
Microbial Community Composition in Municipal Wastewater
Treatment Bioreactors Follows a Distance Decay Pattern
Primarily Controlled by Environmental Heterogeneity

Taegyu Kim,a Sebastian Behrens,a,b Timothy M. LaParaa,b

aDepartment of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
bBiotechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA

ABSTRACT Understanding spatiotemporal patterns in microbial community composi-
tion is a central goal of microbial ecology. The objective of this study was to better
understand the biogeography of activated sludge microbial communities, which are
important for the protection of surface water quality. Monthly samples were collected
from 20 facilities (25 bioreactors) within 442 km of each other for 1 year. Microbial
community composition was characterized by sequencing of PCR-amplified 16S rRNA
gene fragments. Statistically significant distance decay of community similarity was
observed in these bioreactors independent of clustering method (operational taxo-
nomic units [OTUs] at 97% similarity, genus-level phylotypes) and community dissimi-
larity metric (Sørensen, Bray-Curtis, and weighted Unifrac). Universal colonizers (i.e.,
detected in all samples) and ubiquitous genus-level phylotypes (i.e., detected in every
facility at least once) also exhibited a significant distance decay relationship. Variation
partitioning analysis of community composition showed that environmental character-
istics (temperature, influent characteristics, etc.) explained more of the variance in
community composition than geographic distance did, suggesting that environmental
heterogeneity is more important than dispersal limitation as a mechanism for deter-
mining microbial community composition. Distance decay relationships also became
stronger with increasing distance between facilities. Seasonal variation in community
composition was also observed from selected bioreactors, but there was no clear sea-
sonal pattern in the distance decay relationships.

IMPORTANCE Understanding the spatiotemporal patterns of biodiversity is a central
goal of ecology. The distance decay of community similarity is one of the spatial scaling
patterns observed in many forms of life, including plants, animals, and microbial com-
munities. Municipal wastewater treatment relies on microorganisms to prevent the
release of excessive quantities of nutrients and other pollutants, but relatively few stud-
ies have explored distance decay relationships in wastewater treatment bioreactors. Our
results demonstrate a strong distance decay pattern in wastewater treatment bioreac-
tors, regardless of the sequence clustering method or the community dissimilarity met-
ric. Our results suggest that microbial communities in wastewater treatment bioreactors
are not randomly assembled but rather exhibit a statistically significant spatial pattern.

KEYWORDS wastewater treatment, activated sludge, distance decay, microbial
biogeography pattern, microbiome

Distance decay relationships are well-known, fundamental spatial patterns of biodi-
versity and have been recognized by ecologists for several decades (1–3). The bulk

of our knowledge on distance decay relationships is based on plants (2, 4) and animals
(1, 4), but the spatial distribution of microbes has become of interest. Recent empirical
analyses of some patterns for microbial communities suggest that there are biodiversity
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scaling rules common to all forms of life (5); in fact, recent studies indicate that microbes
also have a substantial distance decay pattern (5–12).

Two different mechanisms are used to explain the distance decay of community
similarity: environmental heterogeneity and dispersal limitation (2, 13). As geographic
distance increases, environmental conditions tend to be more different but also the
dispersal limitation becomes stronger. Previous studies have attempted to determine
which of these two interconnected variables is the main driver of microbial community
distance decay patterns (environmental heterogeneity versus geographic distance)
using experimentally manipulated enrichment cultures (14) and variation partitioning
statistical analyses of natural ecosystems (4, 15). These studies showed that the dis-
tance decay of microbial community composition was caused more by environmental
heterogeneity than by limited dispersal.

Wastewater treatment bioreactors support one of the most complex microbial eco-
systems ever applied for a specific purpose (16). Many efforts have been made to
understand the microbial communities in these bioreactors, and understanding their
spatial patterning and underlying mechanisms controlling microbial community com-
position is emerging. Recently, a weak distance decay relationship was observed with
microbial communities from 26 wastewater treatment bioreactors (as far as ;3,000 km
between two bioreactors) (17); another study observed a statistically significant dis-
tance decay relationship in wastewater bioreactor communities at a global scale (18).

The objective of this study was to characterize the distance decay relationships
among the complex bacterial communities growing in municipal wastewater treat-
ment bioreactors at relatively short distances (,500 km). Because prior research has
demonstrated that bioreactor community assembly is largely deterministic (19, 20), we
hypothesize that wastewater treatment bioreactors would exhibit a strong distance
decay relationship, particularly at shorter distances than has been previously studied.
To test this hypothesis, samples from 20 full-scale wastewater treatment facilities from
within the state of Minnesota were collected each month for a year. Microbial commu-
nity composition was determined by sequencing of PCR-amplified 16S rRNA gene frag-
ments. Community dissimilarity, richness, and specific genus-level phylotype abundan-
ces were then studied along with bioreactor characteristics and geographic locations.
The spatial community shift rate (b) was calculated for the whole community and the
Archaea. The b was also calculated only considering universal and ubiquitous genus-
level phylotypes to ascertain distance decay relationships excluding the effects of lim-
ited dispersal (i.e., if these microbes were detected at all locations, then dispersion was
not a pertinent factor).

RESULTS
Community richness and dissimilarity. Samples were collected monthly from 20

different wastewater treatment facilities (25 bioreactors) for 1 year. Annual average
operating parameters and facility characteristics are summarized in Tables S1 and S2 in
the supplemental material, respectively. Distances between the facilities ranged from
11 km to 442 km; the relative distances among the facilities are depicted in Fig. S1 in
the supplemental material. A total of 292 activated sludge samples were collected, and
their extracted DNA was used as the template for sequence analysis of PCR-amplified
16S rRNA gene fragments. An average of 24,419 (standard deviation [SD] = 9,626) qual-
ity sequences were obtained per sample. Three samples that had less than 4,336 qual-
ity sequences were discarded prior to operational taxonomic unit (OTU)-based analysis;
8 samples that had less than 7,805 quality sequences were discarded prior to analysis
of genus-level phylotypes. This analysis generated an average of 2,030 OTUs per sam-
ple (SD = 302) and 262 genus-level phylotypes per sample (SD = 25).

