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Purpose of review

To provide an overview of the mechanistic and clinical evidence for the use of nonspecific
immunomodulators in paediatric respiratory tract infection (RTI) and wheezing/asthma prophylaxis.

Recent findings

Nonspecific immunomodulators have a long history of empirical use for the prevention of RTIs in vulnerable
populations, such as children. The past decade has seen an increase in both the number and quality of studies
providing mechanistic and clinical evidence for the prophylactic potential of nonspecific immunomodulators
against both respiratory infections and wheezing/asthma in the paediatric population. Orally administered
immunomodulators result in the mounting of innate and adaptive immune responses to infection in the
respiratory mucosa and anti-inflammatory effects in proinflammatory environments. Clinical data reflect these
mechanistic effects in reductions in the recurrence of respiratory infections and wheezing events in high-risk
paediatric populations. A new generation of clinical studies is currently underway with the power to position the
nonspecific bacterial lysate immunomodulator OM-85 as a potential antiasthma prophylactic.

Summary

An established mechanistic and clinical role for prophylaxis against paediatric respiratory infections by
nonspecific immunomodulators exists. Clinical trials underway promise to provide high-quality data to
establish whether a similar role exists in wheezing/asthma prevention.
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Università degli Studi di Perugia, Perugia, Italy, bDivision of Respiratory
Medicine, Department of Pediatrics, Hospital Nacional de Niños, Uni-
versidad de Costa Rica, San Jose, Costa Rica, cDepartment of Pediatric
Pneumology and Allergy, The Medical University Children’s Hospital,
Warszawa, Poland, dDepartment of Pediatrics, School of Medicine,
Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre,
Brazil, eDepartment of Respiratory Care, Beijing Children’s Hospital,
Beijing, China and fDivision of Pediatric Infectious Diseases, University
Children’s Hospital, Basel, Switzerland

Correspondence to Dr Wojciech Feleszko, Department of Pediatric
Respiratory Diseases and Allergy, ul. Zwirki i Wigury 63A, 02-091 War-
saw, Poland. Tel: +48 317 94 19; e-mail: wojciech.feleszko@kliniczny.pl

Curr Opin Allergy Clin Immunol 2018, 18:198–209

DOI:10.1097/ACI.0000000000000433

This is an open access article distributed under the terms of the Creative
Commons Attribution-Non Commercial-No Derivatives License 4.0
(CCBY-NC-ND), where it is permissible to download and share the work
provided it is properly cited. The work cannot be changed in any way or
used commercially without permission from the journal.
Despite being overwhelmingly viral in nature, respi-
ratory tract infections (RTIs) are a major source of
antibiotic misuse and create a significant burden of
care [1–4,5

&

]. Immunological immaturity and envi-
ronmental factors (e.g. frequent social contacts,
exposure to pollution and lack of breastfeeding)
put children at increased risk of recurrent RTI (RRTI)
[4,5

&

,6,7,8
&&

]. RTIs early in life, and episodes of viral-
induced wheezing in particular, are a significant risk
factor for asthma in later life [4,6,7]. Patient inter-
ventions and parental education have a role in pre-
vention of RRTI and its consequences, as does active
immunization in cases where vaccines are available
[5

&

]. However, the difficulties inherent in effecting
behavioural change and the lack of vaccines against
most pathogenic organisms responsible for RTI create
the need for other prophylactic strategies [5

&

,9]. The
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KEY POINTS

� Because of immunological immaturity and the
increasing reliance of high-risk mixed social
environments, recurrent RTIs cause a major burden of
care in children.

� Despite their overwhelmingly viral cause, childhood
RTIs are a significant source of antibiotic misuse and
are associated with both direct costs and an increased
risk of wheezing and asthma in later life.

� Prevention is key in order to reduce this burden of care
and the associated increased risk of asthma and can
be split into three fundamental aspects: parental
education, active immunization (where available) and
nonspecific immunomodulation.

