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Abstract: Epoxy resin composites filled with thermally conductive but electrically insulating particles
play an important role in the thermal management of modern electronic devices. Although many
types of particles are used for this purpose, including oxides, carbides and nitrides, one of the most
widely used fillers is boron nitride (BN). In this review we concentrate specifically on epoxy-BN
composites for high thermal conductivity applications. First, the cure kinetics of epoxy composites in
general, and of epoxy-BN composites in particular, are discussed separately in terms of the effects of
the filler particles on cure parameters and the cured composite. Then, several fundamental aspects of
epoxy-BN composites are discussed in terms of their effect on thermal conductivity. These aspects
include the following: the filler content; the type of epoxy system used for the matrix; the morphology
of the filler particles (platelets, agglomerates) and their size and concentration; the use of surface
treatments of the filler particles or of coupling agents; and the composite preparation procedures,
for example whether or not solvents are used for dispersion of the filler in the matrix. The dependence
of thermal conductivity on filler content, obtained from over one hundred reports in the literature,
is examined in detail, and an attempt is made to categorise the effects of the variables and to compare
the results obtained by different procedures.
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1. Introduction

Power electronics devices and other applications, such as solid-state relays and light emitting
diodes (LED) in which high power density occurs, require an efficient means for the removal of the
heat generated during operation. This has become increasingly important because the frequency of
operation and power levels have risen in recent years. A good example of this is a consequence of the
advances made in respect of LEDs, where technological developments have already brought three
watt and five watt LEDs to the market-place, with even higher wattages predicted within the next few
years [1]. Examples of applications involving ever increasing power levels include illuminated signs
and displays; LED headlights and power steering in the automotive industry; and switches, relays,
inverters and power supplies in the power electronics industry. The heat generated by these high power
densities results in an increase in the temperature of the devices, which can have a detrimental effect
on performance and significantly reduce the lifetime of operation. There are various rules of thumb to
estimate the effect of such an increase in operating temperature, for example that the failure rate of an
electronic device doubles with every 10 ◦C increase [2], or that every increase in operating temperature
of 10% reduces the service life by 50% [3]. It is crucially important to be able to remove the heat from
such devices, and considerable effort has been devoted to this end in recent years. In practice, this is
commonly achieved by the use of insulated metal substrates (IMS), in which the copper conductor is
bonded to a metal substrate by a dielectric layer, as shown schematically in Figure 1.
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Adhesion is generally achieved by using an epoxy resin as the matrix material, which satisfies the 
requirement of electrical insulation but has a very low thermal conductivity, typically around 0.2 
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such as Al2O3, SiO2 and ZnO [7–10]; carbides, such as silicon carbide (SiC) [11,12]; and nitrides, such 
as AlN, BN and Si3N4 [13,14]. In this way, commercial IMS products are available that offer thermal 
conductivities typically in the range from 0.8 to 4.2 W/mK [1–5], though values as high as 7.0 [5] and 
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W/mK for the traditional FR-4 printed circuit board technology. 

There is clearly a wide variety of candidate materials for the dielectric layer, but in this review 
we consider only boron nitride (BN), on account of its wide application and that it has one of the 
highest values of thermal conductivity for electrically insulating materials. Hexagonal boron nitride 
is a white solid material, often referred to as “white graphite” because it has the same plate-like 
hexagonal structure as graphite and has lubricating properties but, in contrast to graphite, BN is a 
good electrical insulator and is therefore suitable for IMS application. The thermal conductivity of 
hexagonal BN is reported to be up to 30 W/mK in the direction perpendicular to the hexagonal planes, 
and up to 600 W/mK parallel to these planes [15,16]. BN is usually available in the form of powder, 
the powder particles being either in the form of platelets or agglomerates, and with a range of possible 
sizes. An example of the grades on offer can be seen in the product list provided by Saint-Gobain 
[17], which includes platelets with average particles sizes from 2 to 180 μm, and agglomerates, both 
low density and high density as well as spherical powders, with average sizes from 80 to 300 μm. 
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Figure 1. Schematic illustration of an insulated metal substrate (IMS).

There are many commercial IMS systems available, from companies such as Bergquist [1],
AI Technology [2], Technoboards Kronach [4] and Ventec International Group [5]. At the heart of
all these systems is the dielectric layer, which must offer a variety of properties, including electrical
insulation, thermal conductivity, ease of processing and adhesive strength. There are some additional
requirements of this dielectric layer, for example the need for the thermal expansion coefficient to
be matched to that of the other components, as well as limitations on its thickness, which is usually
in the range from 50 to 150 µm. However, the most important aspect from the perspective of this
review is thermal conductivity, while bearing in mind the need to accommodate the other requirements.
Adhesion is generally achieved by using an epoxy resin as the matrix material, which satisfies
the requirement of electrical insulation but has a very low thermal conductivity, typically around
0.2 W/mK [6]. In order to increase the thermal conductivity, a filler is commonly added. This filler
must be thermally conductive but electrically insulating, and examples of suitable materials include
oxides, such as Al2O3, SiO2 and ZnO [7–10]; carbides, such as silicon carbide (SiC) [11,12]; and nitrides,
such as AlN, BN and Si3N4 [13,14]. In this way, commercial IMS products are available that offer
thermal conductivities typically in the range from 0.8 to 4.2 W/mK [1–5], though values as high as
7.0 [5] and 7.5 W/mK can be found [1]. This represents a significant improvement in the range of from
0.2 to 0.4 W/mK for the traditional FR-4 printed circuit board technology.

There is clearly a wide variety of candidate materials for the dielectric layer, but in this review
we consider only boron nitride (BN), on account of its wide application and that it has one of the
highest values of thermal conductivity for electrically insulating materials. Hexagonal boron nitride
is a white solid material, often referred to as “white graphite” because it has the same plate-like
hexagonal structure as graphite and has lubricating properties but, in contrast to graphite, BN is a
good electrical insulator and is therefore suitable for IMS application. The thermal conductivity of
hexagonal BN is reported to be up to 30 W/mK in the direction perpendicular to the hexagonal planes,
and up to 600 W/mK parallel to these planes [15,16]. BN is usually available in the form of powder,
the powder particles being either in the form of platelets or agglomerates, and with a range of possible
sizes. An example of the grades on offer can be seen in the product list provided by Saint-Gobain [17],
which includes platelets with average particles sizes from 2 to 180 µm, and agglomerates, both low
density and high density as well as spherical powders, with average sizes from 80 to 300 µm. Figure 2
shows scanning electron microscopy (SEM) micrographs of some of these grades of BN particles.

The fabrication procedure for epoxy-BN composites involves mixing the epoxy resin, curing agent
and BN particles, as well as some other components such as the catalyst or accelerator in some cases,
and then effecting the cure, usually isothermally or in a series of isothermal stages. Although the
thermal conductivity of the final cured product is essentially determined by the BN particles, it might
be expected that the curing process could affect the interaction between the epoxy matrix and the BN
filler particles. In particular, the matrix-filler interface plays a crucial role in the development of the
thermal conductivity in the composite, and any interaction between the matrix and filler would be
evident in the curing reaction. Thus, we begin with a review of the cure kinetics of epoxy composites
in general, and then of epoxy-BN composites in particular. We then examine in more detail how
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the thermal conductivity of the cured composites depends on the numerous parameters involved in
their fabrication.
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120 µm low density agglomerates, PCTL7MHF.

2. Cure Kinetics

2.1. General Aspects

The fabrication of epoxy-BN composites requires the curing of the epoxy matrix. In practice,
this will usually be an isothermal cure, either in a single stage or in two stages, with an initial partial
cure at a temperature less than the glass transition temperature of the fully cured system, Tg∞, followed
by a post-cure at a temperature higher than Tg∞. It might be expected that the details of the cure
procedure, for example the isothermal cure temperature, could have an influence on the properties
of the cured composite, such as the mechanical and thermal properties, and including the thermal
conductivity. For this reason, it is interesting to investigate the cure kinetics, the analysis of which
usually involves not only isothermal but also non-isothermal cure.

The experimental study of cure kinetics is typically made by differential scanning calorimetry
(DSC), and the analysis is based on one of a number of relatively simple kinetic equations. All of
these equations describe the time (t) dependence of the degree of cure (α), the latter being determined
experimentally as the ratio of the heat of reaction at time t, ∆H(t), to the total heat of reaction, ∆H∞,
for a fully cured sample:

α =
∆H(t)
∆H∞

(1)

The heat of reaction at time t is obtained from the area under the DSC curve of heat flow up to
this time, while the total heat of reaction requires the area under the complete cure curve, and both
are usually expressed per unit of mass of sample, in J/g. If no vitrification occurs during the curing
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process, then the cure can be described by a chemical rate equation in which the rate of cure is both
temperature (T) dependent and a function of the degree of cure:

dα
dt

= k(T) f (α) (2)

In this equation, k(T) is the rate constant and depends on temperature according to an
Arrhenius equation:

k(T) = A exp
(
−

E
RT

)
(3)

where A is the pre-exponential factor or frequency factor, R is the universal gas constant and E is the
activation energy.

The function f (α) depends on the kinetic model considered most appropriate for the given
circumstances. For epoxy cure, the autocatalytic model is one of the most widely used, and the function
can be expressed by the Sestak–Berggren equation:

f (α) = αm(1− α)n (4)

where the kinetic exponents m and n often sum to approximately two. One problem with this equation
is that, without an initial non-zero value for the degree of cure, α, the reaction will never start.
Furthermore, the equation requires that the initial reaction rate be zero, whereas this is not necessarily
the case. An alternative equation for the chemical reaction rate, which overcomes these problems,
is the Kamal equation:

dα
dt

= (k1 + k2α
m)(1− α)n (5)

where both rate constants k1 and k2 have Arrhenius temperature dependences, with different activation
energies and pre-exponential factors. The initial reaction rate in the Kamal equation is given by k1.

The above equations have been rather widely used for the analysis of the cure kinetics of
unfilled epoxy systems, with a variety of different resins, curing agents and initiators or accelerators.
This approach has been adopted by many authors (e.g., [18–24]) to interpret aspects of the reaction and
of the cured system in terms of the parameters of the model (A, E, m and n).

2.2. Epoxy Composites

In epoxy composite systems, on the other hand, there is the additional effect of the filler to be
considered, and here two different aspects can be identified: the effect of the filler on the cure kinetics
and the effect on the properties of the cured composite. Considering the latter aspect, the purpose of
the filler is clearly to modify the properties of the composite. For example, glass, carbon or aramid
fibres are incorporated into an epoxy matrix in order to improve the mechanical properties, and many
fillers are added to reduce the thermal expansion coefficient or even simply to reduce the cost of the
material. In this context, the boron nitride filler is added in order to enhance the thermal conductivity
of the composite. Besides these changes deliberately induced in the properties of the overall composite
material, there is the question of the effect of the filler on the epoxy matrix, and here the situation is not
well understood. For example, it is commonly believed that increasing the filler content will lead to an
increase in the glass transition temperature, Tg, of the cured composite because the filler particles will
provide a restriction of the molecular mobility of the epoxy matrix. However, a literature search using
the key words or phrases “effect of fillers”, “glass transition temperature” and “epoxy” gives nearly
400 results in the Web of Science database, many of which conclude that there is no significant effect of
filler on Tg, though there are reports of both an increase and a decrease in Tg on the addition of a filler,
as the following examples illustrate.

Many years ago, Filyanov [25] alluded to the generally held view that fillers restrict molecular
mobility when he wrote “in contradistinction to the majority of cases where the glass transition
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temperature of an epoxy resin rises during filling”, referring to his own results for an epoxy resin filled
with glass microspheres, which instead featured a marked reduction in Tg. This effect was attributed to
an “adsorptive-adhesional interaction between resin components and the filler surface”. The dominant
role of the matrix-filler interface, and in particular “enhanced polymer dynamics”, was also cited
by Sun et al. [26] to explain why they observed a decrease in Tg for epoxy-silica nanocomposites in
comparison with the corresponding composites with micron-sized fillers. However, it is not clear
why these very general interface attributes should apply in these situations and not in others. Indeed,
Stevens and Richardson [27] investigated a silica-filled epoxy-anhydride system, for which silanol
groups at the silica surfaces were potential hydrogen-bonding sites for hydroxyl and epoxide groups,
and therefore with much greater potential for filler-matrix interaction, but they concluded that there
was no significant filler effect on Tg in the fully cured composites. That the situation is complicated
by other interfacial aspects was highlighted more recently in a review [28] of the effect of carbon
nanotubes on the Tg of epoxy nanocomposites; the bundling tendency of single-wall nanotubes can
lead to a reduction in Tg, whereas Tg increases or remains constant for multi-wall nanotubes.

On the other hand, the following examples are representative of many (probably the majority
of) reports which suggest that Tg is essentially independent of the filler content in epoxy composites.
Linec and Music [29] investigated the effects of the addition of silica of different shape, specific surface
area and chemical structure, including crystalline and fused silica, in epoxy moulding compounds and
found that Tg remained almost constant. Dorigato and Pegoretti [30] introduced both carbon black
(CB) and carbon nanofibers (NF) into an epoxy matrix with in situ generated silver nanoparticles and
concluded that Tg was “slightly reduced”; for example, for 4 wt.% nanofiller the reduction was about
5.5 ◦C for the CB nanofiller, but only about 2.6 ◦C for NF. In particular, these authors could not detect
any clear trend of Tg with the relative proportions of the two carbonaceous nanofillers, in agreement
with their earlier observations with various other nanofilled thermosets. They attributed this result
to two competing effects of the nanofillers: an increase in Tg due to “chain blocking mechanisms”,
and a reduction in Tg due to a reduction in the degree of cross-linking as a consequence of matrix-filler
interactions and increased viscosity.