The diversity of bacterial communities growing in these wastewater treatment bio-
reactors varied as a function of several key parameters (Table 1). The number of
observed OTUs had a statistically significant (P = 1.2 � 10211) positive correlation with
the average flow rate (;facility size), although the number of observed genus-level
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phylotypes did not correlate with the average flow rate (P = 0.54) (Fig. 1). A statistically
significant taxon-volume relationship was shown when the number of observed OTUs
and the facility size were correlated in log scale (z = 0.03); however, this relationship
was not statistically significant when genus-level phylotype-based community profiles
were considered (Fig. S2).

The number of observed OTUs also had a significant positive correlation with mean
cell residence time and exhibited a significant negative correlation with carbonaceous
biochemical oxygen demand (CBOD) in the untreated wastewater (Table 1). However,
the correlation between the number of observed OTUs and these two variables
became insignificant (P = 0.004 and 0.002, respectively) when partial correlations were
performed with average flow rate as a control variable (Table S3). The average flow
rate did not lose statistical significance in the partial correlation performed by control-
ling other variables. When correlations between the number of observed OTUs and
these two environmental variables were made within each facility, no significant corre-

TABLE 1 Spearman’s correlation coefficients between environmental variables and bioreactor community alpha-diversity indicesa

Parameter or type of water Environmental variableb
No. of observed
OTUs

OTU Shannon
diversity index

No. of observed
phylotypes

Phylotype Shannon
diversity index

Community richness No. of observed OTUs 0.97* 0.47* 0.25*
No. of observed phylotypes 0.47* 0.47* 0.61*

Operational parameter Avg flow rate 0.39* 0.34* 0.04 20.14
pH 20.22 20.19 20.16 20.03
Mean cell residence time 0.37* 0.35* 0.18 0.03

Untreated wastewater CBOD 20.32* 20.32* 20.19 20.11
TSS 0.11 0.12 20.11 20.15
Phosphorus 20.09 20.08 20.02 20.14
TKN 20.02 20.06 0.00 20.04

Treated wastewater pH 0.09 0.15 0.19 0.08
CBOD 0.05 0.01 0.10 0.22
TSS 20.07 20.07 20.07 20.06
Phosphorus 20.07 20.04 20.01 0.08
NH3 20.19 20.20 0.01 0.11
NO3 1 NO2 0.17 0.16 20.11 20.15
TKN 20.33 20.35* 0.01 0.12

aAn asterisk indicates a statistically significant correlation (P, 0.001).
bOTU, operational taxonomic unit; CBOD, carbonaceous biochemical oxygen demand; TSS, total suspended solid; TKN, total Kjeldahl nitrogen.

FIG 1 The number of observed operational taxonomic units (OTUs) and genus-level phylotypes as a
function of wastewater flow rate (A and B), mean cell residence time (C and D), and carbonaceous
biochemical oxygen demand (CBOD) in the untreated wastewater (E and F). Spearman’s correlation
coefficients (r s) and P values are shown in each plot.
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lation was observed, possibly because of the low sample number (typically 11 or 12
samples were collected at each facility) and/or the variance of environmental charac-
teristics was not substantial within each facility. Variance of the mean cell residence
time and of the CBOD were generally larger between the facilities than within each fa-
cility. A visual inspection of the correlation between community richness and these
two variables (Fig. 1) suggests that the correlations were driven by differences among
the facilities, not by temporal variation within each facility.

The bioreactors studied here generally did not show seasonal cyclic patterns in alpha-
diversity; monthly community alpha-diversity did not correlate with monthly average
temperatures except for possibly one facility. Facility L showed seasonal cyclic changes in
all four alpha-diversity measurements (i.e., observed number of OTUs, observed number
of genus-level phylotypes, OTU-based Shannon diversity index, and Shannon diversity
index using genus-level phylotypes) with strong correlations with monthly average tem-
perature (Spearman’s rho [r s] = 0.66, 0.76, 0.78, and 0.81, respectively).

Bray-Curtis dissimilarity indices were computed using the community profiles of ge-
nus-level phylotypes (Fig. S3). Analysis of molecular variance (AMOVA) showed that
bacterial community composition from different facilities had statistically different
community compositions (all P , 0.001), which suggests that facility-to-facility varia-
tion in bacterial community composition is bigger than the temporal variance within
an individual facility. In contrast, bacterial communities in parallel bioreactors within
the same facility were not statistically distinguishable (all P. 0.001).

Distance decay of the whole community similarity. There is a strong linear corre-
lation between the log10-transformed annual average community dissimilarities
(Sørensen, Bray-Curtis, and weighted Unifrac) and the log10-transformed geographic
distances between paired facilities (Fig. 2). This suggests that community dissimilarity
metrics based on presence/absence (Sørensen), relative abundance (Bray-Curtis), and
phylogenetic distance (weighted Unifrac) exhibit distance decay relationships. The dis-
tance decay relationship calculated based on the OTU-based community profile had a
lower b than the genus-level phylotype-based community profile by ;10-fold, with
both the Sørensen (0.011 versus 0.12) and Bray-Curtis (0.016 versus 0.12) metrics. The
b calculated using phylogenetic distance (0.074) fell between the calculations based
on OTUs and on genus-level phylotypes. Nonetheless, all sequence clustering methods
exhibited statistically significant distance decay relationships (P , 10216). Therefore,
the qualitative conclusion (i.e., significant distance decay of community similarity) did
not depend on either the dissimilarity metric or how the sequences were clustered.

Distance decay of specific microbial groups. Highly abundant members of the mi-
crobial communities were generally ubiquitous and persistent, whereas rare members
were typically sparse and transient (Fig. S4). Universal colonizers were defined as ge-
nus-level phylotypes that were detected in all bioreactor samples analyzed in this
study. There were 22 universal colonizers; the average relative abundance of universal
colonizers was 37.9% (SD = 5.3%) of the total community in each sample. Ubiquitous
phylotypes were defined as genus-level phylotypes that were detected in every facility
on at least one occasion. There were 181 ubiquitous phylotypes, comprising an aver-
age of 72.3% (SD = 6.2%) of the microbial community in each sample. Finally, Archaea
were examined in more detail; 34 different archaeal phylotypes were detected (arith-
metic mean = 0.31%, SD = 0.23% in each sample as the relative abundance).
Community dissimilarity matrices were constructed separately using each of these
groups of organisms.