Nonspecific immunomodulators Esposito et al.
use of nonspecific immunomodulation to boost the
body’s natural defences against infection offers a
strategy with proven efficacy and tolerability in pre-
venting RTIs in children [8

&&

].
AIM AND SEARCH STRATEGY

The aim of this publication was to summarize
the mechanistic and clinical evidence for the use of
nonspecific oral immunomodulators in the preven-
tion of RTIs, wheezing and asthma exacerbations in
DC
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childhood. A systematic literature search was per-
formed to identify articles with either mechanistic or
clinical evidence on nonspecific immunomodulators
between 1997 and 2017. Search terms and article dis-
position is shown in Supplementary Figure 1A, http://
links. lww.com/COAI/A15. Only therapies with both
mechanistic data and clinical data from paediatric
double-blind randomized controlled trials were
included in the analysis. A hand search of eligible
articles and author expertise were used to supplement
the included articles.
RATIONALE FOR THE USE OF
IMMUNOMODULATORS IN RESPIRATORY
TRACT INFECTION, WHEEZING AND
ASTHMA CONTROL

The empiric use of immunomodulators has over a
century of clinical history, with publications inves-
tigating their efficacy dating back to at least the
1950s. The mechanistic rationale for the use of
the orally administered immunomodulators for
the prevention of respiratory conditions centres
on the gut–lung immune axis (Fig. 1) [10]. Antigen
sampling by M cells and dendritic cells resident in
the Peyer’s patches of the gut-associated lymphoid
tissue leads to maturation of dendritic cells into an
antigen-presenting cell phenotype [11]. The sub-
sequent dendritic cell-initiated immune cascade
B
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Outcome measures
involves homing of cells from both innate and
adaptive branches of the immune system to the
mucosal-associated lymphoid tissue of the lungs
and subsequent antibody production.

Data suggest that immunomodulators may also
act to aid maturation of the immune system in
children, correcting T helper cell (Th) Th1/Th2
imbalance through activation of T regulatory (Treg)
cells (for review, see Kearney et al. [12]). The correc-
tion of this Th2-oriented imbalance and other anti-
inflammatory activity may reduce atopic responses
related to wheezing and asthma. These effects com-
bined with the reduced risk of RTIs, which predis-
pose towards asthma and cause exacerbations, form
the mechanist framework for a reduced risk of
wheezing events and asthma.
MECHANISM OF ACTION FOR
IMMUNOMODULATORS IN RESPIRATORY
TRACT INFECTION

Five immunomodulators eligible for inclusion in
this review had mechanistic data pertaining to the
prophylaxis of RTIs: OM-85, pidotimod, ribomunyl,
LW50020 and polyvalent mechanical bacterial
lysate (PMBL) (Table 1) [13,14,15

&

,16
&&

,17–20,21
&

,
22–28,29

&

,30–36,37
&

,38–51].
OM-85

OM-85 is the product of alkaline lysis of 21 strains
of common bacterial respiratory tract pathogens
(Table 1) [14,52]. The active ingredients of OM-85
are resistant to gastric transit and cause maturation
of mucosal dendritic cells in gastrointestinal
Peyer’s patches, a key step in orally induced respi-
ratory immunity (Table 1; Fig. 1) [14,15

&

,17,22].
OM-85-induced dendritic cell activation occurs in a
modulated manner, resulting in a putative prealert
antiinfective state in the mucosal immune system
(Table 1) [11,14,16

&&

,22]. There are conflicting data
on the identity of the dendritic cell-expressed pat-
tern-recognition receptors (PRRs) activated by
pathogen-associated molecular patterns compris-
ing OM-85, possibly because of species differences
(Table 1) [14,16

&&

,18,19,22]. We identified a single
eligible study reporting no dendritic cell matura-
tion with OM-85 at concentrations below those
affecting cell viability (<100 mg); however, these
results conflict with other cell viability data
[13,17].