The complexity of the situation is illustrated by another result. In ternary epoxy nanocomposites
filled with 5 wt.% titanium dioxide nanoparticles and halloysite nanotubes (HNT), Vijayan et al. [31]
found a small decrease (about 3 ◦C) in Tg for epoxy-TiO2 composites, a significant increase (>10 ◦C)
for epoxy-HNT composites, but essentially no change for the ternary composites. While the authors
asserted that HNT can restrict the segmental motion of cross-links near the matrix-HNT interface,
thus giving rise to the observed increase in Tg, they did not explain why Tg remained essentially
constant for the ternary composites. More generally, Kang et al. [32] concluded that composites with a
weak filler-matrix interface show essentially no change in Tg, whereas a strong interface promotes an
increase in Tg.

In the above discussion of the properties of the epoxy matrix in cured composites, the glass
transition is associated with the network structure of the cured epoxy, which is developed during the
course of the previous curing schedule. Consequently, we turn now to the second aspect mentioned
above, namely the effect of the filler type and content on the cure kinetics in epoxy composites.
First, we will consider the situation in general, before reviewing the curing process of epoxy-BN
composites in particular.

Although many of the fillers used for epoxy composites are essentially inert with respect to
epoxy, and hence might not be expected to have any effect on the cure reaction, in practice there are
several chemical species which can occur at the surface of filler particles that can influence the reaction.
Consequently, it is common to see reports on the effect of fillers in an epoxy composite cure, and the
most obvious effect is whether the reaction is accelerated or retarded by the presence of the filler.
This can be assessed simply by examining whether there is a reduction or increase, respectively, in the
peak temperature, Tp, during a non-isothermal cure or in the time to the peak exotherm, tp, in an
isothermal cure. Alternatively, the kinetic Equations (1)–(5) can be used to fit the cure curves and
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obtain the values of the parameters, in particular the activation energy, E, and the pre-exponential
factor, A. In this respect it should be pointed out that it is sometimes assumed that a reduction in E
implies an acceleration of the reaction, but this is incorrect: the reaction rate is described by the rate
constant k, which is a function of both E and A. Thus, it is possible for there to be a reduction in E and
yet a slowing down of the reaction as a consequence of a concurrent reduction in A. Comment on this
will be made when discussing some of the examples considered below.

The most common observation is that the cure reaction of epoxy composites is accelerated by the
addition of fillers (e.g., [33–43]), most of these systems being based on DGEBA epoxy resin, and cured
with methylene dianiline [33,34], anhydride [36,42], or amines [35,39,43]. A wide variety of fillers is
included here: zeolite [33,34,36], zirconium tungstate [37], alumina [39,42], barium ferrite/aniline [41],
carbon black and carbon fibres [35], aluminium nitride [40], silica [38] and mallow fibres [43].
The advance of the curing process is typically identified by a reduction in the peak exotherm
temperature in a non-isothermal cure or by a decrease in the time to the peak exotherm in an isothermal
cure. However, while a systematic effect of filler content might be expected, in some cases [37,40,42]
the effect reported is an initial acceleration, apparently simply as a consequence of the addition of the
filler, but with no further significant or systematic change as the filler content is further increased.

Nevertheless, the acceleration effect of adding fillers is not always clearly evident. For example,
Olivier et al. [44] monitored the cure kinetics of a polyepoxy cured with polyamineaniline and filled
with either polyamide-12 or a ceramic. During non-isothermal cure, the peak temperature clearly
decreased as the content of either filler increased, indicating an acceleration effect. However, when these
authors analysed the isothermal cure, they found that, for a given cure time, the degree of cure was
lower for the filled samples than for the pure epoxy, and hence concluded that the fillers slow down
the reaction. However, there is some inconsistency, in that the heat of reaction, apparently per unit
mass of epoxy, decreased as the filler content increased, which could affect the isothermal cure analysis.
Likewise, Sanctuary et al. [45] reported different effects in non-isothermal and isothermal cures for a
DGEBA epoxy resin filled with alumina nanoparticles and cured with a triamine. Since the isothermal
cure was carried out at 25 ◦C, which is less than Tg∞, it involves vitrification, which is detected by
temperature-modulated DSC. With increasing filler content in the isothermal cure, the magnitude of
the heat flow increased and the vitrification time was reduced, indicating an acceleration of the reaction
by the filler. On the other hand, these authors obtained the surprising result that the non-isothermal
cure kinetics is essentially unaffected by filler content and discuss this in terms of an interphase region
between the nanoparticles and the epoxy matrix, in which there is reduced molecular mobility.

Differences between the effects of fillers in non-isothermal and isothermal cure can also be inferred
from the early results of Dutta and Ryan [46]. The isothermal cure of a DGEBA epoxy resin cured
with a diamine and filled with carbon black or silica at 6 wt.% content was advanced relative to the
unfilled system, and more so for the former filler. However, in the non-isothermal cure, while for the
same 6 wt.% content the peak exotherm temperature was reduced for both fillers compared to the
unfilled system, and more so for the carbon black, there was no systematic effect of other filler contents.
For carbon black the cure was apparently retarded for 1 wt.% and 4 wt.% but was slightly advanced
for 2 wt.%, while for silica it was also retarded for 4 wt.% content. In the non-isothermal cure of a
DGEBA epoxy filled with quartz flour, de Miranda et al. [47] also reported that the effect of the filler
on cure kinetics depends on the range of the filler content. For up to 10 wt.% filler, the rate constants
for the filled and unfilled systems are the same for any given degree of cure, whereas at 20 wt.% and
30 wt.% content, the rate constants are approximately equal but lower than that for the unfilled system.
This suggests that a filler content greater than 10 wt.% will slow down the reaction, in contrast to the
generally observed effect. However, the reported peak exotherm temperatures at 10 ◦C/min for the
filled systems, from 2 to 30 wt.%, did not vary systematically, and their variation is much smaller than
the difference between their average value and that of the unfilled resin. Accordingly, it is difficult to
draw any firm conclusions from these results.
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There are a few other reports of a decrease in the cure rate as a consequence of the presence
of fillers. Omrani et al. [48] studied a DGEBA epoxy filled with barium carbonate at up to 15 parts
per hundred resin (phr) and found that the peak exotherm temperature increased by 10 ◦C for the
highest filler content, indicating a slowing down of the reaction rate. However, a large variability
in the heat of reaction between repeated experiments suggested a heterogeneous filler dispersion,
which could have influenced the cure kinetics and may also have been responsible for an anomalous
variation of the glass transition temperature. Zabihi et al. [49] investigated a DGEBA epoxy, anhydride
cured and filled with polythiophene nanoparticles, and found that in non-isothermal cure the peak
exotherm temperature increased by between 10 and 15 ◦C with an addition of only 1% nanoparticles.
Just as for Omrani et al. [48], however, they also reported a large variation in the heat of reaction for
filler loadings greater than 1%, again attributed to an inhomogeneous distribution and agglomeration
of the nanoparticles. Similar results were presented by Karasinski et al. [50], who studied the cure
kinetics of a DGEBA epoxy cured with o-tolyl biguanidine and filled with nanoparticles of either
γ-alumina or zinc oxide at a loading of 3 phr, corresponding to volume percentages of 1.2 and 0.6,
respectively. These authors also reported a slight tendency of the nanoparticles to cluster, with the
more homogeneous distribution being found for zinc oxide. For these epoxy composites, the peak
exotherm temperature increases markedly, for example by more than 10 ◦C for the alumina composites
and by more than 30 ◦C for the zinc oxide composites, at the heating rate of 10 K/min. However, this is
accompanied by a significant increase in the heat of reaction for the nanocomposites, which is attributed
to a higher cross-linking density. This is consistent with an increase in Tg∞ for the nanocomposites
with respect to the unfilled system, but probably indicates that the presence of benzoin as a degassing
agent and of poly(n-butylacrylate) as a plasticizer have modified the cure reaction, thus making it
difficult to distinguish the effect of the filler nanoparticles on the cure kinetics.

In summary, it is probably true to say that it is not possible to draw any firm conclusions from the
reports in the literature where the cure of epoxy composites is apparently retarded by the addition of
the filler particles: the heat of reaction is often not constant, there are different effects in isothermal
and non-isothermal cure, there are unsystematic variations with the filler content, and sometimes
inhomogeneous dispersion or agglomeration of filler particles occurs.

There are also reports of the fillers having no effect on the cure kinetics of epoxy composites.
Tarrío-Saavedra et al. [51] show DSC non-isothermal curves for an amine-cured epoxy filled with
up to 50 wt.% fumed silica, where the peak exotherm temperature is unaffected by the filler content.
As the title of their paper suggests, however, there are some unusual observations, which throw some
doubt on the interpretation of the effect of the filler on the cure kinetics. For example, the heat of
reaction varies in a non-systematic way with filler content, which the authors themselves interpret as
agglomeration of the nanoparticles and a possible loss of stoichiometry in the reaction. On the other
hand, Ghaffari et al. [52] investigated the cure kinetics of a DGEBA epoxy cured with polyaminoamide,
but with only a single and very small (1 wt.%) content of either micro- or nano-sized zinc oxide particles.
Furthermore, they used only isothermal cure, for which there is very little difference between the
iso-conversional cure times as a function of the inverse temperature for the different composite systems.
These plots, as well as a model-fitting procedure, allowed the evaluation of the activation energy,
E, which decreased for the micro-composite and, to an even greater extent, for the nano-composite.
This reduction in E should not, however, be associated with an advance of the reaction for the filled
systems, as it was accompanied by a significant reduction in the pre-exponential factor, A, and again to
a greater extent for the nano-filler compared with the micro-filler.

Finally, another effect, namely that of the surface treatment of the filler particles, was investigated
by Harsch et al. [53], who analysed the cure kinetics of a cycloaliphatic epoxy cured with anhydride
and filled with a variety of fillers, including silica, both with and without a surface treatment.
These authors found that the addition of the surface-treated filler reduced the activation energy, E,
and the pre-exponential factor, A, while they remained unaffected by the untreated filler, and they
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concluded that the surface-treated filler accelerates the reaction. These authors did not, however,
offer any explanation for this observation.

A compilation of all the results for non-isothermal cure is given in Figures 3 and 4. The filled
symbols correspond to the data obtained for epoxy composites with fillers other than BN, while the
open symbols correspond to epoxy-BN composites. In Figure 3, data are included for the heating rate
of 10 K/min only, whereas in Figure 4 all heating rates are included. The correspondence between the
symbols used in Figures 3 and 4 and the references from which the data were obtained is given in the
legends, but can be seen more clearly by accessing Supplementary Material 1. For filler particles other
than BN, the filled symbols in Figures 3 and 4 demonstrate the tendency for the peak temperature
Tp to decrease with the addition of filler particles in the epoxy composites, particularly at higher
filler contents.

In the light of the compilation and discussion above, where it might be concluded that the
cure reaction of epoxy composites is usually accelerated by the addition of fillers, it is interesting to
consider the explanations that are given for why this acceleration might occur. In nearly all cases in
which acceleration of the reaction occurs, this is attributed to the catalytic effect of hydroxyl groups
present on the surface of the various filler particles, be they zeolite [33,34,36], zirconium tungstate [37],
nano-SiO2 [38], nano-alumina [39], or nano-AlN particles [40]. It should be noted that there is no
need for the surface of the filler particles to be modified for there to be a catalytic effect; for example,
for the epoxy-zeolite composites [33,34,36], the filler was natural zeolite without any surface treatment.
Likewise, Sanctuary et al. [45] attributed the acceleration of the isothermal cure of epoxy/nano-alumina
composites to the surface catalytic action of –OH groups and argued that the lack of any acceleration
effect in non-isothermal cure was a consequence of the reduction of the molecular mobility by the
“interphases”. More generally, Dutta and Ryan [46] considered that the acceleration of epoxy cure when
filled with carbon black was due to the presence of numerous constituents found on the surface of the
carbon black, principally phenolics, carboxylics, quinones, hydroquinones and lactones. In contrast,
they attributed the lack of any catalytic effect when the epoxy is filled with silica to either the lower
specific surface area (SSA) or the relatively complex-free surface of the silica.

In some cases, the catalytic effect is reported to be modified by surface treatment of the filler particles,
though there is no consensus on the effect. Haman et al. [37] consider that silane functionalisation of
zirconium tungstate particles retards the cure as a consequence of the shielding of –OH groups by
silane, while Yu et al. [40] consider that the catalytic effect of their silane treated nano-AlN particles
results from both –OH and –NH2 groups on the surface. The catalytic effect of the amino group was
also proposed by Bi et al. [42] for the cure of their epoxy composites filled with amino-functionalised
alumina particles. Similarly, Harsch et al. [53], as noted above, only found an acceleration of the cure
rate when the filler particles are surface treated.