All three of these groups of organisms (i.e., universal colonizers, ubiquitous phylo-
types, and Archaea) exhibited statistically significant distance decay relationships
(Fig. 3). The b of the universal colonizers and of the ubiquitous phylotypes were similar
to the b of the whole community. When b was calculated for each month, the b of
the universal colonizers (median = 0.13) and of the ubiquitous phylotypes (median = 0.12)
were not significantly different than the b of the whole community (median = 0.12)
(Wilcoxon Z = 0.92 and 0.32 and P = 0.36 and 0.75, respectively). The Archaea had a
smaller b (0.05) compared to the whole community; the statistical significance of the
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distance decay relationship for the Archaea was weaker (P = 1.9 � 1025) than for the
whole community.

Environmental heterogeneity and geographic distance. Distance decay relation-
ships can be driven by both changes in environmental conditions as well as dispersal.
To better understand the relative importance of these two mechanisms, the annual av-
erage Bray-Curtis community dissimilarities between the facilities (community profiles
based on genus-level phylotypes) were correlated with analogous distance matrices of
facility characteristics such as geographic location, operational parameters, untreated
wastewater characteristics, and treated wastewater characteristics (Table 2; raw data
available in Table S1). In addition to the strong correlation between geographic loca-
tion and Bray-Curtis community dissimilarities that has been previously described, the
whole community dissimilarities also exhibited statistically significant correlations with
total Kjeldahl nitrogen (TKN) concentrations in the treated and untreated wastewater

FIG 2 Log10-transformed distance and annual average operational taxonomic unit (OTU)-based
community dissimilarities when calculated by using Sørensen index (A) and Bray-Curtis index (B). Log10-
transformed distance and annual average community dissimilarities based on genus-level phylotypes
when calculated by using Sørensen index (C) and Bray-Curtis index (D). (E) Log10-transformed distance
and annual average weighted Unifrac distance. The slope of each linear regression determines the
spatial community shift rate (b). The linearity and the statistical significance of each model were shown
using the Pearson’s correlation coefficient (r ) and P value, respectively.
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as well as the ammonia concentrations and CBOD concentrations in the treated waste-
water. The subgroups of universal colonizers and ubiquitous phylotypes generally
exhibited the same correlation with the whole community, while the Archaea had a
stronger correlation with mean cell residence time than with geographic distance.

FIG 3 Log10-transformed distance and annual average dissimilarities calculated using the Bray-Curtis
index with various subcommunities: universal colonizers (A), ubiquitous phylotypes (B), and Archaea
(C). The slope of each linear regression determines the spatial community shift rate (b). The linearity
and the statistical significance of each model were shown using the Pearson’s correlation coefficient
(r ) and P value, respectively.

TABLE 2 Spearman’s correlation coefficients (from Mantel test) between annual average environmental characteristic differences and annual
average Bray-Curtis community dissimilarities or geographic distancesa

Characteristic
Environmental
variableb

Whole community
dissimilarity

Universal colonizer
dissimilarity

Ubiquitous phylotype
dissimilarity

Archaea
dissimilarity

Geographic
distance

Geographic distance 0.62* 0.51* 0.61* 0.29*

Operational parameter Avg treatment 20.04 0.01 20.08 0.16 20.11
pH 20.04 20.09 20.08 0.10 0.03
Mean cell residence time 0.33 0.38 0.29 0.70* 0.36

Untreated wastewater
characteristics

CBOD 0.18 0.19 0.19 0.10 0.15
TSS 0.13 0.18 0.09 0.40* 0.17
Phosphorus 0.27 0.24 0.26 0.12 0.19
TKN 0.51* 0.47* 0.53* 0.11 0.58*

Treated wastewater
characteristics

pH 0.04 20.01 0.04 0.03 0.04
CBOD 0.37* 0.26 0.34* 0.22 0.22
TSS 0.19 0.24 0.21 0.17 0.16
Phosphorus 0.24 0.22 0.31* 20.16 0.06
NH3 0.55* 0.47* 0.56* 0.13 0.43*
NO3 1 NO2 0.25 0.10 0.17 0.16 0.27
TKN 0.64* 0.58* 0.66* 0.15 0.62*

aThe arithmetic mean value was used for facilities with multiple bioreactors. The amount of data varied by facility (details in Table S1 in the supplemental material), such
that P can vary even if the correlation coefficient is the same. An asterisk indicates statistically significant correlation (P, 0.001).

bCBOD, carbonaceous biochemical oxygen demand; TSS, total suspended solids; TKN, total Kjeldahl nitrogen.
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Three of the environmental parameters (i.e., TKN concentrations in the treated
and untreated wastewater and ammonia concentrations in the treated wastewater),
which were strongly correlated with the whole community composition, also signifi-
cantly correlated with geographic distance (Table 2). Partial canonical correspon-
dence analysis (CCA) was therefore performed to separate the importance of geo-
graphic distance from facility characteristics to the whole community composition.
For this analysis, only 11 of the 20 facilities participating in this study were analyzed
because only these facilities provided a full set of metadata. Geographic distance
explained 22.4% of the variance in microbial community composition, when envi-
ronmental factors were controlled. In contrast, three environmental parameters
explained 35.6% of the variance when geographic distance was controlled. Spatially
structured environmental variation (i.e., the combination of geographic distance
and environmental factors) explained 76.0% of the variance, which leaves 24.0% of
the variance unexplained.

Impacts of geographic scale and site selection. Because the previous section focused
on only 11 of the 20 facilities participating in this investigation (i.e., those facilities that
had a full set of metadata), the effect of spatial scale on the distance decay relationships
was evaluated further using community profiles based on genus-level phylotypes. That is,
the partial CCA could have been biased by the specific facilities incorporated into that
analysis. Specifically, seven of the facilities were located in a single metropolitan region
and were of close proximity (11 km to;62 km; average, 30 km).

This study included 20 different wastewater treatment facilities, allowing 190 pair-
wise calculations of microbial community dissimilarities. Using a sliding window of fa-
cility pairs ranked from shortest to longest geographic distance (10-km increment each
time from 10- to ;210-km scale to 180- to ;380-km scale), it was observed that b

generally increased as the geographic scale of the study became larger (Fig. 4A and B),
while all the distance decay relationships constructed within each geographic scale
were statistically significant (all P, 0.001).