Dendritic cells are the nexus of the innate and
adaptive mucosal immune response, and OM-85-
activated dendritic cells have been shown to directly
activate cellular constituents of both immune-
system branches (Table 1; Fig. 1) [14,22]. OM-85-
200 www.co-allergy.com
induced dendritic cells release chemokines that act
on monocytes and natural killer (NK) cells, as well as
prophagocytic chemokines which induce polymor-
phonuclear neutrophil migration (Table 1; Fig. 1)
[14]. The downstream effects on OM-85 on the
innate immune system include the release of anti-
microbial peptides and the activation of macro-
phages resulting in expression of proinflammatory
and antiviral cytokines (Table 1; Fig. 1) [16

&&

,18–
20,21

&

]. In line with these antiviral actions, OM-85
reduced rhinovirus infection of lung epithelial cells
and cell death in vitro [21

&

]. Data also suggest that
OM-85 causes more rapid neutrophil recruitment in
response to viral infection, reducing viral load
(Table 1) [15

&

].
OM-85-induced dendritic cells activate T cells in

vitro and oral OM-85 increases antiviral CD8þ T-cell
response in the airways of mice following influenza
infection (Table 1; Fig. 1) [15

&

,22,23]. In neonatal
rats, oral OM-85 promotes immune system matura-
tion by acting to correct the Th1/Th2 imbalance,
and the release of antiviral Th1-related cytokines has
been demonstrated both in vivo and in vitro (Table 1;
Fig. 1) [14,25,26]. OM-85-induced dendritic cells
also produce B-cell-related cytokines and OM-85
causes B-cell maturation in vitro [14,15

&

,23], leading
to increases in serum and airway immunoglobulins
(Ig) in both children and mice [16

&&

,18,20,25,53]
(Table 1; Fig. 1). In murine models of bacterial, viral
and viral/bacterial respiratory infections, OM-85
reduced clinical symptoms and improved survival
[15

&

,53]. However, one similar mouse study failed to
show an effect on bacterial clearance, neutrophil
recruitment or survival. The authors postulated that
the virulence of the Klebsiella pneumoniae infection
may have led to masking of the effect of OM-85 in
this study [54].
Pidotimod

Unlike the other immunomodulators included in
this review, pidotimod is a synthetic thymic dipep-
tide rather than a bacterial derivative [52,55]
(Table 1). However, orally administered pidotimod
appears to share a number of mechanistic similari-
ties with bacterial immunomodulators. Pidotimod
causes maturation of mucosal dendritic cells and
increases antigen presentation [27,28,29

&

,30], likely
via PRRs toll-like receptor 2 (TLR2) and TLR4
[29

&

,30,56] (Table 1; Fig. 1). Activated dendritic cells
release cytokines and chemokines related to the
innate immune response (Table 1) [28,29

&

]. Pidoti-
mod-induced innate immune responses include
increased expression of TLR2 in lung epithelial cells
in vitro, increases in the release of antimicrobial
peptides and improved mucociliary transport
Volume 18 � Number 3 � June 2018
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Outcome measures
(Table 1; Fig. 1) [29
&

,31,32]. In a model of Myco-
plasma pneumoniae infection, NK cell markers were
down regulated; however, data suggest that this may
improve resistance to further infection [34,57]. Fur-
thermore, in a small group of adults with commu-
nity acquired pneumonia, pidotimod reduced the
number of cells producing tumour necrosis factor-
alpha, a proinflammatory cytokine associated with a
negative prognosis in this condition [30].

Pidotimod-induced dendritic cells promote pro-
liferation of T cells and, along with induced mono-
cytes, release cytokines promoting adaptive Th1-
mediated immunity (Fig. 1; Table 1) [28,29

&

]. Pido-
timod also directly increases levels of Th1-related
cytokines and suppresses Th2 cytokines in various
settings including in children with frequent infec-
tions (Fig. 1; Table 1) [29

&

,35,36,37
&

,38]. In addition,
markers of both cytotoxic and helper T cells were
elevated following the treatment of M. pneumoniae
pneumonia though not in a study of combined
treatment with loratadine for RRTI (Table 1;
Fig. 1) [33,34]. However, we identified a single in-
vitro study where pidotimod failed to promote dif-
ferentiation of Th0 to Th1 [35]. Direct data showing
pidotimod acting on B cells are lacking; however,
increased production of nasopharyngeal and sali-
vary secretory IgA (sIgA) in children with RTI has
been demonstrated (Table 1; Fig. 1) [39]. Although,
pidotimod therapy did not increase antibody titres
in two studies on children with bacterial pneumonia
or RRTI [33,34]. Finally, novel data suggest that
pidotimod may have positive effects on the meta-
bolic profile of children suffering RRTI [58].
Ribomunyl

Ribomunyl is a mixture of bacterial proteoglycans
and ribosomes which are delivered to lymphoid cells
resident in Peyer’s patches via uptake by mucosal M
cells, resulting in dendritic cell maturation (Table 1;
Fig. 1) [13,40,41,52,59,60]. Data on innate immune
system effects are sparse, with studies showing
increased expression of adhesion molecules and
phagocytic activity in peripheral-blood neutrophils
in response to ribomunyl [42,43] (Table 1; Fig. 1).