Some other explanations have been given for the acceleration of the cure for some particular
circumstances. Wu et al. [35] observed that the incorporation of activated carbon fibres into their
composites accelerated the reaction, and that the activation of the carbon fibres simultaneously increased
their SSA significantly. On the other hand, when the carbon fibres were ozone treated, there was
neither an acceleration of the cure nor any significant change in the SSA of the fibres. Accordingly,
these authors associated the acceleration of the reaction with an increase in the SSA, an observation
that accords with that of Dutta and Ryan [46]. In another particular situation, for epoxy/barium
ferrite/polyaniline composites, Saad et al. [41] considered that the protonated amine-imine groups of
polyaniline act as epoxy-opening initiators to accelerate the cure reaction. Finally, in a quite different
epoxy composite system, in which mallow fibres give rise to a very slight acceleration of the cure,
Nascimento et al. [43] concluded that mallow fibres act as “nucleation sites”.
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2.3. Epoxy-BN Composites

The general aspects of the cure kinetics of epoxy composites discussed above can now be compared
with the particular behaviour of epoxy-BN composites. However, apart from the contributions of two
particular research groups—Isarn et al. and Hutchinson and co-workers—considered in more detail
below, there is rather little work reported on the cure kinetics of epoxy-BN composites, despite the fact
that such composites are very widely studied in respect of their thermal conductivity. Furthermore,
in some instances [54–56], unfortunately, the calorimetric cure data are either poorly presented or
confusing, to the extent that no reliable conclusions can be drawn about the influence of the filler on the
cure kinetics. The results of Teng et al. [57] are more interesting. These authors used a DGEBA epoxy
matrix cured with diamino diphenyl sulphone and filled with combinations of BN, both unmodified and
modified with a zirconate coupling agent, and both functionalised and non-functionalised multiwall
carbon nanotubes (MWCNT). The peak temperature in non-isothermal cure at 5 ◦C/min decreased
slightly, by about 3 ◦C and 5 ◦C for the modified and unmodified BN, respectively, for a loading of
25 vol% BN, which is consistent with the usually observed acceleration of the cure reaction with added
filler, as discussed above. However, at the same time there was a large difference between the heats of
reaction for the composites with unmodified fillers and those with the modified and functionalised
fillers, the heat of reaction for the latter being about twice that of the former. These authors allude
to the steric hindrance of the filler particles as an explanation for these observations, although this
might be expected to slow down rather than accelerate the reaction, and also conclude that the
reactive sites of the functionalised hybrid filler react with the epoxy resin, which does not occur for
the pristine hybrid filler. This additional reaction is believed to reduce the free volume and hence
improve the matrix-filler interface, which was correlated with an increase in thermal conductivity.
This interpretation is interesting and is a good illustration of how calorimetric cure data can be related
to the thermal conductivity of the cured composite; further examples of such a relationship will be
presented below. Nevertheless, the thermal conductivities achieved by these authors remain rather
low for the BN filler loadings used, as will be seen in Section 3.1 of this review. Another report,
by Wu et al. [58] on bisphenol-A epoxy composites filled with nano-BN particles, is ambiguous and
inconsistent in reporting the dependence of the peak exotherm temperature in non-isothermal cure on
BN content, so no conclusions can be drawn from this work.

For various reasons, it is not possible to draw any reliable conclusions from the references
discussed above [54–58] about the effect of the addition of BN particles on the cure kinetics of epoxy-BN
composites, for comparison with the generally observed acceleration. It is, therefore, interesting to
note that Isarn et al. [59–62] and Hutchinson and co-workers [63–67] present many results which show
the opposite effect, namely a retardation of the cure upon addition of BN, and accordingly these are
examined now in some detail. There are some differences in the matrix materials and fillers used by the
two groups. The former group used two types of epoxy: DGEBA and a cycloaliphatic resin, 3,4-epoxy
cyclohexylmethyl 3,4-epoxycyclohexane carboxylate (ECC), and effect the cure reaction in two separate
ways. In most of their work, these authors induced epoxy homopolymerisation by cationic initiation,
but in one of their studies they used a thiol, pentaerythritol tetrakis (3-mercaptopropionate) (PETMP),
as a cross-linking agent, with 4-(N,N-dimethylamino)pyridine (DMAP) as the initiator. The filler is
principally BN, but carbon nanotubes (CNT) were added occasionally.

For composites with a DGEBA epoxy matrix, for which only an antimonate cationic initiator was
used, BN particles of around 6 µm size in non-isothermal cure gave rise to a very slight increase in the
peak exotherm temperature, Tp, from 120 ◦C to 123 ◦C, when increasing the BN content up to 20 wt.%;
this was attributed to “the hindrance produced by the BN particles” or “the increased viscosity of the
formulation” [59]. For a higher BN content of 40 wt.%, with the same epoxy/initiator system, a much
greater increase in Tp, from 121 ◦C to 133 ◦C, was reported, essentially independent of whether or not 1
wt.% of CNT was also included in the composite [62]. This retardation of the cure upon addition of BN
particles was attributed to “the dilution effect of the high quantity of filler”. Isoconversional analysis
shows that the cure curves all follow a second order kinetic model, the retardation on the addition
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of BN particles being demonstrated by a reduction in the rate constant, k. Furthermore, the heat of
reaction, measured in kJ/ee, and the glass transition temperature of the fully cured composite, Tg∞,
were both essentially independent of the filler content, indicating that the network structure was not
influenced by the presence of the filler.

For the other epoxy matrix material, ECC, the peak exotherm temperature remains very much
independent of the BN content. When the cure is cationically initiated [60,62], Tp either remains
constant [60] or at most decreases by only 2 ◦C [62] for the non-isothermal cure of composites with
40 wt.% BN, though for the hybrid with 1 wt.% CNT a slightly greater decrease of 3 ◦C was observed.
This was interpreted as indicating a cooperative effect between the two different fillers; possibly the
protons formed during the oxidation of the CNT help to catalyse the ring-opening polymerisation.
Likewise, when the ECC epoxy was cured with a thiol, PETMP, and initiated with DMAP, there was
only a small change in Tp on addition of 40 wt.% BN, though the direction of the change depended on
the BN particle size: for 6 µm particles there was a 3 ◦C decrease, whereas for 80 µm particles there
was a 4 ◦C increase [61]. The authors concluded that DGEBA resin systems are likely to interact better
with BN than ECC resin systems.

The dependence of the peak exotherm temperatures in non-isothermal cure for epoxy-BN
composites is plotted together with the data for the other fillers in Figures 3 and 4 as the open symbols.
Here, it can be seen that the tendency is quite the opposite of that for the other fillers, though the reason
for this is not clear.

In nearly all cases, Isarn et al. found that the heat of reaction per epoxy equivalent in the
non-isothermal cure and the glass transition temperature of the fully cured systems, when it could be
measured, were essentially independent of the filler content. They concluded that BN has an inert
character with respect to the final network structure for both cationic epoxy homopolymerisation and
when cured with a thiol. A slight decrease, from 120 kJ/ee for the unfilled epoxy to 114 kJ/ee for 40 wt.%
of the 6 µm BN filler, and to 116 kJ/ee for the 80 µm BN filler in the ECC/PETMP system, was attributed
to topological restrictions. The same explanation was given for the rather stranger decrease for cationic
homopolymerisation, from 88 kJ/ee for the unfilled system to, initially, 69 kJ/ee for low BN content,
but it then remained constant as the BN content increased.

The conclusion that BN is an inert filler in epoxy composites was also reached by Hutchinson and
co-workers in all their work on DGEBA epoxy composites cured with thiol (PETMP), where the heat of
reaction and Tg∞ were consistently independent of the BN content [63–67]. However, these authors
also consistently observed an underlying retardation of the epoxy-thiol cure kinetics with the addition
of BN particles, and they carried out a systematic study of the effects of various parameters in addition
to the fundamental one of filler content, namely particle size [64,65], particle shape (i.e., platelets or
agglomerates) [67], and surface modification [66]. Furthermore, they investigated the effect of using a
diamine rather than thiol as the curing agent [63–65]. An illustration of some of these effects, and a
comparison with the results of Isarn et al. [62] is shown in Figure 5.

The interesting aspects of this dependence of the cure kinetics on BN content are as follows.
First, the DGEBA epoxy composite system cured either with thiol or cationically shows a similar
retardation with the addition of 30 µm BN platelets. In contrast, the composite system based upon
ECC epoxy resin does not display this retardation. Second, the DGEBA epoxy composite cured with
diamine did not display any retardation of the cure with the addition of filler. This difference between
the epoxy-thiol and epoxy-diamine composites was attributed to a Lewis acid-base interaction between
the BN particles and thiol in the former, which does not exist in the latter [63–65]. The authors suggest
that this could have a positive impact on the thermal conductivity of these composites as a consequence
of the enhanced filler-matrix interaction. Third, there was a significant increase in the retardation
effect when 2 µm BN platelets were used as the filler. Kinetic analysis of the cure curves for these
2 µm composites shows that the activation energy E decreased, which would be inconsistent with the
observed retardation unless the pre-exponential factor A also decreased, and markedly so. Hutchinson
and co-workers propose that the Lewis acid-base interaction between filler and matrix, coupled with
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the very large surface area of these much smaller particles, results in a large proportion of the epoxy
matrix being immobilised at the particle surface [67].
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Figure 5. Dependence of peak temperature, Tp, on filler content relative to unfilled epoxy, Tp0,
for epoxy-BN composites in non-isothermal cure at 10 K/min. 30 µm platelets: red squares,
DGEBA-thiol [65]; grey triangle, DGEBA-cationic [62]; purple diamond, ECC-cationic [62]; green circles,
DGEBA-diamine [65]. 2 µm platelets: black asterisks, DGEBA-thiol [65].

Besides this overall tendency for the cure reaction to be retarded by the BN filler reported by
Hutchinson and co-workers, they also point out that, with a low BN content, there can be an acceleration
effect. This is illustrated in Figure 6 for an epoxy-thiol system filled with 2 µm platelets and cured
isothermally at three different temperatures [65], and is even more apparent in some other epoxy-BN
systems [63,64,67]. In fact, this effect can also be seen in the cationic cure of DGEBA epoxy at the lowest
BN concentration in the work of Isarn et al. [59]. It is argued that this could be a consequence of the
improved heat transfer of the sample, hence representing a physical rather than a chemical effect.
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3. Thermal Conductivity

3.1. Effect of BN Content

In the foregoing Sections 2.2 and 2.3, the effect of fillers in general, and of BN in particular, on the
cure kinetics of epoxy composites was considered. Although no unequivocal conclusions can be drawn
from the results presented in the literature, there is one notable aspect, namely that there is nearly
always some effect: in the majority of cases, the filler causes an acceleration of the cure, but sometimes
there is a retardation. This implies that there is a certain interaction between the filler and the matrix,
which might be expected to have some consequences for the properties of the cured composite, and in
particular for the thermal conductivity. However, the primary relationship to consider is the effect of
BN content on thermal conductivity. It is generally observed not only that the thermal conductivity of
epoxy-BN composites increases with BN content, but also that this increase becomes more rapid as the
BN content increases, giving rise to an upward curvature in a plot of thermal conductivity as a function
of BN content. This upward curvature is usually attributed to increased connectivity between the BN
particles beyond the percolation threshold. A compilation of data obtained from the literature is plotted
in this way in Figure 7. The relationship between the symbols and the references from which the data
were obtained is given in the legend, but can be seen more clearly in Supplementary Material 2.
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There is a total of approximately 900 data points included in Figure 7, but two series of data are 
worthy of special mention—the results of Yung and Liem [54] and Yung et al. [151], which are 
presented as open circles, and which show significantly higher thermal conductivities than any others 
for the same BN content. 

In reference [54], the authors use a bisphenol-A type brominated epoxy resin, which has 
application in flame-retardant printed circuit boards. The epoxy is cured with a dicyandiamide and 
filled with silane-treated BN particles of different sizes: hexagonal (h-BN), with sizes from about 0.2 
μm to 0.6 μm, or cubic (c-BN), with a size of 1.0 μm. In reference [151], the authors use an anhydride-
cured bisphenol-A phenolic resin, filled with BN particles of sizes 1.5, 5, 10 and 15 μm, and treated 
with a silane coupling agent. There is no obvious explanation for why the thermal conductivities are 
so high. Nevertheless, two aspects are worthy of mention. First, the usually observed upward 
curvature in the dependence of the thermal conductivity on BN content is not displayed by the results 
of Yung and Liem [54], which are shown separately in Figure 8; instead, there appears to be a 
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Figure 7. Thermal conductivity of epoxy-BN composites as a function of the BN content by weight.
Data taken from references [54,57,59–159]. Open circles refer to data from references [54,151],
open squares refer to data from references [89,90,114,116,125,127,132,143,147,153,158]. The dashed
trend lines indicate the overall tendency for the dependence of thermal conductivity on BN content
(excluding the data represented by the open circles): an upper trend line, below which more than 95%
of the values fall; and a lower trend line, below which fewer than 5% of the values fall. The intermediate
trend line is an approximation to the upper limit for isotropic samples.

Included in this compilation are the results obtained for any epoxy composite material containing
BN. In particular, many of these references are to hybrids in which BN is incorporated with one or
more other type of particle for the enhancement of thermal conductivity. For such hybrid materials,
the data plotted in Figure 7 refer only to the limiting situation in which only BN is present. There is a
total of approximately 900 data points included in Figure 7, but two series of data are worthy of special
mention—the results of Yung and Liem [54] and Yung et al. [151], which are presented as open circles,
and which show significantly higher thermal conductivities than any others for the same BN content.