FIG 4 (A) Changes in spatial community shift rate (b) investigated by a sliding spatial scale (P ,
0.001). (B) Changes in b versus average geographic distance between the facilities (i.e., the slope of
the lines shown in panel A), (C) Spearman’s correlation coefficient (r s) between the community
dissimilarity and geographic distance, and (D) r s between the community dissimilarity and
differences in total Kjeldahl nitrogen concentrations (TKN) in the untreated wastewater. All four
analyses used the geographic distance between facility pairs on a sliding scale from 10 to 210 km to
180 to 380 km, in 10-km increments, and community dissimilarity was calculated using community
profiles based on genus-level phylotypes.
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Previously, it was observed that bioreactor community dissimilarity was well corre-
lated with both geographic distance and environmental characteristics such as TKN in
the untreated wastewater. The effect of geographic-scale changes on these correla-
tions were studied as well. The Spearman’s correlation coefficient between the bioreac-
tor community dissimilarities and geographic distance also increased as geographic
scale became bigger (Fig. 4C). In contrast, the correlation between bioreactor commu-
nity dissimilarity and TKN in the untreated wastewater did not become stronger as ge-
ographic scale became bigger (Fig. 4D). This suggests that the partial CCA results
reported in the previous section (i.e., bioreactor community dissimilarity was better
explained by environmental heterogeneity than geographic distance) could have been
biased by the specific wastewater facilities incorporated into that analysis and might
not reflect the results if all 20 facilities had been analyzed.

Seasonal changes in microbial community composition.We hypothesized that sea-
sonal changes might also impact distance decay relationships. To test seasonal impacts
on the microbial community composition in bioreactors (e.g., cyclic changes in beta-di-
versity), community composition from 24 different bioreactors (19 facilities; facility T was
excluded from this analysis due to low sample numbers) was investigated as a function of
the time interval between sample collection events using genus-level phylotype commu-
nity profiles (Fig. 5 and Table S4). About half of the bioreactors (13 out of 24) had a statis-
tically significant fit to a quadratic model with an axis of symmetry between 5 and
8 months, suggesting that these bioreactors had cyclic seasonal changes in microbial
community composition. In contrast, about half of the bioreactors (15 out of 24) exhibited
a statistically significant fit to a linear model, and two bioreactors did not exhibit a statisti-
cally significant fit to either the linear model or the quadratic model. Six of the bioreactors
simultaneously had a statistically significant fit to both the quadratic and linear models.

Similarly, we also tested the hypothesis that distance decay relationships would be
less pronounced in the winter than during the summer. When the distance decay rela-
tionships were constructed using the Bray-Curtis dissimilarities from the entire microbial
community, distance decay relationships were significant (P, 0.001) every month (similar
results were obtained for both Sørensen and weighted Unifrac indices) (Table S5), and no
clear seasonal trend in b was observed (Fig. S5). Similarly, the universal colonizers and
ubiquitous phylotypes also showed significant distance decay relationships for 9 and
10 months, respectively. In contrast, the Archaea exhibited a significant distance decay
relationship during only 2 months (August 2017 and January 2018).

DISCUSSION

Understanding the spatiotemporal patterns of biodiversity is a central goal of ecol-
ogy. The distance decay of community similarity is one of the spatial scaling patterns
observed in many forms of life, including plants (2, 4), animals (1, 4), and microbial
communities (4, 9–11). However, relatively few studies have explored distance decay
relationships in municipal wastewater treatment bioreactors (17, 18). Municipal waste-
water treatment is critically important for protecting surface water quality; it relies on
microorganisms to reduce the release of excessive nutrients (biodegradable organic
carbon, nitrogen, and phosphorus) as well as other priority pollutants to the environ-
ment. Within the studied geographic scale (,442 km), a significant distance decay
pattern was observed among microbial communities in wastewater treatment bio-
reactors. These distance decay relationships were also robust, exhibiting statistical sig-
nificance regardless of the sequence clustering method or the community dissimilar-
ity metric. Our results strongly suggest that microbial communities in wastewater
treatment bioreactors are not randomly assembled but rather exhibit a spatial pat-
tern. This novel understanding of the mechanisms of microbial community assembly
in wastewater treatment bioreactors builds on prior work that demonstrated syn-
chrony in wastewater treatment bioreactor communities in close proximity to each
other (19) and weak distance decay relationships over much larger spatial scales
(;3,000 km) (17).
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The distance decay of community composition can be explained by two different fac-
tors: gradients in environmental conditions and dispersal limitation. Our research makes a
novel contribution by demonstrating that environmental heterogeneity is a more impor-
tant driver of the observed distance decay relationships than dispersal limitation in

FIG 5 Changes in community dissimilarity as a function of the time difference between two sampling events observed
in 24 activated sludge bioreactors from 19 facilities. Dashed lines indicate a statistically significant linear change in
dissimilarity over time. Solid lines indicate a statistically significant fit to a quadratic regression model with an axis of
symmetry between 5 and 8 months. Facility T is not shown due to a low number of samples. Community dissimilarity
was calculated using community profiles using genus-level phylotypes.
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wastewater treatment bioreactors. Distinguishing these two mechanisms is challenging
because differences in environmental conditions are generally confounded by geographic
distance (21). Universal colonizers (detected in all bioreactors during all sampling times)
and ubiquitous phylotypes (detected in all facilities on at least one occasion) were studied
in more detail because we hypothesized that these organisms were unaffected by disper-
sal limitation. Both subgroups exhibited strong distance decay relationships when calcu-
lated using Bray-Curtis dissimilarity, demonstrating that environmental gradients were
sufficient to produce a statistically significant distance decay relationship. Furthermore,
the b values for both subgroups were approximately the same as the b value for the
entire microbial community, suggesting that environmental gradients were the dominant
factor for the observed distance decay relationship of microbial communities in waste-
water treatment bioreactors. Previous researchers concluded that environmental filtering
is a more important driver of biogeographic patterns at smaller spatial scales and disper-
sal limitation is important at large-scale spatial patterns (11, 22); it is possible, therefore,
that the distances studied herein (,442 km) are insufficient to observe a stronger disper-
sal limitation. That is, at least for this distance scale, “everything is more or less every-
where, but the environment selects” (23–25).