Ribomunyl-induced dendritic cells stimulate T
cells causing antiviral interferon gamma (IFN-g)
release; however, there are conflicting data on ribo-
munyl-induced release of pro-Th1 cytokines (Table 1)
[13,40,41]. Proliferation of T cells is evident in patients
with otitis media treated with ribomunyl (Table 1;
Fig. 1) [44]. Furthermore, oral administration causes
expansion of constituent-specific B cells and sIgA
production [45,46,61], and increased serum IgA and
IgG in children with RRTI [44,47,48]. Increased sIgA
concentrations in healthy volunteers were associated
202 www.co-allergy.com
with reduced adhesion of a constituent strain, Strepto-
coccus pneumoniae (Table 1; Fig. 1) [46].
Others

PMBL (Ismigen) is a sublingually delivered lysate
made using a mechanical process that preserves
the structure of the bacterial antigens [52]. It acti-
vates both T and B cells and causes release of pro-Th1
and macrophage activating cytokines in vitro [49]
(Fig. 1; Table 1). PMBL induces memory B-cell
expansion which correlates with RTI prophylaxis
in patients suffering recurrence and sIgA response
in healthy children and adults [50,51].

The immunomodulator LW50020 is and orally
delivered bacterial lysate which induces dendritic
cell maturation, and activated dendritic cells are
capable of stimulating T lymphocytes (Table 1;
Fig. 1) [13].
Summary

The available mechanistic data on oral immunomo-
dulators fit the proposed model of gut-mediated
respiratory mucosal immunity. A relatively full
mechanistic picture is available of OM-85 from acti-
vation of gut immunity, downstream activation of
both innate and adaptive immune responses, traf-
ficking of immune cells to the airway and release of
airway sIg. Pidotimod appears to work via a similar
mechanism derived from activation of mesenteric
dendritic cell, leading to the activation of innate and
adaptive immune branches and subsequent mount-
ing of a response in the airway. The data on ribo-
munyl are more sparse particularly regarding innate
immune action, though what data are available fit
the current understanding of gut–lung immune
axis. Little data on PMBL and LW50020 were avail-
able, though, importantly, effector activity in the
lung has been demonstrated following oral immu-
nization with PMBL.
EFFICACY OF IMMUNOMODULATORS IN
CHILDREN WITH RESPIRATORY TRACT
INFECTION

All the above immunomodulators have evidence of
efficacy in paediatric RTI-prophylaxis, to varying
degrees.
OM-85

OM-85 has demonstrated efficacy in a number of
forms of paediatric RTI (Supplementary Table 1,
http://links.lww.com/COAI/A15) [8

&&

,62,63
&

]. Oral
therapy reduced the incidence, prevalence and/or
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duration of infections in children with a history of
RRTI compared with placebo [64–67] and versus
probiotic therapy [24]. In a study of children with
recurrent tonsillitis, OM-85 prophylaxis improved
outcomes in the majority of patients and, impor-
tantly, removed the need for surgery in a significant
proportion of those treated [66]. In children with
subacute sinusitis, OM-85 prophylaxis sped recovery
and reduced infections [68], whereas children with
chronic rhinosinusitis had a reduced symptom bur-
den and a lower incidence of attacks [69]. OM-85 has
also shown efficacy in high-risk environs, reducing
the incidence and prevalence of infections in a
Mexican orphanage [70].