In reference [54], the authors use a bisphenol-A type brominated epoxy resin, which has application
in flame-retardant printed circuit boards. The epoxy is cured with a dicyandiamide and filled with
silane-treated BN particles of different sizes: hexagonal (h-BN), with sizes from about 0.2 µm to
0.6 µm, or cubic (c-BN), with a size of 1.0 µm. In reference [151], the authors use an anhydride-cured
bisphenol-A phenolic resin, filled with BN particles of sizes 1.5, 5, 10 and 15 µm, and treated with a
silane coupling agent. There is no obvious explanation for why the thermal conductivities are so high.
Nevertheless, two aspects are worthy of mention. First, the usually observed upward curvature in
the dependence of the thermal conductivity on BN content is not displayed by the results of Yung
and Liem [54], which are shown separately in Figure 8; instead, there appears to be a tendency to
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reach a limiting value as the BN content increases. Second, the results of Yung et al. [151] show a trend
of increasing thermal conductivity as the BN particle size decreases, which contrasts with the usual
observed effect of particle size [64,65]. This is also illustrated in Figure 8, for the case of the BN particles
not treated with silane; the same trend was reported for the silane-treated particles, for which higher
thermal conductivities were observed, but for clarity these are not included in Figure 8.
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data replotted from Yung et al. [54,151]. Filled symbols for silane-treated particles unless otherwise
stated [54]: light blue diamonds, 0.6 µm single h-BN, without silane; grey squares, 0.6 µm single
h-BN; yellow triangles, 0.2 µm and 0.4 µm double h-BN; dark blue circles, hBN+cBN hybrids.
Open symbols [151]: 1.5 µm, 5 µm, 10 µm and 15 µm BN, untreated, symbol size increasing with BN
particle size.

Even setting aside the results of Yung et al. [54,151], there is still evidently a very wide dispersion
of the data. In an attempt to clarify the situation, we have included in Figure 7 some trend lines to
indicate the overall tendency for the dependence of thermal conductivity on BN content: an upper
trend line, below which more than 95% of the values fall (excluding the data of Yung et al. [54,151]);
and a lower trend line, below which fewer than 5% of the values fall.

To simplify the picture further, some particular results can be singled out. These are the
data which correspond to samples in which orientation of the BN particles has deliberately been
introduced. The orientation can be induced by various means: gravity alignment and subsequent
resin infiltration [147]; the application of high pressure to partially cured samples before the final
cure [90,153,158]; spin-coating of films and hot pressing after pre-cure [116]; magnetic alignment
of Fe3O4-decorated BN particles [114,125,127]; or by resin infiltration of hierarchically ordered
3-dimensional templates [89,132,143]. The orientation induced usually results in a highly anisotropic
thermal conductivity. In Figure 7, the results corresponding to the thermal conductivity measured in
the orientation direction are shown as open squares, where it can be seen that they almost all lie well
above the data for the thermal conductivity of isotropic samples, indicated as the filled data points.
Accordingly, we have included a further, intermediate trend line which represents an approximation
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to the upper limit of these isotropic thermal conductivities. It can be seen that the vast majority of
data fall between the lower and intermediate trend lines. The remaining scatter in these data points is
a consequence of the many differences in the epoxy-BN composites, which arise from the different
parameters involved: the matrix epoxy resin and curing agent; the BN particle size and shape, and the
use of hybrids; the use or otherwise of surface treatment of the particles or of coupling agents; and the
cure schedule and fabrication procedure. Many of these aspects will be considered below.

Before looking at these aspects, though, there still remain some data points in Figure 7 which have
thermal conductivities significantly higher than those indicated by the intermediate trend line, and are
worthy of special mention. Ishida and Rimdusit [94] reported, some twenty years ago, “extraordinarily
high” thermal conductivities for large BN contents, indicated by the filled triangles in Figure 7,
giving the highest value of 32.5 W/mK for 88 wt.% BN. In fact, these authors used a benzoxazine resin
and so these results should not strictly be compared with those for epoxy-BN composites, but the very
high values for thermal conductivity suggest that there may be some important aspects to consider.
There are several points of particular interest. The benzoxazine monomer is solid at room temperature
and was first ground to a powder, mixed with the BN particles and heated to about 80 ◦C, when it
took the form of a paste, which was then compression moulded before finally curing under 0.1 MPa
pressure at 200 ◦C. The compression moulding may have introduced an orientation of the BN particles,
which would have an important effect on the thermal conductivity. The BN particles were large, with an
average size of about 225 µm and a bimodal size distribution; according to the authors, this bimodal
distribution facilitated the very high filler contents achieved. Finally, under the composite preparation
conditions used, the benzoxazine matrix had a very low viscosity, around 1000 cP, in comparison
with that of a typical bisphenol-A epoxy, which is around 12,000 cP; this may have contributed to the
ability to obtain very high filler contents. The authors measured the density of the composites and
noted that the measured density was slightly higher than that calculated using the densities of the
components, which might be expected as a consequence of shrinkage on cure, and they concluded
from this that there were no voids in the samples, which is essential for the achievement of high
thermal conductivity. Indeed, attempting to add more BN beyond 88 wt.% resulted in a significant
decrease in density, which they attributed to void formation. All of these observations are interesting,
but do not really explain such high values of thermal conductivity. In fact, the increase in thermal
conductivity is dramatic only beyond about 70 wt.%, where the value coincides approximately with the
intermediate trend line in Figure 7; for a lower filler content, for example at 50 wt.% BN, the value was
unremarkable, and close to the lower trend line. If the dramatic increase is due to the establishment of
connectivity between the filler particles, then it suggests that the percolation threshold is much higher
than that proposed by the authors, around 20 vol% or 33 wt.%. Nevertheless, the value of 32.5 W/mK
for the thermal conductivity remains remarkable, and in 2013 it was stated that it “remains the highest
reported thermal conductivity value in the literature” [160].

A value “higher than 30 W/mK” was reported by Song et al. [126] for an epoxy-BN composite
with 50 vol% filler, the highest filler content used by these authors and which we estimate to be
approximately 65 wt.%. It is important to note here, though, that this value was measured in a thin
film, and in the in-plane direction; consequently, there is a strong likelihood that there are significant
orientation effects here. It seems reasonable, then, that this value appears to extend, to a slightly higher
filler content, the tendency corresponding to the values of the samples in which orientation has been
deliberately introduced, discussed above and indicated in Figure 7 by the open squares.

The results discussed immediately above may be considered as special cases, for the reasons
presented. There are still two sets of data in particular which stand out from the rest in Figure 7,
and which fall between the upper and intermediate trend lines. Both sets of data, indicated by
grey-blue and green filled circles, are from Islam et al. [95], and correspond to composites in which
the matrix was a liquid crystalline epoxy resin. These results will be discussed in more detail below.
The values of thermal conductivity of close to 10 W/mK reported by Tanaka et al. [129] and Xu and
Chung [144], indicated in Figure 7 by green and orange circles, respectively, are also worthy of special
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mention; both use about 70 wt.% BN and the data lie significantly above the intermediate trend line.
Nevertheless, the vast majority of the remaining results included in Figure 7 fall between the lower and
intermediate trend lines. This still leaves a significant amount of scatter, and the following sections
consider the possible reasons for this, and how they might influence the thermal conductivity.

3.2. Effect of Surface Treatments and Coupling Agents

It is well known that the interface between the epoxy matrix and the filler particles is a major source
of thermal resistance, and for this reason considerable attention has been paid to finding ways in which
the quality of this interface can be improved. One problem is that the flat surfaces of the hexagonal
BN platelets, which correspond to the hexagonal planes of the BN crystal structure, are molecularly
smooth, and present little opportunity for chemical bonding with the matrix or for other interactions.
However, there are some functional groups, such as hydroxyls and amino groups, which are present on
the narrow edge planes of these platelets, and these edges do offer the possibility of bonding in order to
improve the matrix-particle contact. It is, therefore, quite common to aminate [71] or hydroxylate these
edges, for example by sol-gel treatment with a strong alkali. These functionalised BN particles may be
used directly in the epoxy-BN composite [69,71,85,124], or may additionally be treated with a coupling
agent to further enhance the matrix-filler interface. Teng et al. [57] used a zirconate coupling agent,
but by far the most common are the silanes, of which numerous variants have been used, including
(3-mercaptopropyl) trimethoxysilane, [97], (3-aminopropyl) triethoxysilane, APTES [88,109,138,155],
epoxy-terminated dimethyl siloxane, ETDMS [101], and (3-glycidyloxypropyl) trimethoxysilane,
GPTMS [66,138]. Jang et al. [96] found that increasing the carbon chain length of the silane, from propyl
trimethoxysilane to hexadecyl trimethoxysilane, improved the affinity of BN with epoxy and led
to an increase in thermal conductivity. A similar observation was made by Wattanakul et al. [137],
who found that increasing the chain length of four cationic surfactants, from dodecyl-, tetradecyl-,
hexadecyl- to octadecyl trimethyl ammonium bromide, adsorbed onto the surface of BN particles was
increasingly effective for enhancing the thermal conductivity, as a consequence of better wetting of the
epoxy resin. In many cases the coupling agent, N-(β-aminoethyl)-γ-aminopropyl trimethoxysilane [54],
APTES [68,74,82,131,138,148], or GPTMS [72,73,138,144,156], is added directly in the preparation of the
epoxy-BN composite, usually with the help of a solvent such as acetone or ethyl alcohol, and without
any prior functionalisation of the BN particles.

Other approaches to the functionalisation of the BN particles involve the use of dopamine [69],
1-pyrenebutyric acid, which reportedly avoids structural defects induced in BN particles by
covalently-bonded functional groups [85], ionic liquid flame-retardant functionalisation [113],
and aniline trimer, which is considered to provide π-π interactions with the BN particles [124].
Wattanakul et al. [138] also investigated the effect of admicellar polymerisation of polystyrene and
polymethylmethacrylate onto the BN surfaces to improve the interfacial adhesion, and found a
significant enhancement of the thermal conductivity.

Attention was drawn in the previous section to the high value of thermal conductivity—just over
10 W/mK at about 70 wt.% BN—reported by Xu and Chung [144]. It is interesting to note that these
authors compared a variety of different surface treatments in the fabrication of epoxy composites,
with BN contents of 44 vol% and 57 vol%, which is approximately 58 and 70 wt.%, respectively. In all
cases, the thermal conductivity increased with BN content, so we consider here only those with 70 wt.%.
The composites with untreated BN particles, equiaxial and from 5 to 11 µm in size, have a thermal
conductivity of 5.27 W/mK, which increases sequentially for acetone, nitric acid and sulphuric acid
treatments. For the silane treatment, the thermal conductivity increases with increasing proportion
of silane, from 0.7% to 2.4%, and at the highest proportion is the most effective treatment, giving a
thermal conductivity of 10.31 W/mK. This increase in thermal conductivity of 96% as a consequence
of the surface treatment of the BN particles is remarkable, and represents the most dramatic effect
of all the surface treatments considered here. This is illustrated in Figure 9, which presents the data
of Figure 7 in a slightly different way. First, only the maximum value from each of the references
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is plotted, rather than showing the data for all BN contents from a given reference source. Second,
the scales are limited to 11 W/mK and 90 wt.% BN; in this way, it is possible to show more clearly
the region in which most of the experimental data lie and to identify the effects of the parameters,
namely the surface treatment and the particle size.

The data of Xu and Chung [144] can be seen at 70 wt.% BN in Figure 9, indicated by filled and
open orange circles. A similar increase in thermal conductivity, of almost 75%, when the BN particles
were surface treated can be seen in the data of Yung and Liem [54] at 38 wt.% BN, indicated by light
blue circles, though the unusual nature of these results was pointed out above. Similarly, a significant
increase in thermal conductivity was found by Kim et al. [102] for an epoxy-terminated dimethyl
siloxane matrix filled with BN particles which had been treated with either GPTMS or 3-chloropropyl
trimethoxysilane (CPTMS). These authors found, for BN contents from 50 to 70 wt.% (indicated
in Figure 9 by open and filled brown circles for 70 wt.%), that GPTMS was more effective than
CPTMS, although both increased the thermal conductivity when compared with composites fabricated
without any coupling agent. In fact, an increase in thermal conductivity as a consequence of surface
functionalisation and/or of using a coupling agent is nearly always observed, though the effects are
often much smaller than those reported by Xu and Chung and by Yung and Liem. However, there is
one report in which the thermal conductivity decreases in nearly all cases after surface treatment [66],
and it is argued that for the surface treatment to be effective, the BN particles must be platelets rather
than agglomerates, since the latter have fewer edges available for modification. In this respect, it would
appear strange that the dramatic increase observed by Xu and Chung [144] should be for what these
authors call “equiaxial” particles.
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Figure 9. Maximum values of thermal conductivity as a function of BN content for data taken from
references [54,57,59–159]. Colour coding for references is given in the legend but can be seen more
clearly in Supplementary Material 3. Open circles: untreated particles; filled circles: treated particles.
Squares correspond to data from oriented samples. Increasing size of particles within any set of data
is represented by increasing size of symbol. Dashed lines are the intermediate and lower trend lines,
and are drawn to guide the eye. Some of the data at 20, 30 and 40 wt.% BN have been shifted slightly to
lower or higher BN contents to avoid overlapping, for clarity.
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In some instances, the effect of surface treatment is so small as to be virtually
negligible [71,74,82,123,131,148,155]. On the other hand, when the thermal conductivity is low
(close to the lower trend line in Figure 9), a small absolute increase can translate into a significant
percentage increase. This effect can be seen in the results of Lee et al. [109], where for 10 wt.% BN
the conductivity increases from 0.27 to 0.36 W/mK after sulphuric acid treatment and silanisation,
and in the results of Zhang et al. [155], where it increases from 0.37 to 0.43 W/mK at 15 wt.% BN after
oxidisation in air and the addition of APTES. In contrast, again at a low BN content of only 10 wt.%,
the non-covalent functionalisation with pyrenebutyric acid by He et al. [85] results in a remarkable
increase in thermal conductivity from 0.68 to 1.58 W/mK, well above the intermediate trend line.

