173, and 823 proteins as

secreted, respectively (Fig G in S1 File). Only 78 proteins were predicted as secreted by all pro-

grams. The genes predicted by at least three programs (589 proteins) were considered as
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preliminary secreted protein. We excluded transmembrane, endoplasmic reticulum, and gly-

cophosphatidylinositol-anchored proteins from the candidates with TMHMM, PS_SCAN,

and GPI-SOM programs. TMHMM 2.0 [57] was used with default options, and when a trans-

membrane helix was located within 70 aa of the N-terminal and other helixes were not identi-

fied, we considered this as a non-transmembrane protein, with reference to previous work

[58]. PS_SCAN 1.86 [59] was used to scan the endoplasmic-reticulum-targeting proteins

(PROSITE: PS00014). GPI-SOM 1.5 [60] was used with default options. This resulted in 1788

transmembrane proteins, 16 endoplasmic-reticulum-targeting proteins, and 1718 glycopho-

sphatidylinositol-anchored proteins. By the removal of these proteins, we obtained 455 pro-

teins as secreted proteins in the T. matsutake genome.

Repeat elements analysis

RepeatModeler and RepeatMasker (http://www.repeatmasker.org) were used sequentially to

predict repeat elements in the genomes. RepeatModeler produced 2375 consensus repeat

sequences with an average of 951 bp, including 289 LTR, 130 DNA, and 39 LINE elements

(Table G in S2 File). Classified repeat sequences produced by RepeatModeler were used as a

library for RepeatMasker.

The protein-coding sequences within repeat elements were predicted by running Braker1

[61] on the unmasked assembly. The evidence of repeat-induced point mutations was calcu-

lated by following the Amselem et al.’s (2015) method [22]. Briefly, repeat sequences were

extracted into a FASTA file using rmOut2Fasta.pl script within the RepeatMasker package. We

split the sequences so that one FASTA file would contain one repeat family sequence. C-to-T

hypermutation of specific dinucleotides was calculated using Mafft-7.273 [45] and RIPCAL 2.0

[62]. Finally, the dinucleotide biases were calculated by counting the repeat elements with>2

transition/transversion ratio and where more than one-third of the sequences had a dinucleo-

tide hypermutations bias. We considered genes as TE-surrounded when a gene had repeat ele-

ments at both upstream and downstream within a distance of 1000 bp. Only >400 bp repeat

elements were accounted for because there were so many short fragments (139,210 elements).

The genes responsible for genome defense against TEs were identified using gene family

and gene tree analyses. We targeted three mechanisms, including repeat-induced point muta-

tion, meiotic silencing by unpaired DNA, and quelling, and nine reference genes related to

these mechanisms were used to find their orthologs in the proteome of T. matsutake and the

other genomes (Table A in S2 File). We identified the gene families of BLASTp top hits against

the reference genes. The genes of Dim-2 and Masc2, Sms-3 and Dcl2, and Sms-2 and Qde2

belonged to the same gene family. Therefore, we additionally constructed gene trees to distin-

guish them, and Mafft-7.273 [45] and FastTree [49] were used to build the gene trees.

Conclusion

This study aimed to explore the genome composition of ectomycorrhizal Tricholoma matsu-
take. The repetitive insertions of the transposable elements made this species harbor a remark-

ably large genome size. These inserted TEs are occasionally involved in transcriptional

suppression of the nearby protein-encoding genes. We identified the evidence of genome

defense against TEs by C to T hypermutation with a bias over “CpG” dinucleotides. Develop-

mental transcriptomic dynamics revealed that many transcriptional factors are expressed in

the primordia and fruiting body stages, and small secreted proteins are expressed in the hyphae

stage. The genome contained less carbohydrate-active enzymes than other ectomycorrhizal

fungi. These results will help in understanding how Tricholoma matsutake has developed and

maintained its lifestyle.
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available at dx.doi.org/10.6084/m9.figshare.11301098. The authors declare that all other data

supporting the findings of this study are available within the article and its Supplementary

Information files or are available from the corresponding authors upon request.
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