We hypothesized that the distance decay relationship of the archaeal community
would largely be driven by dispersal rather than an active response to environmental con-
ditions. Previous research has demonstrated that only a small amount of methanogenic
activity occurs in full-scale activated sludge bioreactors, resulting in only a minor fraction
of the overall carbon cycling (26). The majority of the Archaea detected in our study were
methanogens that are well-known to be obligate anaerobes; ammonia-oxidizing archaea
were not detected. Although the archaeal community exhibited a statistically significant
distance decay relationship, the b for the archaeal community was much smaller than
the b for universal colonizers and ubiquitous phylotypes. This suggests that the effect of
the dispersal (b = 0.05) is substantially smaller than environmental heterogeneity (b =
0.12 to 0.13) in the distance decay relationships at this scale.

Partial CCA also suggested that environmental heterogeneity was a more important
factor in the observed distance decay relationships than dispersal limitation. This is con-
sistent with previous researchers who concluded that bacterial community assembly in
wastewater treatment bioreactors is controlled by deterministic (i.e., niche-based commu-
nity assembly) rather than stochastic mechanisms (19). However, quantitative correlations
can change based on geographic scale and/or site selection. In this study, bioreactor com-
munity dissimilarity was more strongly correlated with geographic distance as geographic
distance increased. In contrast, the correlation between community dissimilarity and the
TKN in the untreated wastewater exhibited a hump-shaped profile as geographic dis-
tance increased. That is, there is an incongruity between the mathematical importance of
TKN in the untreated wastewater, which had a strong Spearman’s correlation with com-
munity dissimilarity, and bioreactor community dissimilarity as distance increases.
Admittedly, our analysis is implicitly limited by the number of environmental parameters
considered; numerous other deterministic factors (e.g., concentrations of specific chemi-
cals) were not considered in our CCA.

Our experimental design (20 facilities; 12 months) afforded us the opportunity to
observe temporal changes in community richness and temporal changes in distance
decay relationships. Previous studies have found that bioreactors showed seasonal
cyclic patterns in alpha-diversity, with higher diversity (or richness) during warmer
seasons and lower diversity during colder seasons (19, 27). However, cyclic fluctua-
tions in community alpha-diversity driven by seasonal changes were not observed
and alpha-diversity did not correlate with the monthly average temperature in our
study. Similarly, the distance decay relationships for the entire microbial community,
the universal colonizers, and the ubiquitous phylotypes were statistically significant
as a function of time. This suggests that the distance decay relationships observed
herein are robust and consistent with deterministic mechanisms of community
assembly.

Kim et al.

September/October 2021 Volume 6 Issue 5 e00648-21 msphere.asm.org 10

https://msphere.asm.org


Our experimental design also afforded us the opportunity to observe cyclical pat-
terns in microbial community composition at numerous wastewater treatment facilities
over the same time period. Previous studies have shown cyclic seasonal patterns in
beta-diversity (19, 28, 29); that is, sample pairs collected from the same bioreactor
showed increasing community dissimilarity with increasing time gaps for ;7 months
but then subsequently showed decreasing dissimilarity (19, 28). However, these claims
may have been spurious because of the relatively small number of facilities (,5) and
the short durations (,14 months) of these studies. In our study, seasonal variations in
community composition (i.e., a cyclic pattern in beta-diversity) was observed in about
half of the bioreactors, similar to the number of bioreactors that exhibited a linear (i.e.,
nonreturning) pattern in community dissimilarity. This suggests that the cyclic commu-
nity changes may be a site-specific or spurious observation. Additional research is
needed for longer time periods to properly address this question.

A statistically significant taxon-volume relationship was found between the number
of observed OTUs and the relative size of the treatment facilities based on annual aver-
age flow rate. This suggests that island biogeography theory, which predicts more spe-
cies in larger ecosystems (30), may also apply to municipal wastewater treatment bio-
reactors. A previous study made a similar observation during the investigation of
membrane bioreactors used for municipal wastewater (31). Both taxon-volume rela-
tionships and distance decay relationships are pertinent ecological theories that
explain spatial biodiversity patterns; several studies have predicted that the taxon-area
relationship exponent z would be equal to one-half the spatial community shift rate b ,
as calculated via the Sørensen index (6, 15, 17, 32). In our study, however, z and b did
not correlate as predicted. Furthermore, genus-level phylotype-based community pro-
files did not exhibit a statistically significant taxon-volume relationship, whereas a
strong distance decay relationship was observed. Further research is needed to recon-
cile the relationships between island biogeography and distance decay in controlling
microbial community composition in municipal wastewater treatment bioreactors.

Although we report values for b , we caution against comparing these values with
those from past and future studies. Specifically, biodiversity patterns vary systematically
as a function of the taxonomic resolution used to describe microbial community compo-
sition (33). Even this conclusion is controversial because a previous study concluded that
the OTU similarity cutoff did not impact b in soil samples (11), whereas another study
found that narrowing the similarity cutoff increased z (estimated from b) in salt marsh
sediments (15). In our study, narrowing the similarity cutoff (97% sequences base similar-
ity [OTU] versus genus-level phylotypes) effectively reduced b in wastewater treatment
bioreactors. In addition, removing rare sequences (or low-abundance OTUs) affected b

(34) as did changing sequencing depth (11). Previous studies suggested that different
spatial scales also can affect b (1, 18, 35); our results support these conclusions because
b increased as the spatial scale became larger in the range of 10 to 380 km.

In conclusion, this study showed that microbial community composition exhibited
a strong distance decay relationship in community similarity in municipal wastewater
treatment facilities within 442 km of each other. Our results suggest that environmen-
tal heterogeneity is a more important factor than dispersal limitation, which strongly
implies that deterministic community assembly mechanisms dominate municipal
wastewater treatment bioreactors. Our results demonstrate a significant effect of geo-
graphic scale on distance decay relationships, suggesting that caution should be used
before generalizing our quantitative results. We observed that the ecological theory
that had been developed for plants and animals could be applied to microbial com-
munities in engineered systems. Additional research is needed to identify and under-
stand how specific factors affect specific groups of microorganisms during municipal
wastewater treatment.