There are some other results which should be commented on. Chung and Lin [72] achieved high
BN content, but found that the thermal conductivity passes through a maximum at 50 to 60 vol% for two
different BN particle sizes, 3.6 and 10.6 µm, the latter exhibiting higher thermal conductivity. When the
GPTMS coupling agent was used without prior functionalisation of the BN particles, the maximum
thermal conductivity increased by about 0.5 W/mK for each size of particle, leading to a value of
7.42 W/mK for the larger particle, which is approaching the intermediate trend line in Figure 9.
Jang et al. [96] observed an increase from 2.4 to nearly 3.5 W/mK for a BN content of close to 40 wt.%,
which represents a move from below to well above the intermediate trend line; this was for BN which
had been surface modified by a sol-gel reaction with NH4OH and a silane coupling agent with a C16
carbon main chain. Similarly, Wattanakul et al. [137,138] investigated various strategies, including the
use of admicellar polymerisation modification of the BN surfaces and the use of cationic surfactants
of different chain length. These treatments resulted in significant increases in thermal conductivity,
with maximum values of 3.4 W/mK at 51 wt.% BN and 2.69 W/mK at 46 wt.% BN, both of which are
close to the intermediate trend line.

Other results for which thermal conductivity values fall close to the intermediate trend line should
also be mentioned. Jiang et al. [97] used a strong alkali to attach –OH groups to the BN particles and
then grafted the mercaptopropyltrimethoxysilane coupling agent. The increase in thermal conductivity
as a consequence of the surface treatment resulted in a maximum value of 1.2 W/mK, which is relatively
high for a BN content of only 24 wt.%. Likewise, Li et al. [113] achieved a relatively high value of
1.04 W/mK for only 20 wt.% BN in a flame-retardant epoxy-BN nanocomposite. At slightly higher
BN contents, Tang et al. [131] achieved a value of 1.51 W/mK at 30 wt.% BN with APTES as the
coupling agent.

It is evident that in virtually all cases the surface treatment of the BN particles and/or the
use of coupling agents, in all their varieties, result in an enhancement of thermal conductivity.
However, this comes at a certain cost in many instances. One of the important parameters with
respect to the use of these epoxy-BN composites in insulated metal substrates is the simplicity
of the fabrication process, as mentioned in the Introduction, but many of the results discussed
above make use of a solvent in the dispersion of the functionalised BN particles in the epoxy resin
system, which is generally an undesired industrial practice. The solvents most widely used are
acetone [57,74,85,113,131,141,148] and ethanol [68,82,97,155], but others include methyl ethyl ketone
and dimethyl formamide [96], and tetrahydrofuran [71]. On the other hand, “dry” or “direct”
mixing, which obviates the use of any solvents in this composite fabrication step, was adopted by
many researchers [54,88,109,113,123,137,138,144,149,156]. Chung and Lin [72] used dry mixing for
BN contents ≤40 vol% but required acetone as a solvent for dispersion in order to achieve higher
filler loadings.

While there seem to be clear advantages in the use of surface treatment to enhance thermal
conductivity, it should be pointed out that there are several researchers who did not make use of such
treatments yet achieved notable values of thermal conductivity. These results, represented by open
circles in Figure 9 and which lie close to the intermediate trend line, are worthy of some comment.
Gaska et al. [81] used a DGEBA epoxy cured with anhydride, and reported thermal conductivity values
of 2.32 W/mK and 2.75 W/mK at a filler loading of 25 vol% (approximately 39 wt.% BN), for untreated
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BN particles with average sizes of 13 µm and 25 µm, respectively. The effect of particle size will be
considered later, but it is remarkable that such values of thermal conductivity are achieved with simple
mixing with untreated BN particles. Approximately the same value of thermal conductivity as that
for the smaller particles above was reported by Jang et al. [96], namely 2.40 W/mK at approximately
39 wt.% BN, for untreated platelets with sizes in the range of from 5 to 10 µm; the unspecified epoxy
resin was cured with dicyandiamide, but the composite preparation required the use of methyl ethyl
ketone and dimethylformamide.

At slightly higher BN contents, Hutchinson et al. [64–66] reported values from 3.2 to 3.4 W/mK
at about 47 wt.% BN for particles of various sizes and types, and values of approximately 4.2 W/mK
at 54 wt.% and 58 wt.% BN. These values, higher than the majority of other values reported in the
literature, both with and without surface treatment, were all obtained with untreated BN particles,
and with a DGEBA epoxy resin matrix cured with a thiol, PETMP. These authors suggested that
the Lewis acid-base interaction between the sulphur in the thiol and the boron in the filler leads to
an improved matrix-filler interface, which was the reason for the enhanced thermal conductivity.
In support of this hypothesis, they reported that the same epoxy-BN system cured with a diamine does
not give such high thermal conductivities, for example only 1.7 W/mK at 53 wt.% BN [65]. They also
noted that the cure kinetics of the epoxy-thiol system and the epoxy-diamine system are quite different
in their dependence on the BN content, as discussed in Section 2, and consider this to be further
evidence of the favourable matrix-filler interaction in the epoxy-thiol-BN composite system.

The result obtained by Kargar et al. [98] is also noteworthy. These researchers used an unspecified
epoxy and curing agent and obtained high volume fractions of untreated BN platelets, with sizes in the
range from 3 to 8 µm, without the use of solvents. The reported thermal conductivity of 5.5 W/mK at a
filler loading of 59 wt.% (open yellow circle) is very close to the intermediate trend line in Figure 9.

3.3. Effect of BN Particle Size and Shape

Another parameter that is of prime importance in respect of the thermal conductivity of epoxy-BN
composites is the size and shape of the particles used as the filler. The interface between filler particles
and matrix is important because it represents a thermal barrier in the pathway for phonon transport
between the highly conducting BN particles. There will inevitably be some heat conduction through
the epoxy resin between the filler particles, and it is for this reason that much effort has been expended
in attempting to minimise the thermal barrier of the interface by surface treatments of the BN particles
and by the use of coupling agents, as discussed in the previous section. For a given filler loading,
however, the amount of interfacial region depends on the size of the filler particles, which decreases
as the particle size increases. Consequently, one might expect that the thermal conductivity of an
epoxy-BN composite with a given weight fraction of filler would be greater the larger the filler particles
are. We examine this idea by referring to the data collected in the literature.

In Figure 9, the results obtained for a given system in which BN particles of different sizes are
used are presented such that the size of the data point increases with increasing particle size. In nearly
all cases, thermal conductivity increases as the particle size increases, as expected. For Chung and
Lin [72], who also investigated the effects of using a coupling agent, this increase was quite dramatic,
going from about 2.3 to 7.0 W/mK with no coupling agent, and from about 2.8 to 7.5 W/mK with
a coupling agent, when the average particle size increased from 3.6 to 10.6 µm (dark blue circles,
open and filled, at 65 and 74 wt.%). Hong et al. [87] investigated the effect of a bimodal distribution
of polygonal aluminium nitride particles and platelet-shaped BN particles, with a view to increasing
the packing efficiency and maximum filler content, but also reported the thermal conductivity of
highly filled composites containing only BN particles, with average sizes of 6 µm and 18 µm. For a
very high content of 70 vol%, which approximates to 88 wt.% BN, and with APTES as the coupling
agent, the thermal conductivity increased from 1.4 to 3.5 W/mK with increasing particle size. Although
these values of thermal conductivity are low for such a high filler content, as is evident from Figure 9
(filled light green circles), they display the usual dependence on particle size. The slight decrease
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in thermal conductivity at 73 wt.% BN with increasing particle size, for values taken from earlier
work by the same group [86] (filled yellow circles), is misleading. In this earlier work, the authors
were studying the effect of different quantities of the APTES coupling agent; the maximum thermal
conductivity occurred for different silane contents for the two particle sizes (1 and 5 µm) and the
variation in thermal conductivity was small, so this result is not likely to be significant.

Kim et al. [102], who investigated the effect of different coupling agents, as discussed in the
previous section, also studied the effect of different sizes of BN particles, namely 1, 8 and 12 µm,
and observed a systematic increase in the thermal conductivity with increasing particle size for each
of their filler contents of 50, 60 and 70 wt.%. The result for 70 wt.% BN is included in Figure 9 (open
brown circles), where it can be seen that the thermal conductivity was rather low for such a high filler
content, though the use of the coupling agent improved it (filled brown circle).

There are several results where the thermal conductivity for composites with a given filler content
lies close to the lower trend line in Figure 9, but with an increase in the particle size the thermal
conductivity increases, sometimes even approaching the intermediate trend line. Isarn et al. [61],
in their studies of composites with a cycloaliphatic epoxy cured with a thiol, obtained a value close
to 1.0 W/mK for 40 wt.% of 6 µm particles, which increased significantly to 1.7 W/mK for the same
loading of 80 µm particles, a value mid-way between the lower and intermediate trend lines. In another
example, Tang et al. [131] obtained a thermal conductivity of 0.6 W/mK at a filler loading of 18 vol%
(approximately 30 wt.%) for 1.5 µm particles, which lies on the lower trend line. This value increased
to 1.4 W/mK for 30 µm particles (open blue circles, displaced to 31 wt.% for clarity), a value close to
the intermediate trend line. Furthermore, this value increased slightly when a coupling agent was
used (filled blue circle). Similar results were reported by Yung et al. [149] with a particle size increase
from 53 nm to 4 µm for 43 wt.% BN, and by Zhu et al. [157] with a particle size increase from 70 nm to
7 µm for 34 wt.% BN. The same effect of increasing thermal conductivity with increasing particle size
is therefore also seen in the size range from nanometre to micrometre.

While the majority of researchers have found that thermal conductivity increases with BN
particle size, there are some, though rather few, reports of almost no effect, or even a decrease.
Pawelski et al. [121] used a Novolac epoxy matrix cured with diethylmethyl benzenediamine and
filled with 45 wt.% BN particles 2, 12 and 45 µm in size, all in the form of platelets. The thermal
conductivities measured were 0.53, 0.59 and 0.66 W/mK, respectively, thus increasing systematically
with particle size, but very little when viewed in the context of other values reported in the literature.
This is seen clearly in Figure 9, where these values are all clustered just below the lower trend line
(open purple circles). Likewise, Permal et al. [122] observed no effect of particle size, for BN platelets
with average sizes of 1 and 5 µm, in their composites with 30 wt.% filler. They used an epoxy matrix
that was a mixture of DGEBA, Novolac and cycloaliphatic epoxy, cured with anhydride. Similar to the
study by Pawelski et al., the value of the thermal conductivity was very low for the filler content used,
and lies just below the lower trend line in Figure 9 (dark blue filled circle).

The notable report of a decrease in thermal conductivity as BN particles size increases can be
found in the work of Yung et al. [151]. These authors investigated epoxy-BN composites with a
bisphenol-A phenolic matrix cured with an anhydride and filled with platelets with sizes ranging from
1.5 to 15 µm, both with and without a silane coupling agent. The use of the silane coupling agent
resulted in an increase of thermal conductivity, but there was a decrease in thermal conductivity for
increasing particle size, typically by between 20% and 30%, whether or not the coupling agent was
used, and for all the filler contents used, from 3 to 10 vol%, equating to about 5 to 16 wt.%. These data
can be seen to fall well above the intermediate trend line in Figure 9 at 16 wt.% BN (open and filled
brown circles), and even above the upper trend line in Figure 7. The fact that these authors found
trends of thermal conductivity as a function of BN content and particle size that are opposite to nearly
all other reports in the literature suggests that there may be some other factors at play here, such as
orientation or sedimentation of the particles during the fabrication of the composites.
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Finally, it is important to point out that it is not always straightforward to deduce the effect of
particle size from results presented in the literature, as there is a simultaneous effect of particle shape
which can complicate the situation. For example, Gaska et al. [81], in a study of epoxy composites
filled with hybrids of aluminium nitride, boron nitride and silica, compared the thermal conductivity
of two epoxy-BN composites, one filled with platelet-shaped particles with an average size of 13 µm
and the other filled with agglomerates with an average size of 25 µm. The thermal conductivity
of composites filled with 25 vol% (approximately 39 wt.%) of the larger agglomerate particles was
2.75 W/mK, falling on the intermediate trend line in Figure 9, in comparison with only 2.32 W/mK for
the same content of the smaller platelet particles (open light brown circles). This seems to accord with
the usually observed increase in thermal conductivity with increasing particle size, but this conclusion
does not take into consideration the effect of the shape of the particles.

Likewise, Huang et al. [91] used BN fillers in different forms, namely spherical particles with
a narrow size distribution from 200 to 400 nm, and “flakes” with a diameter from 3 to 6 µm and a
thickness from 100 to 300 nm. These authors found that, for filler loadings up to 30 wt.%, the thermal
conductivity was 0.95 W/mK for the composites fabricated with flakes compared with 0.45 W/mK for
the composites fabricated with the smaller spherical particles. Both of these values are rather low for
the filler content used, the latter falling on the lower trend line. Again, though, the particles with the
larger diameter give a higher thermal conductivity, but in this case, in contrast to the findings of Gaska
et al., it is the platelet-shaped particles which had the higher conductivity.