Reductions in antibiotic and drug treatment
following prophylactic therapy with OM-85 have
also been demonstrated in children with a history
of RRTI, subacute sinusitis and in high-risk environ-
ments (orphanages) [64,68,69]. OM-85 therapy
reduced school absenteeism both in children with
a history or RRTI and in those living within an
orphanage [67,69]. Efficacy was unaffected by coad-
ministration with antibiotic therapy or the influ-
enza vaccine, with OM-85 conferring additional
benefit in terms of absenteeism and prevalence of
infections in both cases [67,68].

OM-85 is well tolerated with a frequency of
adverse events comparable to that seen with placebo
in clinical trials. Undesirable events are mainly mild
and transient, with manageable risks. This safety
profile appears to be stable in nature and frequency
over long-standing use [24,64–67,69,70].
Pidotimod

Research into the efficacy of pidotimod in the pae-
diatric population has increased in recent years,
particularly in the Russian Federation. The inci-
dence and/or prevalence of infections was reduced
in children with a history of RTI in a number of
studies without an active control [32,71–74] versus
another immunomodulator [75] and versus antibi-
otic therapy [37

&

]. In children with RRTI, pidotimod
reduced fever, cough and pulmonary rales [76], and
duration of symptoms was also reduced compared
with spleen amino peptide [36]. In children about to
enter the high-risk day care environment, pidoti-
mod showed nonsignificant reductions in RTI and
antibiotic use. The lack of power in this study may
have contributed to the failure to demonstrate sig-
nificant efficacy [77].

Pidotimod prophylaxis also results in less anti-
biotic use [37

&

,71,74], hospitalization and paediatric
visits [71,72] and school absenteeism [72]. Where
reported, adverse events were infrequent, mild and
transient [71,72,75–77].
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Ribomunyl

In a number of trialson childrenwithRRTI, including
those with adenoiditis, pharyngotonsillitis and otitis
media, ribomunyl reduced the incidence, prevalence
and/or duration of infections [44,47,48,78,79]. The
use of antibiotics/ancillary therapy [44,47,48,79],
school absenteeism [44,47,79] and medical visits
[48] was also reduced. In a comparison of ribomunyl
prophylaxis for patients with more or less than five
RTIs in the past year, only those with five or less
showed a decrease in incidence of infection, and
physicians did not rate a significant improvement
in either group. Neither was there a difference in
school absenteeism in this study [78]. Ribomunyl
is generally well tolerated and treatment-related
adverse events are uncommon.
Other

LW50020 reduced clinical severity score, infection
rates and duration of infections in children with
RRTI compared with placebo [80]. Furthermore, the
rate, duration and severity of RTIs, and the use of
antibiotics reduced compared to pretreatment val-
ues in a dose comparison study in children with
RRTI [81]. PMBL reduced the incidence of RTI and
the use of both antibiotic and antiviral drugs, in
children with a history of RRTI and was well toler-
ated [82]. Adverse drug reactions were infrequent,
transient and nonserious with both therapies
[81,82].
Summary

The eligible immunomodulators demonstrated effi-
cacy in preventing RTI in children with a history of
RRTI, and in a number of specific upper RTI sub-
types. Numerous definitions of RRTI were used and
standardization of the definition of this condition is
desirable. Although a quantitative assessment of
trial quality was not undertaken, observations of
reporting quality were in line with data from the
2012 Cochrane review suggesting articles assessing
OM-85 were of higher quality [8

&&

]. Studies on
pidotimod in particular lacked reporting of safety,
control groups or information on the definition of
RRTI, particularly in foreign language abstract-only
publications.
MECHANISM OF ACTION OF
IMMUNOMODULATORS IN WHEEZING
AND ASTHMA

Mechanistic data relating to OM-85, pidotimod,
ribomunyl, PMBL in wheezing, asthma or related
conditions were available.
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Outcome measures
OM-85
The Th2 immune response is key to the airway
hyper-reactivity that occurs during asthma exacer-
bations. Data from mouse models show that orally
administered OM-85 activates gut dendritic cells
which induce trafficking of pro-Th1/anti-Th2 Treg
cells to the lung (Table 2) [16

&&

,18,37
&

,83
&&

,84
&

,85–
87,88

&

,90
&

,91–101]. OM-85 also downregulates
Th2-associated markers on gut dendritic cells
(Table 2) [16