MATERIALS ANDMETHODS
Wastewater treatment facility description. Twenty wastewater treatment facilities (facility A to fa-

cility T) in the state of Minnesota participated in this study. All the facilities utilize continuous aeration
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and recirculation of settled/concentrated biomass with some variation in process design and operation
(see Table S2 in the supplemental material). Facilities with unique system designs (e.g., adsorption/bio-
oxidation systems, membrane bioreactors, and sequencing batch reactors) were purposely excluded
from this study because such system designs could confound the interpretation of spatial biogeographic
patterns. Facilities C and G were equipped with two independent parallel bioreactors (C1 and C2 and G1
and G2), and facility S had four parallel bioreactors (S1 to S4). Untreated and treated wastewater charac-
teristics were measured at each facility (Table S2). Each of the laboratories at the wastewater treatment
facilities are certified by the U.S. EPA, and all of their methods are described in Standard Methods for the
Examination of Water and Wastewater (36).

Sample collection and DNA extraction. Grab samples (volume, 10 to 15 ml) were collected by facility
operators on the same week and kept frozen until processed. Samples were collected 12 times (approxi-
mately monthly) from July 2017 until July 2018. Aliquots of bioreactor samples (0.1 ml) were mixed with
0.9 ml of lysis buffer (5% sodium dodecyl sulfate, 120 mM sodium phosphate buffer [pH 8]). Mixed samples
underwent three freeze-thaw cycles followed by 90 min of incubation at 70°C. DNA was then purified using
the FastDNA kit (MP Biomedicals, Santa Ana, CA, USA) per the manufacturer’s instructions.

Amplicon sequencing. From each sample, amplicons of the V4 region of the 16S rRNA gene were
generated using primer set Meta_V4_515F and Meta_V4_806R and subsequently sequenced using
Illumina MiSeq at the University of Minnesota Genomics Center as described previously (37). Each MiSeq
run was loaded with a pooled library of amplicons (8 pM) with 15% PhiX. Cluster densities ranged from
824 to 1,104 K mm22; 83.6% 6 5.2% of the bases had quality scores higher than 30.

DNA sequence analysis. For sequence analysis, mothur (version 1.40.0) was used (38), with a proto-
col similar to the MiSeq standard operating procedure (SOP) (39). Paired-end reads were merged, and
sequences with one or more ambiguous bases or with a homopolymer longer than 8 nucleotides were
removed. Sequences were aligned to SILVA v.128 reference file. Aligned sequences were filtered to
remove columns that contained gaps and sequences with more than 300 bases or fewer than 280 bases
were discarded. Chimeric sequences were identified and discarded with Vsearch (40). Sequences were
classified with the Bayesian classifier using RDP v.16 reference files (41); sequences that did not classify
as Bacteria or Archaea were discarded (i.e., unknown, chloroplast, mitochondria, or Eukaryota). OTU-
based analysis was done using 4,336 sequences per sample to simultaneously maximize the number of
microbiome profiles analyzed and the depth of sequences per microbiome profile. For OTU-based analy-
sis, the sequences were clustered into OTUs at 97% similarity using the OptiClust method (42). For phy-
lotype-based analysis, sequences were binned into phylotypes according to their genus-level taxonomic
classification. Genus-level phylotypes show communities at a lower resolution (i.e., less richness and di-
versity) than OTUs; therefore, more sequences per sample were used. Phylotype-based analysis was per-
formed using 7,805 sequences per sample in an attempt to optimize the number of qualifying micro-
biome profiles and sequencing depth. A phylogenetic tree was constructed with clear-cut using 1,000
random sequences per sample (43). AMOVA was performed to determine whether there was a signifi-
cant difference in the microbial community composition in different bioreactors (44–46).

Data analysis. The taxon-volume relationship exponent z was calculated using the following equa-
tion (47):

log10 Rð Þ ¼ z log10 Vð Þ1 c

where R is community richness (e.g., the number of observed OTUs) in each bioreactor, V is the flow rate
of the bioreactor, and c is an empirically derived constant. The spatial community shift rate (b) was cal-
culated using the following equation (2):

log10 DSð Þ ¼ b log10 Dð Þ1 c

where DS is the community dissimilarity between two bioreactors, D is the geographic distance between
two bioreactors, and c is an empirically derived constant. Linear least-squares regressions were per-
formed to estimate z and b . The arithmetic means from all the possible bioreactor pairs were used
when dissimilarity calculation includes facilities with multiple bioreactors (e.g., dissimilarity between
facilities B and C was calculated as the arithmetic mean of B-C1 and B-C2 dissimilarities). The linearity of
both models was tested using Pearson’s linear correlation.

Spearman’s rank correlation was used to determine whether two parameters had a monotonic rela-
tionship. Two-tailed Wilcoxon rank sum tests were used to determine whether a metric for one group
was significantly different than another group. Linear and quadratic regressions were performed using
the time interval between two sampling events versus community dissimilarity (phylotype-based); analy-
sis of variance (ANOVA) and axis of symmetry were then tested to determine which bioreactors exhib-
ited linear and/or cyclic changes in community composition. Community dissimilarities were correlated
with geographic distance and environmental differences (operational parameters and wastewater char-
acteristics) using Mantel tests with Spearman’s rank correlation. Using variables identified as having stat-
istically significant correlations with community dissimilarities, CCA was performed to estimate the frac-
tion that each environmental variable explained community dissimilarities. Mantel tests and CCA were
performed using the package “vegan” in R (48); the significance of the CCA model was determined by
analysis of variance (ANOVA) with 999 permutations. All the other statistical analyses were performed
using MATLAB R2019a (MathWorks, Natick, MA, USA).

A significance level of a = 0.001 was assumed throughout this study. This value was selected
because the relatively high number of microbiome profiles (n = 190) could lead to “statistically
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significant” results even when the correlations were not strong; in addition, computed correlation coeffi-
cients and P values were reported throughout.

Accession number(s). The sequences of this study have been deposited in NCBI Sequence Read
Archive under accession number PRJNA560576.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, DOCX file, 0.04 MB.
FIG S2, DOCX file, 0.1 MB.
FIG S3, DOCX file, 0.1 MB.
FIG S4, DOCX file, 0.1 MB.
FIG S5, DOCX file, 0.1 MB.
TABLE S1, DOCX file, 0.1 MB.
TABLE S2, DOCX file, 0.1 MB.
TABLE S3, DOCX file, 0.04 MB.
TABLE S4, DOCX file, 0.1 MB.
TABLE S5, DOCX file, 0.1 MB.