Similar to Gaska et al., Sun et al. [128] compared composites fabricated with up to 40 wt.% of larger
(30 µm) spherical particles with those fabricated with smaller (18 µm) platelets and found that the
thermal conductivity was higher for the larger spherical particles. For example, at 40 wt.% the thermal
conductivity was 1.03 W/mK for the spherical particles in comparison with 0.86 W/mK for the platelets.
These values fall well below those found by Gaska et al. for particles of similar sizes, and in fact are
only slightly above the lower trend line in Figure 9, but nevertheless show this same trend of increasing
thermal conductivity with particle size. In fact, the preparation procedure for these composites
involves a hot pressing stage; this induces a certain amount of in-plane orientation for the platelets,
which does not occur for the equiaxial spherical particles. The values quoted above correspond to the
through-plane direction, and hence disadvantage the platelets, for which the through-plane thermal
conductivity of the platelets themselves (2 W/mK according to Sun et al.) is much smaller than the
in-plane value (185 to 300 W/mK according to Sun et al.). This effect of orientation will be considered
later, but is clearly a further complication in the analysis of the effect of particle size.

The findings of Gaska et al. [81], Huang et al. [91] and Sun et al. [128] demonstrate an increase
of thermal conductivity with increasing particle size, but it is not possible to draw any unequivocal
conclusions from them about the effect of particle size, as there are other intervening factors. On the
other hand, Hutchinson and co-workers [63–67] conducted a systematic study of the effects of both BN
particle size and shape. Moradi et al. [65] fabricated epoxy-thiol composites filled with BN particles of
different average sizes, namely 2, 30 and 180 µm, all in the form of platelets, and found an increase of
thermal conductivity with increasing particle size for a given filler content. For example, for 47 wt.%
BN the thermal conductivity increased from 1.28 W/mK for the 2 µm particles to 2.36 W/mK for the
30 µm particles and reached 3.02 W/mK for the 180 µm particles. In Figure 9, this can be seen to
represent an increase from just above the lower trend line for the smallest particles to slightly below
the intermediate trend line for the largest particles (open dark green circles). This filler content of
47 wt.% was the limiting amount for the 2 µm platelets, but higher contents were achieved for the
larger particles, with the thermal conductivity reaching a value of 4.22 W/mK at 58 wt.% filler content;
this value can also be seen in Figure 9 to be approaching the intermediate trend line. The same
effect of particle size was reported also by this group for agglomerates: for example, at 47 wt.% filler
content, the thermal conductivity for composites made with lightly agglomerated 6 µm particles
was 2.31 W/mK [63], whereas a significantly higher value of 3.40 W/mK was measured when 80 µm
agglomerates were used [64]. It is interesting to note that with the use of hybrids, in which BN particles



Materials 2020, 13, 3634 24 of 41

of different sizes are incorporated simultaneously, in particular 80/6 µm and 80/2 µm [64], the thermal
conductivity did not increase for a given filler content, but decreased. This result is consistent with
larger particles giving higher thermal conductivity. What the hybrids do permit, on the other hand,
is a higher packing density, and hence higher thermal conductivities were achieved as a consequence
of higher filler contents [64]. This same group also compared the effects of particles of different shapes,
namely platelets and agglomerates [67], and found that agglomerates are more effective in enhancing
the thermal conductivity. For example, for all the filler contents investigated, 120 µm agglomerates
gave a higher thermal conductivity than the larger 180 µm platelets.

The reason why larger particles should result in higher thermal conductivities for a given filler
content is probably related to the effect of the matrix-particle interface, which represents a certain
barrier to heat transfer. It is for this reason that much attention has been paid to improving this
interface, as discussed in Section 3.2. For a given filler content, this interfacial area is smaller for
larger filler particles, and hence one would expect the effect of particle size that is generally observed.
However, increasing particle size has its limitations as a strategy for increasing the thermal conductivity
of insulated metal substrates; in practice, the dielectric layer is usually between 50 and 150 µm in
thickness, and filler sizes of less than about 30 µm are preferred.

4. Special Procedures

4.1. Orientation

The quest for higher values of thermal conductivity of epoxy-BN composites has encouraged
a large number of researchers to investigate novel fabrication procedures in recent years. In many
cases these procedures involve orientation of the BN platelets in some way or another in order
to benefit from the much higher in-plane thermal conductivity of the BN platelets themselves in
comparison with the through-plane direction. In general, these specialised fabrication procedures
create a structured assembly for which there is a highly anisotropic thermal conductivity and often a
significant enhancement of thermal conductivity. This can be seen clearly in Figure 7, where the open
squares represent data obtained from composites fabricated by such procedures. Many of these data
points fall close to the upper trend line. Here, we review some of these special procedures.

Orientation of the filler particles can be achieved in a number of ways, possibly even simply by
sedimentation of the particles in a low viscosity mixture. Kim and Kim [100] fabricated composites
with an epoxy-terminated dimethyl siloxane matrix cured with diaminodiphenylmethane, in which the
BN particles, either as 12 µm h-BN platelets or exfoliated BN nanosheets (BNNS), were incorporated in
solution in ethanol. During solvent removal by filtration, the larger h-BN particles were preferentially
oriented to a greater extent than the BNNS, which resulted in an anisotropic thermal conductivity,
with higher values and a greater degree of anisotropy for the former. For a composite with 68 wt.%
h-BN, the thermal conductivity increased from 2.5 W/mK in the through-plane direction to 4.7 W/mK
in the in-plane direction, as can be seen in Figure 9 (filled dark green symbols). In a slightly different
procedure, orientation was also induced by gravity alignment of 10 to 30 µm size h-BN platelets by
Yu et al. [147] during vacuum filtration from an ethanol solution to form a h-BN “cake”, in the form of
a cylinder of diameter 4 cm and thickness 3 cm, in which the BN platelets were oriented parallel to the
base of the cylinder. This cake was then sliced thinly, with the BN platelets perpendicular to the plane
of the slices, infiltrated with an acetone solution of DGEBA epoxy resin, hexahydro-4-methylphthalic
anhydride curing agent and dimethylaminomethylphenol accelerator, degassed under vacuum,
and cured at 100 ◦C for 2 h. For 44 vol% BN content, this significant amount of orientation gave a
thermal conductivity in the through-plane direction of 9.0 W/mK in comparison with 3.5 W/mK for a
simple random dispersion of the same BN content in the epoxy system. These results are included in
Figure 9 at an estimated 58 wt.% BN (open dark pink symbols), where it can be seen that the orientation
increases the thermal conductivity from approximately mid-way between the lower and intermediate



Materials 2020, 13, 3634 25 of 41

trend lines to well above the intermediate trend line; nevertheless, Figure 7 shows that the oriented
sample still lies significantly below the upper trend line.

Filtration through a die was also the technique adopted by Xiao et al. [143] to induce orientation
of BNNS in composites. They used a more elaborate fabrication procedure, in which the BNNS
were first exfoliated from 12 µm BN platelets by sonication in isopropyl alcohol and were then both
functionalised with GPTMS and decorated with SiC nanowires (SiCw, 0.1 to 0.6 µm in diameter and 50
to 100 µm long) in an ethanol solution before being vacuum filtrated through a die. They achieved a
vertically-oriented SiCw/BNNS framework which was vacuum-assisted infiltrated with epoxy resin
and anhydride curing agent, and finally cured. Samples were prepared with different proportions of
SiCw and BNNS, and while the thermal conductivity increased with BNNS content as usual, for a given
filler content the thermal conductivity increased with increasing proportion of BNNS, leading us to
question why the SiCw was incorporated. The highest thermal conductivity obtained was 4.22 W/mK
in the direction of orientation for a sample containing 21.9 vol% filler (approximately 30 wt.%) with a
1:9 mass ratio of SiCw and BNNS. The corresponding value in the orthogonal direction was 1.43 W/mK,
and these values can be compared with 1.6 W/mK for a randomly distributed epoxy/BNNS composite.
The thermal conductivity of the oriented sample lies on the upper trend line in Figure 7 and well above
the intermediate trend line in Figure 9 (filled maroon square), and hence represents a significant result.
In fact, this result is quite similar to those obtained by Yu et al. [147], Hu et al. [90], Liu et al. [116],
and Lim et al. [114]. All these values of thermal conductivity, at different filler contents for each of these
groups, increased as a consequence of the various methods of orientation, from a value approximately
mid-way between the lower and intermediate trend lines to a value well above the intermediate
trend line.

Similarly, Lee et al. [108] observed a significant increase, from 0.6 W/mK in the through-plane
direction to 1.7 W/mK in the in-plane direction, for composites with only 10 wt.% BN. This is again
clearly seen in Figure 9 (open red symbols). The fabrication procedure involved the use of a solvent,
acetone, to incorporate the 1.5 to 2.0 µm BN particles into the epoxy-diamine mixture, and the low
viscosity and low filler loading probably resulted in sedimentation, though this is not specifically
stated by the authors.

Perhaps a more direct way in which to induce orientation, and one which has been used by a
number of researchers, is by hot-pressing. This is well illustrated by the results of Hu et al. [90] on
composites with an anhydride-cured epoxy matrix and 18 µm BN particles. In the first stage of the
fabrication procedure, illustrated in Figure 10, the composite was mixed and partially cured for 15 min
at 120 ◦C to provide sufficient viscosity for the subsequent stage, in which a pressure of 10 MPa at
150 ◦C was applied to the composite sample between copper foils. The hot-pressed composite was
then moulded into a disc shape with diameter 25.4 mm and thickness 200 µm, and finally cured at
temperatures from 120 ◦C to 200 ◦C for programmed times. The particle orientation induced by the
hot-pressing was detected by X-ray diffraction (XRD), and the degree of orientation was found to
increase as the filler loading increased from 40 to 60 wt.%. The anisotropy induced at 50 wt.% was
notable: 6.09 W/mK for the oriented sample in comparison with 2.44 W/mK for a sample with random
orientation of the BN particles. In Figure 9, this orientation effect can be seen to increase the thermal
conductivity from well below the intermediate trend line to well above it (open black symbols). A more
dramatic increase, to 10.87 W/mK, was found for the higher filler loading of 60 wt.%, as can be seen in
Figure 9, but the increased viscosity of this mixture required the use of acetone as a solvent. In fact,
these authors carried out a systematic study including different temperatures (130, 150 and 170 ◦C) and
pressures (7, 10, 13 MPa) for the pre-curing stage, as well as different particle sizes of 5, 18 and 25 µm.
In this respect, it is interesting to note that increasing pressure results in higher thermal conductivity,
as does increasing the size of the BN particles.

Similar results were reported by Liu et al. [116] for a low viscosity epoxy-amine filled system using
isopropanol as a solvent, with either 1 to 2 µm h-BN platelets or exfoliated BNNS of about 300 nm
lateral dimension. The fabrication procedure of composite films involved spin-coating followed by
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evaporation of the solvent, and then pre-curing for 5 h at room temperature to provide the necessary
viscosity of the mixture. This mixture was then cured under pressure at 5 MPa and 80 ◦C for 30 min
before completing the cure over 5 h at 60 ◦C. The 40 wt.% BN composites showed considerable
anisotropy, more so for the BNNS than for the h-BN. For example, in the through-plane direction the
thermal conductivity was 1.9 W/mK for the BNNS composite and 1.3 W/mK for the h-BN composite,
which increased to 6.0 W/mK and 3.0 W/mK in the in-plane direction, respectively; in Figure 9,
these in-plane values lie well above and just on the intermediate trend line, respectively (filled sage
green squares). The greater thermal conductivity for the BNNS filler was attributed to a reduction,
by an order of magnitude, in the interfacial thermal resistance between filler and matrix in comparison
with the h-BN filler, as a consequence of the use of a surface coupling agent (APTES).
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An even more dramatic enhancement of thermal conductivity by orientation was reported by
Zhang et al. [153]. These authors investigated an anhydride-cured bisphenol-A epoxy system in
which the 18 µm BN platelets were decorated with Ag nanoparticles, an approach that will be
further discussed in Section 4.3. The fabrication procedure included the use of hot-pressing, and the
effect of this can be considered separately from that of the Ag nanoparticles as the authors used a
control sample with undecorated particles, prepared following the same procedure of hot-pressing
(“Hot-pressed BN/epoxy”), as well as a sample prepared without hot-pressing (“Random BN/epoxy”).
The hot-pressing was made under a relatively low pressure of 30 psi (≈200 kPa) at 100 ◦C for 10 min,
followed by a final cure schedule at temperatures up to 200 ◦C for programmed times. For a filler
content of 62 wt.%, the random BN/epoxy sample had the same thermal conductivity of 2.1 W/mK in
both the in-plane and through-plane directions, as would be expected, while the hot-pressed BN/epoxy
sample had a thermal conductivity of 9.5 W/mK in the in-plane direction compared with 2.6 W/mK
in the through-plane direction. This orientation can be seen in Figure 9 (open dark green symbols)
to increase the thermal conductivity from somewhat above the lower trend line to well above the
intermediate trend line, even at this relatively low pressure.