&&

]. In the lung, OM-85-induced Tregs
inhibit the Th2-associated response, likely via mod-
ulation of the response of lung dendritic cells
(Table 2) [83

&&

,84
&

]. This immunoregulatory activity
results in reduced allergen-induced airway inflam-
mation and hyper-reactivity in sensitized mice over
a time course which reflects OM-85’s cellular effects
(Table 2) [83

&&

,88
&

].
Shifting of the cytokine balance in a pro-Th1/

anti-Th2 direction has been demonstrated in
murine models of both asthma and allergy
[17,19,85–87,88

&

], in human peripheral blood
Table 2. Proposed mechanisms of action for the prevention of wh

Therapy Dendritic cells/monocytes Th1-Th2 Balance

OM-85 Increased T-reg-related
CD103þ DCs in mesenteric
lymph nodes [83&&]

Reduced Th2-associated
markers on induced DCs
(ICOSL) [15&]

Accelerated resolution of
airway DCs reaction to
allergen in a mouse model
of asthma [84&]

Trafficking of IL-10 producing
Tregs from gut to airway [8

Reduced CD4þ Th2-type cell
inflammatory cytokines (IL-
IL-6, IL-10 and IL-13) in lun
sensitized mice [84&]

Allograft of induced Tregs bl
Th2 and inflammatory cyto
production in sensitized m
5 and IL-13) [84&]

Induces pro-Th1/anti-Th2 cyt
induction in mouse models
allergy/asthma (Pro-IFN-g
10/anti IL-1b, IL-4, IL-5, IL-
and TGF-b1) [18,85–87,8

Induced IL-10 release from h
PBMCs increased under
inflammatory conditions [1

Pro-Th1 and anti-Th2 cytokin
release in children with as
(Pro-IL-10 IFN-g/anti-IL-4, IL
and IL-1b) [16&&,89,90&,9

Pidotimod Upregulates anti-inflammatory
NOD-like receptor NLRP12
in monocytes [92]

Inhibits proinflammatory
MCP-1 [92]

Downregulates Th2-associat
CD-30 in cells from norma
atopic individuals [93]

Ribomunyl – Pro-Th1/anti-Th2 cytokine
changes (pro-INFy/anti-IL-
IL-5) [94,95]

PMBL – Anti-Th2 cytokine change (IL
[96]

Increased Treg cells [97]

DC, dendritic cell.
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mononuclear cells (PBMCs) [15
&

] and in children
with asthma and related conditions [89,90

&

,91,102].
Notably, this anti-inflammatory effect is increased
in the presence of proinflammatory mediators [15

&

].
In line with these changes in cytokine balance, OM-
85 reduces the infiltration of proinflammatory cells
in murine inflammatory models of asthma and
allergic rhinitis [17,83

&&

,84
&

,85,86,88
&

]; suppresses
mucus metaplasia and hypersecretion [84

&

,85,88
&

];
and attenuates airway remodelling [88

&

].
The Th2 response is characterized by increased

serum IgG1 and IgE, an effect inhibited by OM-85 in
mouse models of allergic rhinitis [86] and asthma
[18,84

&

,88
&

] (Table 2). This effect was not seen in all
the studies we identified, however [83

&&

,89]. Fur-
thermore, in a low-dose study using murine asthma
model, OM-85 did not reduce inflammatory cell
infiltration, serum IgE or lung histopathologic find-
ings, though proinflammatory cytokines were
reduced and there was no increase in airway resis-
tance in OM-85-treated mice [87]. In a response to
eezing and asthma exacerbation

Airway inflammation Immunoglobulins

4&]
s and
4, IL-5,
gs of

ocks
kine
ice (IL-

okine
of

and IL-
13
8&]

uman

5&]
e
thma
-17
1]

Blocks infiltration of
eosinophils, neutrophils,
macrophages and
lymphocytes in mouse
models of asthma/allergic
rhinitis [83&&,84&,88&]

Allograft of induced Tregs
blocks eosinophilia in
sensitized mice [84&]

Reduced mucus metaplasia,
hypersectretion and tissue
remodelling [83&&,84&,88&]