ACKNOWLEDGMENTS
Financial support was provided by the Minnesota Environment and Natural Resources

Trust Fund.
We thank the operators at the treatment facilities for collecting samples and

Elizabeth Hill for technical assistance.

REFERENCES
1. Soininen J, McDonald R, Hillebrand H. 2007. The distance decay of similar-

ity in ecological communities. Ecography 30:3–12. https://doi.org/10
.1111/j.0906-7590.2007.04817.x.

2. Nekola JC, White PS. 1999. The distance decay of similarity in biogeogra-
phy and ecology. J Biogeogr 26:867–878. https://doi.org/10.1046/j.1365
-2699.1999.00305.x.

3. Whittaker R. 1975. Communities and ecosystems. Macmillan Publishing
Co Inc, New York, NY.

4. Astorga A, Oksanen J, Luoto M, Soininen J, Virtanen R, Muotka T. 2012.
Distance decay of similarity in freshwater communities: do macro- and
microorganisms follow the same rules? Global Ecol Biogeogr 21:365–375.
https://doi.org/10.1111/j.1466-8238.2011.00681.x.

5. Green J, Bohannan BJ. 2006. Spatial scaling of microbial biodiversity.
Trends Ecol Evol 21:501–507. https://doi.org/10.1016/j.tree.2006.06.012.

6. Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M,
Gillings M, Beattie AJ. 2004. Spatial scaling of microbial eukaryote diver-
sity. Nature 432:747–750. https://doi.org/10.1038/nature03034.

7. Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacte-
rial communities. Proc Natl Acad Sci U S A 103:626–631. https://doi.org/
10.1073/pnas.0507535103.

8. Bahram M, Koljalg U, Courty PE, Diedhiou AG, Kjøller R, Polme S, Ryberg
M, Veldre V, Tedersoo L. 2013. The distance decay of similarity in com-
munities of ectomycorrhizal fungi in different ecosystems and scales. J
Ecol 101:1335–1344. https://doi.org/10.1111/1365-2745.12120.

9. Miura T, Sánchez R, Castañeda LE, Godoy K, Barbosa O. 2017. Is microbial
terroir related to geographic distance between vineyards? Environ Micro-
biol Rep 9:742–749. https://doi.org/10.1111/1758-2229.12589.

10. Feng M, Tripathi BM, Shi Y, Adams JM, Zhu YG, Chu H. 2019. Interpreting
distance-decay pattern of soil bacteria via quantifying the assembly proc-
esses at multiple spatial scales. MicrobiologyOpen 8:e851. https://doi
.org/10.1002/mbo3.851.

11. Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJ. 2018.
Why do microbes exhibit weak biogeographic patterns? ISME J 12:
1404–1413. https://doi.org/10.1038/s41396-018-0103-3.

12. Ma B, LaPara TM, Evans AN, Hozalski RM. 2020. Effects of geographic loca-
tion and water quality on bacterial communities in full-scale biofilters
across North America. FEMS Microbiol Ecol 96:fiz210. https://doi.org/10
.1093/femsec/fiz210.

13. Zhou J, Ning D. 2017. Stochastic community assembly: does it matter in
microbial ecology? Microbiol Mol Biol Rev 81:e00002-17. https://doi.org/
10.1128/MMBR.00002-17.

14. Bell T. 2010. Experimental tests of the bacterial distance–decay relation-
ship. ISME J 4:1357–1365. https://doi.org/10.1038/ismej.2010.77.

15. Horner-Devine MC, Lage M, Hughes JB, Bohannan BJ. 2004. A taxa–area
relationship for bacteria. Nature 432:750–753. https://doi.org/10.1038/
nature03073.

16. Orhon D. 2015. Evolution of the activated sludge process: the first 50
years. J Chem Technol Biotechnol 90:608–640. https://doi.org/10.1002/
jctb.4565.

17. Wang X, Wen X, Deng Y, Xia Y, Yang Y, Zhou J. 2016. Distance-decay rela-
tionship for biological wastewater treatment plants. Appl Environ Micro-
biol 82:4860–4866. https://doi.org/10.1128/AEM.01071-16.

18. Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, Zhang Q, Brown MR, Li Z,
Van Nostrand JD, Ling F, Xiao N, Zhang Y, Vierheilig J, Wells GF, Yang Y,
Deng Y, Tu Q, Wang A, Global Water Microbiome Consortium, Zhang T,
He Z, Keller J, Nielsen PH, Alvarez PJJ, Criddle CS, Wagner M, Tiedje JM, He
Q, Curtis TP, Stahl DA, Alvarez-Cohen L, Rittmann BE, Wen X, Zhou J. 2019.
Global diversity and biogeography of bacterial communities in waste-
water treatment plants. Nat Microbiol 4:118321195. https://doi.org/10
.1038/s41564-019-0426-5.

19. Griffin JS, Wells GF. 2017. Regional synchrony in full-scale activated
sludge bioreactors due to deterministic microbial community assembly.
ISME J 11:500–511. https://doi.org/10.1038/ismej.2016.121.

20. Kim T, Behrens S, LaPara TM. 2021. Direct evidence for deterministic as-
sembly of bacterial communities in full-scale municipal wastewater treat-
ment facilities. Appl Environ Microbiol 87:e01086-21. https://doi.org/10
.1128/AEM.01086-21.

21. Gilbert B, Lechowicz MJ. 2004. Neutrality, niches, and dispersal in a tem-
perate forest understory. Proc Natl Acad Sci U S A 101:7651–7656. https://
doi.org/10.1073/pnas.0400814101.

22. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL,
Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S,
Ovreås L, Reysenbach A-L, Smith VH, Staley JT. 2006. Microbial biogeogra-
phy: putting microorganisms on the map. Nat Rev Microbiol 4:102–112.
https://doi.org/10.1038/nrmicro1341.

23. Baas Becking LGM. 1934. Geobiologie of inleiding tot de milieukunde. WP
Van Stockum & Zoon, The Hague, The Netherlands.