Much higher pressures and filler contents were used by Zhu et al. [158], but there seems to be very
little effect of the magnitude of the pressure on thermal conductivity. In some way this is consistent with
the observation by Zhang et al. [153] that a low pressure can induce significant orientation and hence
dramatically enhance thermal conductivity. Zhu et al. fabricated their composites by incorporating
their BN platelets into an amine-cured epoxy using tetrahydrofuran as solvent, and compressed their
samples at pressures of 43, 108 and 215 MPa for 5 min in a 24 mm diameter mould before curing them
in an oven at 80 ◦C for 30 min and then at 120 ◦C for 60 min. It should be noted that this procedure is
significantly different from the hot-pressing used by Hu et al. [90], Liu et al. [116] and Zhang et al. [153],
in which the pre-cure took place under pressure. From SEM images of fracture surfaces of the cured
composites, Zhu et al. concluded that there is a certain orientation of the BN platelets as a consequence
of the compression process, but that this orientation is not significantly affected by the magnitude of
the pressure applied. In contrast, for samples prepared without the application of pressure there was
no observable orientation. This lack of dependence of orientation on the magnitude of the pressure is
reflected in the thermal conductivity; although there is a fair amount of scatter in the data, there does
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not appear to be any systematic or significant dependence on pressure, but the thermal conductivity
is significantly higher than that for samples prepared without pressure. For example, at 84 wt.%
BN and 215 MPa pressure, the through-plane and in-plane thermal conductivities were 7.95 W/mK
and 8.63 W/mK, respectively, in comparison with only 3.3 W/mK for the sample prepared without
compression. This effect of pressure can be seen very clearly in Figure 9 (open navy blue symbols).
The rather small difference between the through-plane and in-plane thermal conductivities for a filler
content of 84 wt.% is perhaps surprising, but it becomes much more marked for higher filler contents,
and a thermal conductivity of over 20 W/mK was achieved in the in-plane direction at filler contents of
about 90 wt.%.

An alternative way in which orientation can be introduced into epoxy-BN composite systems
is by magnetic alignment, an approach that has been used by several researchers, most notably
Lim et al. [114] and Kim and Kim [99], both groups following similar procedures for decorating
the BN platelets with Fe3O4 nanoparticles. In order to obtain the desired orientation, the uncured
epoxy-BN-Fe3O4 mixtures were placed in a magnetic field before curing. Lim et al. [114] cast 1 mm
thick films with 20 vol% (≈34 wt.%) of 8 µm BN platelets from an epoxy solution in methylethylketone
to obtain a vertical orientation of the platelets with respect to the plane of the film. Without magnetic
orientation, the thermal conductivity was less than 1.0 W/mK, whereas for the oriented film it was
4.3 ± 0.5 W/mK in the vertical direction, thus increasing from just above the lower trend line in Figure 9
to close to the upper trend line in Figure 7. More recently, Kim and Kim [99] used Fe3O4-decorated
BN nanoplatelets, which had previously been liquid phase exfoliated by ultrasonication from 12 µm
h-BN particles in dimethylformamide. These decorated particles were then dispersed in proportions
up to 20 wt.% in a DGEBA epoxy/acetone solution, before removal of the acetone and addition of
the diaminodiphenylmethane curing agent. The doping of the surface of the BN nanoplatelets with
Fe3O4 was confirmed by XRD and X-ray photoelectron spectroscopy (XPS), while the orientation of
the nanoplatelets was also confirmed by XRD. Compared with composites fabricated with the raw
h-BN particles, for which the thermal conductivity at 20 wt.% was 0.62 W/mK, the same content of the
Fe3O4-doped nanoplatelets gave a slightly lower value of 0.48 W/mK without alignment, but a higher
value of 1.07 W/mK with magnetic alignment. This last value falls just on the intermediate trend line
and so is somewhat disappointing, while the lower value for the unaligned composite was attributed
to the effect of additional Kapitza resistance introduced by the Fe3O4 nanoparticles.

In terms of enhancing thermal conductivity by the magnetic orientation procedure, the recent
results reported by Kim and Kim [99] do not compare very favourably with the earlier work of
Lim et al. [114]. Some other relatively recent results were also less successful. Salehirad et al. [125]
adopted the same magnetic alignment principle but used a slightly modified procedure in which
70 nm h-BN nanoparticles were first exfoliated into nanosheets by sonication, polyacrylamide was
then grafted and the nanosheets were finally modified with Fe3O4 nanoparticles. Epoxy composites
with filler loadings up to 20 wt.% were cast in a mould located between two magnets, but the results
were not definitive. Indeed, at the filler content of 20 wt.%, the highest thermal conductivity was
found for the polyacrylamide-grafted BN nanosheets without Fe3O4 modification, while there was no
systematic difference in thermal conductivity between the two orthogonal directions after orientation.
The lower values found for the Fe3O4-modified nanosheets are possibly again due to increased Kapitza
resistance, while the highest thermal conductivity of only about 0.4 W/mK at 20 wt.% is very close
to the lower trend line in Figure 9. Similarly, the results of Su et al. [127] for flexible cycloaliphatic
epoxy-BN composites are rather disappointing. Again, there is essentially no significant difference
between in-plane and through-plane thermal conductivity after magnetic alignment, and the maximum
value of thermal conductivity of about 1.0 W/mK at 30 wt.% filler content lies only mid-way between
the lower and intermediate trend lines in Figure 9.
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4.2. Three-Dimensional Structures

The basic objective of inducing orientation in composites by means of hot-pressing or magnetic
alignment is to create preferential pathways for heat transport. In recent years, the same objective
of creating pathways for phonon transport has been met in a number of ingenious ways, which rely
essentially on the construction of a three-dimensional framework into which the BN particles can be
introduced in an ordered way. In most cases, a further aim is to obtain high thermal conductivity at
low filler loadings, for reasons of processability, and consequently many of the examples presented
here use relatively low filler contents.

One quite common procedure is to create an aerogel-type structure with a vertically aligned
anisotropic 3-dimensional BNNS network into which the epoxy resin system is infiltrated, as illustrated
schematically in Figure 11. The aerogel fabrication often [70,89,134,152], but not always [79], makes use
of the ice-templated assembly method, and the skeleton support can be constructed with materials
other than BNNS such as cellulose [70] or polyamide 6,6 [79]. In these aerogel-type epoxy-BN
nanocomposites, the thermal conductivity is nearly always measured only in the alignment direction,
but Zeng et al. [152] compared the parallel and perpendicular directions. They found that the parallel
direction gave significantly higher values of thermal conductivity at very low loadings, from 2 to 4 vol%,
but that at higher loadings of around 10 vol% there was rather little difference, which they attributed to
a microstructural change from a well-ordered wall-like to a honeycomb-like morphology. At 9.29 vol%
BNNS, for example, the thermal conductivities in the parallel and perpendicular directions were
2.85 W/mK and 2.40 W/mK, respectively, compared with 1.13 W/mK for a composite with randomly
distributed BNNS and with 0.16 W/mK for the epoxy alone. For a similar BNNS content of 9.6 vol%,
Chen et al. [70] reported a thermal conductivity of 3.13 W/mK. The BNNS, with a lateral size of around
1.3 µm and thickness of about 2.5 nm, and previously exfoliated from h-BN particles, were incorporated
into a cellulose supporting structure, which was infiltrated with a cycloaliphatic epoxy resin with
methyl-hexahydrophthalic anhydride as a curing agent and neodymium acetylacetonate trihydrate as
a latent catalyst. These values of thermal conductivity obtained by Zeng et al. [152] and Chen et al. [70]
are remarkable for such a low filler content. If the 9 vol% content is approximated as 15 wt.% based
on the densities of BN and epoxy, it can be seen from Figure 7 that they fall well above the upper
trend line.
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At even lower filler contents, this aerogel procedure also produces some impressive thermal
conductivity results. Wang and Wu [134] infiltrated bisphenol-F epoxy and o-dichloroaniline methane
as curing agent under vacuum into the vertically aligned 3-dimensional BNNS network and measured
a value of 1.56 W/mK in the cured composite with only 4.4 vol% filler. This was significantly higher
than the value of 0.32 W/mK for the same content of randomly dispersed BNNS. If the filler content is
approximated as 8 wt.%, this result can be seen to lie well above the intermediate trend line in Figure 9
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(open maroon symbols), and just above the upper trend line in Figure 7. On the other hand, the results
reported by Fu et al. [79] for a filler content of 4 vol% are not quite so impressive. These workers
prepared a polyamide 6,6 aerogel structure, to which the BN platelets, with sizes between 3 and 5 µm,
adhered and formed a continuous thermal conduction network. After infusion of the epoxy resin and
diaminodiphenyl methane curing agent, and subsequent curing of the composite, they measured a
value of 0.6 W/mK. Although this is three times higher than the thermal conductivity of a composite
with the same content of a random dispersion of the same BN platelets, it lies only just above the
intermediate trend line in Figure 9 (open yellow square).

In contrast to the low filler contents used in the works described above, Hu et al. [89] introduced
large quantities of filler into their three-dimensionally structured composites. Their aerogel was
prepared by ice-templating and then freeze-drying an aqueous slurry of 10 µm h-BN platelets with
sodium carboxymethyl cellulose, which acts as both a dispersion agent and organic binder. The epoxy
resin, anhydride curing agent and imidazole catalyst were mixed and infused into the aerogel, and the
composite was finally cured at 120 ◦C for 1 h and then at 160 ◦C for 2 h. The thermal conductivity
increased with BN content in the usual way, and at the highest filler content of 34.2 vol% (approximately
49 wt.%) a value of 4.42 W/mK was measured, compared with a value of only 1.16 W/mK for a randomly
dispersed sample. This represents an increase from somewhat above the lower trend line in Figure 9
for the random sample to just above the intermediate trend line for the 3-dimensionally structured
sample (open dark brown square). In comparison with the values of thermal conductivity obtained
for other epoxy-BN composites prepared by the aerogel procedure and discussed above, this result is
not so noteworthy for such a high filler content. It is also worth remarking that, although the cure
schedule only reached 160 ◦C as a maximum, these authors reported glass transition temperatures for
the composite of up to 240 ◦C and decreasing markedly as the BN content increased; it is difficult to
reconcile these observations.

The above procedures usually introduce some anisotropy of thermal conductivity in the cured
epoxy-BN composite. Tian et al. [132] argue that such anisotropy is not always desirable and describe
an alternative way in which BN can be incorporated into a 3-dimensional structure, but with an
isotropic thermal conductivity. These authors added BN particles to an aqueous solution of sodium
dodecyl sulphate, which acts as both a foaming agent and surfactant, and gelatine, which provides
the structural integrity of the BN foam. Foaming was induced by rapid stirring, and the slurry was
then poured into a mould and stored at low temperature to solidify. After further drying at 70 ◦C,
the previously mixed epoxy, anhydride curing agent and imidazole catalyst were poured into the
porous BN foam, degassed, and then cured at 120 ◦C for 1 h and 160 ◦C for 3 h to obtain the epoxy-BN
composite. The procedure is schematically illustrated in Figure 12. X-ray tomography shows that the
BN filler formed a continuous 3-dimensional structure and that the epoxy filled the pores.
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This procedure resulted in some remarkable thermal conductivity values. For composites
fabricated with 24.4 wt.% of 8.7 µm BN platelets, the thermal conductivity in the in-plane direction was
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5.19 W/mK and in the through-plane direction was 3.48 W/mK. In principle, this fabrication procedure
should not give rise to anisotropic thermal conductivity; while not exactly isotropic, both of these
values represent high thermal conductivities for the given filler content, as can be seen in Figure 9
(dark blue symbols), the former even lying well above the upper trend line in Figure 7, while the
latter falls almost on it. Considerably lower values of thermal conductivity were found for composites
fabricated in the same way but using smaller BN particles of sub-micron size (0.7 µm); at 25.1 wt.%
filler content, these composites had a thermal conductivity of only 1.27 W/mK, just on the intermediate
trend line in Figure 9 (open dark blue circle). The authors attributed the difference between the results
for the micron-sized and sub-micron-sized BN particles to an alignment of the larger particles within
the pore walls in the foam structure, in comparison with a random distribution for the sub-micron
particles. It should be noted that these filler contents represent approximately limiting values for this
procedure; according to the authors, any further increase of loading results in serious aggregation of
the BN particles and poor structural uniformity of the composite. This can be noted from their graph of
thermal conductivity as a function of BN content, for which there is a noticeable downward curvature
at the highest contents.

A similar approach was adopted by Wang and Wu [135]. Melamine foam with an average
pore size of ≈100 µm was repeatedly immersed in an aqueous solution of polyethyleneimine and
then in a dispersion of exfoliated BNNS in isopropanol. In this way, they achieved a layer-by-layer
deposition of BNNS on the melamine foam structure by virtue of the electrostatic attraction between
the positively charged polyethyleneimine and the negatively charged BNNS, with up to 30 deposition
cycles. Scanning electron microscopy and element mapping show that the BNNS coat the surfaces of
the melamine foam cells rather homogeneously. The epoxy resin and curing agent, o-dichloroaniline
methane, were then infiltrated into the foam under vacuum, followed by degassing and finally curing
at 150 ◦C for 2 h and 180 ◦C for 2.5 h. It was found that the thermal conductivity increased with the
number of deposition cycles, reaching a value of 0.53 W/mK after 20 cycles. Increasing the number
of deposition cycles to 30 further increased the thermal conductivity to 0.6 W/mK, but the relative
increase was markedly reduced, similar to the downward curvature in the results of Tian et al. [132].
Nevertheless, this value remains remarkable. The authors estimated the filler content to be about
1.1 vol%, approximately 2 wt.% calculated on the basis of the densities, and it can be seen that this value
at a very low filler content lies well above the intermediate trend line in Figure 9 (open purple square).
Indeed, the authors point out that to achieve this thermal conductivity with a random dispersion of
BNNS in epoxy would require a filler loading of almost 20 vol%, which would correspond closely with
the lower trend line in Figure 9.