Reduced specific-serum and
nonspecific serum IgE
and IgG1 in a mouse
model of asthma and
allergic rhinitis [16&&,18,
84&,85,86,88&]

ed
l and

– Reduced IgE in a mixed
group of patients with
RRTI some of whom were
atopic [37&]

4,
– –

4) – –
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these results, it was suggested that reduced levels of
the key eosinophil activator interleukin-5 may result
in these cells being in a quiescent state and account
for the absence of increased airway resistance [103].
Other

Data on the other eligible immunomodulators
related to wheezing, asthma or allergy were sparse.
Pidotimod reduced inflammatory response to TLR
ligands via the upregulation of a member of the nod-
like receptor family of PRRs in human monocytes
[92]. In PBMCs from children with or without atopic
asthma, in-vitro pidotimod causes downregulation
of a Th2-related marker, but does not appear to
affect Th1/Th2 cytokine balance [37

&

,93]. In addi-
tion, pidotimod reduced serum IgE in 50% of a
group of RTI patients, some of whom had atopy
[37

&

]. However, in a recent study on the ovalbumin
mouse model of asthma, pidotimod treatment leads
to a significant increase in both IgE and eosinophil
infiltration compared to mice treated with ovalbu-
min alone. This proinflammatory effect was
reflected in increases in proinflammatory cytokine
release and a failure to downregulate markers of
asthma severity and airway remodelling [104].

Ribomunyl shifted the Th1/Th2 cytokine balance
in favour of Th1 in two studies, although this was less
marked and slower in patients with atopy than in
those without [94,95]. In patients with allergic rhinitis
who received PMBL, there was a decrease in IL-4,
although IFN-g and IgE were not affected [96]. Finally,
in children with partially controlled or uncontrolled
asthma, PMBL treatment increased the numbers of
CD8þ cytotoxic cells, Treg cells and NK cells [97].
Summary

There was a substantial gap in the depth of mechanis-
tic data on wheezing/asthma between OM-85 and the
other eligible immunomodulators. OM-85 appears to
inhibit Th2-related inflammation via activation of gut
dendritic cells and subsequent trafficking of Treg cells
to the lung. A number of studies demonstrated anti-
inflammatory effects in inflammatory or atopic phys-
iological environments and reductions in cell infiltra-
tion and atopy-related immunoglobulins. The other
immunomodulators showed some anti-inflammatory
and proTh1 effects but lacked the data to obtain a clear
mechanistic understanding of their potential influ-
ence on wheezing/asthma.
EFFICACY OF IMMUNOMODULATORS IN
WHEEZING AND ASTHMA

Studies into the efficacy of immunomodulators in
wheezing and asthma were relatively sparse in
1528-4050 Copyright � 2018 The Author(s). Published by Wolters Kluwe
comparison to those studying RTIs in general; how-
ever, an increasing number of studies have been
published over the last 10 years (Supplementary
Table 2, http://links.lww.com/COAI/A15).
OM-85

OM-85 prophylaxis reduced the duration and inci-
dence of wheezing/asthma exacerbations in chil-
dren with a history or recurrent wheezing or
asthma [90

&

,91,105
&&

,106], as well as hospitaliza-
tions related to asthma [89]. The reductions in exac-
erbations appear to be related to reduced incidence
of RTIs in these studies [89,105

&&

]. In line with this
observation, OM-85 also reduced the incidence of
RTI [21

&

,90
&

,91,105
&&

,106] and antibiotic use [90
&

].
As expected, OM-85 was well tolerated in all the
studies which reported safety data and its addition
to corticosteroid therapy caused no apparent issues
[21

&

,90
&

,105
&&

].
Pidotimod

The two studies investigating pidotimod in asthma
and the related condition obstructive syndrome did
not report data on asthma exacerbations; however,
there were reductions in the incidence of RTI in both
studies [39,107]. RTI duration was also reduced in
children with allergic rhinitis and asthma [107].
Polyvalent mechanical bacterial lysate

In an unpublished trial, PMBL reduced the inci-
dence and prevalence of asthma exacerbations in
children with atopic asthma [97]. In addition, PMBL
improved symptoms in a mixed group of children
and adults with allergic rhinitis [96].
Summary

With some notable exceptions (e.g. Razi et al.
[105

&&

]), the quality of the identified studies on
wheezing/asthma identified was low with impor-
tant design and safety criteria frequently not
reported. Trials currently underway are likely to
provide higher quality data in the near future. Data
available suggest that the reductions in exacerba-
tions achieved were related to reductions in RTI.
Again, future studies may provide insights on the
contribution of the anti-inflammatory effects
detailed herein towards prophylaxis.
FUTURE RESEARCH

A search of the major clinical trial registries (EU
Clinical Trials Register; Australian New Zealand
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Outcome measures
Clinical Trial Registry; ClinicalTrials.gov) revealed
ongoing trials for OM-85 only.
OM-85 in respiratory tract infection

A phase 4 trial (NCT03243565) investigating the
efficacy of OM-85 in children with a history of RRTIs
and symptoms of adenoid hypertrophy began
recruiting in 2017. The primary outcome will be
the number of RTIs, and secondary outcomes will
include symptoms of adenoiditis [108].
OM-85 in wheezing/asthma

Four trials investigating OM-85 in asthma and wheez-
ing are currently ongoing. The OM-85 in Prevention
of Asthma in Children (OMPAC) randomised con-
trolled trial (RCT) (ACTRN12612000518864) will
assess outcomes in infants who have a sibling with
asthma/atopy, treated with OM-85 in two cycles
during their first two winter seasons. Outcomes will
include prevention of symptomatic lower RTIs, per-
sistent asthma development and allergen sensitiza-
tion [109]. Results are expected in June 2019. The
Italian OMPeR RCT (EudraCT: 2016-002705-19) will
investigate OM-85 for the prevention of upper respi-
ratory tract infections (URTIs) in children with mild
immunodeficiency (IgA and IgG), atopy or recurrent
wheezing [110]. Standard and longer term dosing will
be explored. The trial outcomes include URTIs pro-
phylaxis, school days lost, use of antibiotics and
wheezing, with results expected in 2018. In the
BREATHE RCT (EudraCT: 2016-001213-24), adoles-
cents and adults with uncontrolled asthma will
receive OM-85 for two consecutive October–March
winter seasons [111]. The primary outcome will be
the incidence of asthma exacerbations. Trial results
are expected in 2020.

The ORal Bacterial EXtracts for the prevention of
wheezing lower respiratory tract illness (ORBEX)
trial represents a step change in immunomodulator
research [112

&&

]. This large, multicentre, National
Institute of Health-funded RCT (NCT02148796) will
enrol upwards of 1000 infants at high asthma risk
due to having atopic eczema and/or parents or
siblings with asthma. Participants will receive
long-term OM-85 prophylaxis (3.5 mg/day for
10 days/month for 2 years). The primary outcome
will be time to first wheezing episode in the third
observational year when children are not receiving
prophylaxis. Preliminary results of the ORBEX trial
are expected by December 2022.

Alongside the above clinical outcomes, the
effects of OM-85 on microbiota, immunological,
inflammatory and genetic markers will be assessed
in these trials [109–111,112

&&

].
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CONCLUSION

Mechanistic data, in particular for OM-85, support the
rational for use of immunomodulators in both pro-
phylaxis against RTIs and wheezing/asthma exacerba-
tions in children. The included immunomodulatory
compounds appear to act on both adaptive and innate
portions of the immune system conferring both
immunoglobulin-related and cell-mediated immu-
nity to the respiratory system. Maturation of the
immune system via the redressing of the Th1/Th2
imbalance appears to be a route by which immuno-
modulators can both reduce RTIs and potentially
reduce atopy. In addition, under inflammatory con-
ditions, immunomodulators, particularly OM-85,
appear to reduce inflammation via immunoregulatory
mechanisms and reduce hyper-reactivity. Efficacy
data in patients at risk of both RTI and asthma support
the above mechanist rational, with reductions in both
RTIs and asthma exacerbations. The large upcoming
ORBEX study has the potential to verify the role of
OM-85 as antiwheezing prophylactic.
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60. Caliot E, Libon C, Kernéis S, Pringault E. Translocation of ribosomal im-
munostimulant through an in vitro-reconstituted digestive barrier containing
M-like cells. Scand J Immunol 2000; 52:588–594.
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