4.3. Surface Decoration

There are a number of recent reports in which the surfaces of BN particles have been decorated with
a variety of different nanoparticles or nanostructures, and following a variety of different procedures,
some much more elaborate than others, with a view to achieving increased thermal conductivity.
This has met with mixed success. Furthermore, since many of these decorating particles are themselves
thermally conducting, such as graphene, silver and gold, the corresponding composites are no longer
strictly epoxy-BN composites, but hybrids, and direct comparison with epoxy-BN composites fabricated
in different ways is no longer valid. Nevertheless, some of these reports are considered here for the
sake of interest.

Some of the simpler procedures were used by Han et al. [84] and Zhang et al. [155]. In the
former case, hetero-structured SiC-BNNS fillers, fabricated by sol-gel and in situ growth methods,
were mechanically mixed with the epoxy resin and curing agent and cured at 120 ◦C for 5 h. SEM images
showed SiC nanoparticles on the surface of the BNNS, and that the number of SiC nanoparticles
increased with the amount of Si powder used in the fabrication process. The mass proportions of
SiC:BNNS used were 2:1, 1:1 and 1:2. The thermal conductivity of the epoxy alone was 0.22 W/mK,
and those of the epoxy-SiC and epoxy-BNNS composites with 20 wt.% filler were 0.43 W/mK and
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0.61 W/mK, respectively; this simply reflects the higher thermal conductivity of BN in comparison with
SiC. There was a synergistic effect with the SiC-BNNS fillers, the thermal conductivity being higher
than that of the composites with each filler separately. The optimum proportion was 1:1, at which a
thermal conductivity of 0.89 W/mK was achieved at 20 wt.% filler content, but this value only just
reaches the intermediate trend line in Figure 9.

Zhang et al. [155] used hybrids of small h-BN particles and larger cubic BN (c-BN) spherical
agglomerates with a diameter of 59 µm. The procedure used was to modify the particles with a
silane coupling agent, APTES, and then add them to an Au salt preloaded micellar solution to give
Au-decorated BN. These particles were added in various proportions to the epoxy and curing agent
in an ethanol solution, mixed thoroughly, degassed under vacuum, and then cured, first at room
temperature for 3 h and then at 80 ◦C for a further 4 h. Similar to the findings of Han et al. [84],
a synergistic effect was again observed: the thermal conductivity enhancement for 6 vol% was 50%
for c-BN and 80% for h-BN, but a significantly higher enhancement of 120% was found for a hybrid
with 4 vol% h-BN and 2 vol% c-BN. Despite this, the values of thermal conductivity reported are
disappointing: 0.512 W/mK for a composite with 10.5 vol% (approximately 17 wt.%) filler without
Au-decoration, increasing to 0.656 W/mK with Au-decoration, only just reaching the intermediate
trend line.

Feng et al. [75] used a more elaborate fabrication procedure, devised to enhance both thermal
conductivity and flame retardancy. By means of a simple hydrothermal process, they produced
Ni(OH)2 nanoribbons that were 15 to 20 nm wide and 1 to 2 µm long, the purpose of which was
to provide flame retardancy by endothermic decomposition. These nanoribbons were coated onto
reduced graphene oxide (RGO) sheets by electrostatic self-assembly to give what the authors denoted
as RGO@Ni(OH)2. An ethanol solution of RGO@Ni(OH)2 was mixed with an acetone solution of
the diglycidyl ether of bisphenol-F epoxy and imidazole curing agent, the solvents were evaporated
and then the 5 to 10 µm h-BN platelets were dispersed in the mixture and the composite was cured
following a schedule of 2 h at 60 ◦C, 2 h at 100 ◦C, and 5 h at 150 ◦C. Composites were fabricated
with up to 40 wt.% h-BN. Compared with composites of epoxy and h-BN platelets alone, for which a
thermal conductivity of 1.44 W/mK was obtained for 40 wt.% filler content, composites with the same
content of h-BN and only 2 wt.% RGO@Ni(OH)2 had a thermal conductivity of 2.00 W/mK, an increase
of nearly 40%. In fact, a significant increase upon addition of 2 wt.% RGO@Ni(OH)2 occurred only
with h-BN contents greater than 20 wt.%. The authors explained this on the basis of the dispersion
of the h-BN platelets being too “dilute” at low filler contents, whereas at higher filler contents the
RGO@Ni(OH)2 forms bridges between the h-BN platelets, creating thermal conduction pathways.
Nevertheless, with respect to the thermal conductivity, even though this value is almost an order of
magnitude greater than that of the epoxy alone (0.21 W/mK), at a filler content of 40 wt.% it still falls
only about mid-way between the lower and intermediate trend lines.

Significantly more enhancement of thermal conductivity was achieved by Fu et al. [78], though at a
much lower filler content of 4.7 vol%, through a combination of orientation and decoration procedures.
BNNS were decorated with 10–20 nm Ag nanoparticles, denoted Ag-BNNS, and mixed with Ag
nanowires (AgNW), previously synthesised by a modified polyol procedure, to give Ag-BNNS/AgNW.
This mixture was ice-templated by freezing and freeze-drying to give a 3-dimensional network,
which was then infiltrated by epoxy resin and the anhydride curing agent and cured for 2 h at 160 ◦C.
The BNNS content was 4.7 vol%, which corresponds to approximately 8 wt.%. The thermal conductivity
in the out-of-plane direction, which is the orientation direction of the BNNS, increased with AgNW
content, which rose to 40 wt.% with respect to the BNNS content. The thermal conductivity at
approximately 8 wt.% filler content was 0.34 W/mK for the epoxy-BNNS composite with untreated
BNNS particles, 0.50 W/mK for epoxy/Ag-BNNS, and 0.80 W/mK for epoxy/Ag-BNNS/AgNW with the
highest nanowire content. Although the thermal conductivity was low, as a consequence of the filler
content being very low, these represent significant enhancements, the value of 0.80 W/mK falling well
above the intermediate trend line, as can be seen in Figure 9 (filled green square). The authors attributed
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the enhancement to AgNW improving heat transfer between BNNS, termed a “physical connection”,
and the Ag-decoration improving the interface between the BNNS and the AgNW, termed a “welding
connection”. It should be borne in mind that these composites, even without the AgNW, are hybrids
with the Ag nanoparticles decorating the surface of the BNNS, and direct comparison of their thermal
conductivity with the other epoxy-BN composites discussed here should be made with caution.

The combination of surface decoration and a “densely-assembled and oriented” structure was
introduced in an innovative way by Liu et al. [117], making use of 3-D printing technology, in order to
optimise the thermal pathways and promote efficient heat transfer within the epoxy-BN composite.
The 15 µm h-BN platelets were first exfoliated by sonication in dimethylformamide, and then aqueous
AgNO3 was gradually added and stirred for 1 h at 150 ◦C to reduce the Ag+ to Ag nanoparticles
(AGNPs) decorating the BN surfaces; this filler is denoted BN-Ag. The printing inks were prepared
by mixing the DGEBA epoxy and amine curing agent with silica, as a thixotropic agent, to give a
modified epoxy (MEP), and then adding the BN or BN-Ag particles to give loadings of 5, 10 and 20 wt.%
in the final composites. The 3-D printing was carried out using single-material and multi-material
printing. For single-material printing (S-BN/MEP and S-BN-Ag/MEP for undecorated and decorated
BN platelets, respectively), the sample was printed by repeated passes of the MEP ink with the above
filler loadings. For the multi-material printing (M-BN-Ag/MEP), the passes were made successively of
MEP ink loaded with 40 wt.% BN-Ag filler and 1, 3 or 7 passes of MEP ink alone. This procedure gave
the same 5, 10 and 20 wt.% filler loadings in the final composite, but with the conducting pathways
“densely-assembled and oriented”. High resolution SEM and XRD show that the BN particles were
oriented along the printing direction by shear alignment. The printed samples were cured for 3 h at
40 ◦C and 6 h at 80 ◦C. The thermal conductivity was measured in two orthogonal directions—the
printing direction (PD) and the transverse direction (TD)—and in all cases was found to increase with
BN content. In the TD, all the samples had approximately the same thermal conductivity, reaching
0.6 to 0.7 W/mK at a filler loading of 20 wt.% in comparison with 0.23 W/mK for the MEP alone.
In the PD, on the other hand, there was a much more dramatic increase in the thermal conductivity
with filler loading, increasing in the order S-BN/MEP (0.98 W/mK) → S-BN-Ag/MEP (1.77 W/mK)
→M-BN-Ag/MEP (2.52 W/mK). The increase from S-BN/MEP to S-BN-Ag/MEP can be attributed to
the presence of silver nanoparticles distributed on the surface of BN-Ag platelets, which reduce the
contact thermal resistance, while the increase from S-BN-Ag/MEP to M-BN-Ag/MEP results from the
dense filler loading of 40 wt.% in the heat-conducting phase, such that there is always contact between
BN platelets. Once again, it should be borne in mind that these composites with BN-Ag are hybrids,
with the Ag nanoparticles providing thermal pathways in addition to the BN. It is at least partly for
this reason that the value of 2.52 W/mK for M-BN-Ag/MEP falls on the upper trend line in Figure 7,
and the value of 1.77 for S-BN-Ag/MEP falls well above the intermediate trend line in Figure 9 (filled
sage green symbols). On the other hand, without the Ag decoration on the BN platelets, the value of
0.98 W/mK for S-BN/MEP falls just on the intermediate trend line in Figure 9.

5. Concluding Remarks

This review has examined the cure kinetics and thermal conductivity of a large number of
epoxy-BN composites reported in the literature. As regards the cure kinetics, the effect of fillers in
general is most commonly to accelerate the cure reaction, usually attributed to the catalytic effect of,
for example, hydroxyl groups present on the surfaces of the filler particles. For epoxy-BN composites
in particular, there are rather limited studies of the cure kinetics, but it is interesting to note that for
these epoxy-BN systems the reaction is more often retarded than accelerated by the filler particles.
Since many of these cure kinetics studies of epoxy-BN systems involve thiol as a curing agent, it is
surmised that this might be a consequence of a Lewis acid-base interaction between matrix and filler,
and that this interaction might have some corresponding influence on the thermal conductivity of the
cured composites. It transpires that such composites do indeed have a thermal conductivity which is
higher than that of many other systems with the same filler content.
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The discussion of the thermal conductivity considers composites which have been fabricated
using a wide variety of methods, from simple mixing to much more elaborate procedures involving
such aspects as orientation and other means of creating improved pathways for heat conduction.
The composite systems include diverse epoxy resins and curing agents, and incorporate BN particles
of different sizes and shapes, both with and without surface treatment and/or coupling agents.
The dependence of the thermal conductivity on BN content in almost all cases follows the same
tendency, namely to increase with increasing filler content and displaying an upward curvature.
Within this broad tendency, however, there is great variation, and we attempt to analyse the reasons
for this variation by defining three trend lines in the graph of thermal conductivity as a function
of wt.% BN. The lower trend line indicates the approximate limit below which very few results lie;
the vast majority of values of thermal conductivity reported for composites prepared without “special
procedures” or orientation of the BN platelets lie between the lower and intermediate trend lines;
and the upper trend line represents the approximate limit below which 95% of the reported values lie.

By locating reported values of thermal conductivity with respect to these trend lines it is possible
to discuss the effects of the many variables involved. For example, the use of surface treatments and/or
coupling agents nearly always increases the thermal conductivity. Thermal conductivity generally
increases with BN particle size, and agglomerates are often better than platelets for any given filler
content. To obtain thermal conductivities above the intermediate trend line usually requires some
special preparation procedures, or the introduction of orientation of the BN platelets, though there
are a few notable exceptions in which very high thermal conductivities were obtained without
such procedures. Furthermore, in a majority of cases these special procedures apply to rather low
filler contents, for example less than 20 wt.%, for which even a very significant increase in thermal
conductivity relative to a simple mixing procedure results in a thermal conductivity which is still less
than about 3 W/mK.

In general, if the use of these epoxy-BN composites is considered for application in IMS devices,
there are some fundamental requirements that must be met, including high thermal conductivity and
ease of processing. Many of the notable reports of enhancement of thermal conductivity discussed
here, and principally those involving special procedures, do not meet either of these requirements,
while many other procedures involve the use of solvents in the preparation of the composites, a practice
which is not desirable for industrial applications. Likewise, from a consideration of the intermediate
trend line, it is evident that to obtain a thermal conductivity greater than, for example, 5 W/mK using
“simple” preparation techniques would require a filler content greater than about 50 wt.%, which also
introduces practical difficulties as a consequence of the reduced manageability of such stiff pastes.

For IMS devices, therefore, there may be several procedures that could offer some practical
advantages in attempting to achieve higher thermal conductivity. One is the use of pressure, which can
be applied in practice quite easily, for example in an autoclave, and which allows the consolidation
of relatively stiff resin-filler mixtures and elimination of voids. Another is to induce orientation in a
type of pre-preg, which could then be laid up in a manner similar to that used in the fabrication of
fibre-reinforced composites, to obtain the orientation in the required direction of heat transfer. Finally,
the use of hybrids, for which several examples discussed exhibited synergistic behaviour, could provide
a relatively simple means of enhancing the thermal conductivity, with combinations of different particle
sizes and shapes. To date, it does not appear that these approaches have been exhausted.
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