Distance Decay of Wastewater Treatment Microbiome

September/October 2021 Volume 6 Issue 5 e00648-21 msphere.asm.org 13

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA560576
https://doi.org/10.1111/j.0906-7590.2007.04817.x
https://doi.org/10.1111/j.0906-7590.2007.04817.x
https://doi.org/10.1046/j.1365-2699.1999.00305.x
https://doi.org/10.1046/j.1365-2699.1999.00305.x
https://doi.org/10.1111/j.1466-8238.2011.00681.x
https://doi.org/10.1016/j.tree.2006.06.012
https://doi.org/10.1038/nature03034
https://doi.org/10.1073/pnas.0507535103
https://doi.org/10.1073/pnas.0507535103
https://doi.org/10.1111/1365-2745.12120
https://doi.org/10.1111/1758-2229.12589
https://doi.org/10.1002/mbo3.851
https://doi.org/10.1002/mbo3.851
https://doi.org/10.1038/s41396-018-0103-3
https://doi.org/10.1093/femsec/fiz210
https://doi.org/10.1093/femsec/fiz210
https://doi.org/10.1128/MMBR.00002-17
https://doi.org/10.1128/MMBR.00002-17
https://doi.org/10.1038/ismej.2010.77
https://doi.org/10.1038/nature03073
https://doi.org/10.1038/nature03073
https://doi.org/10.1002/jctb.4565
https://doi.org/10.1002/jctb.4565
https://doi.org/10.1128/AEM.01071-16
https://doi.org/10.1038/s41564-019-0426-5
https://doi.org/10.1038/s41564-019-0426-5
https://doi.org/10.1038/ismej.2016.121
https://doi.org/10.1128/AEM.01086-21
https://doi.org/10.1128/AEM.01086-21
https://doi.org/10.1073/pnas.0400814101
https://doi.org/10.1073/pnas.0400814101
https://doi.org/10.1038/nrmicro1341
https://msphere.asm.org


24. O’Malley MA. 2008. ‘Everything is everywhere: but the environment
selects’: ubiquitous distribution and ecological determinism in microbial
biogeography. Stud Hist Philos Biol Biomed Sci 39:314–325. https://doi
.org/10.1016/j.shpsc.2008.06.005.

25. Beijerinck M. 1913. De infusies en de ontdekking der backteriën. Jaarboek
van de Koninklijke Akademie voor Wetenschappen. Müller, Amsterdam,
The Netherlands.

26. Gray ND, Miskin IP, Kornilova O, Curtis TP, Head IM. 2002. Occurrence and
activity of Archaea in aerated activated sludge wastewater treatment
plants. Environ Microbiol 4:158–168. https://doi.org/10.1046/j.1462-2920
.2002.00280.x.

27. Kim T-S, Jeong J-Y, Wells GF, Park H-D. 2013. General and rare bacterial
taxa demonstrating different temporal dynamic patterns in an activated
sludge bioreactor. Appl Microbiol Biotechnol 97:1755–1765. https://doi
.org/10.1007/s00253-012-4002-7.

28. Jiang X-T, Ye L, Ju F, Wang Y-L, Zhang T. 2018. Toward an intensive longi-
tudinal understanding of activated sludge bacterial assembly and dy-
namics. Environ Sci Technol 52:8224–8232. https://doi.org/10.1021/acs
.est.7b05579.

29. Johnston J, LaPara T, Behrens S. 2019. Composition and dynamics of the
activated sludge microbiome during seasonal nitrification failure. Sci Rep
9:4565. https://doi.org/10.1038/s41598-019-40872-4.

30. MacArthur RH, Wilson EO. 2001. The theory of island biogeography, vol 1.
Princeton University Press, Princeton, NJ.

31. Van Der Gast CJ, Jefferson B, Reid E, Robinson T, Bailey MJ, Judd SJ,
Thompson IP. 2006. Bacterial diversity is determined by volume in mem-
brane bioreactors. Environ Microbiol 8:1048–1055. https://doi.org/10
.1111/j.1462-2920.2006.00996.x.

32. Harte J, McCarthy S, Taylor K, Kinzig A, Fischer ML. 1999. Estimating spe-
cies-area relationships from plot to landscape scale using species spatial-
turnover data. Oikos 86:45–54. https://doi.org/10.2307/3546568.

33. Storch D, Šizling AL. 2008. The concept of taxon invariance in ecology: do
diversity patterns vary with changes in taxonomic resolution? Folia Geo-
bot 43:329–344. https://doi.org/10.1007/s12224-008-9015-8.

34. Zinger L, Boetius A, Ramette A. 2014. Bacterial taxa–area and distance–
decay relationships in marine environments. Mol Ecol 23:954–964.
https://doi.org/10.1111/mec.12640.

35. Turner WR, Tjørve E. 2005. Scale-dependence in species-area relation-
ships. Ecography 28:721–730. https://doi.org/10.1111/j.2005.0906-7590
.04273.x.

36. Clesceri L, Greenberg A, Easton A. 1998. Standard methods for the exami-
nation of water and wastewater. American Public Health Association,
Washington, DC.

37. Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, Gould TJ,
Clayton JB, Johnson TJ, Hunter R, Knights D, Beckman KB. 2016. System-
atic improvement of amplicon marker gene methods for increased accu-
racy in microbiome studies. Nat Biotechnol 34:942–949. https://doi.org/
10.1038/nbt.3601.

38. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB,
Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B,
Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-
source, platform-independent, community-supported software for
describing and comparing microbial communities. Appl Environ Micro-
biol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09.

39. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Devel-
opment of a dual-index sequencing strategy and curation pipeline for
analyzing amplicon sequence data on the MiSeq Illumina sequencing
platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/
AEM.01043-13.

40. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile
open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10
.7717/peerj.2584.

41. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for
rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl
EnvironMicrobiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07.

42. Westcott SL, Schloss PD. 2017. OptiClust, an improved method for assign-
ing amplicon-based sequence data to operational taxonomic units.
mSphere 2:e00073-17. https://doi.org/10.1128/mSphereDirect.00073-17.

43. Sheneman L, Evans J, Foster JA. 2006. Clearcut: a fast implementation of
relaxed neighbor joining. Bioinformatics 22:2823–2824. https://doi.org/
10.1093/bioinformatics/btl478.

44. Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance
inferred from metric distances among DNA haplotypes: application to
human mitochondrial DNA restriction data. Genetics 131:479–491.
https://doi.org/10.1093/genetics/131.2.479.

45. Anderson MJ. 2001. A new method for non-parametric multivariate analy-
sis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993
.2001.01070.pp.x.

46. Martin AP. 2002. Phylogenetic approaches for describing and comparing
the diversity of microbial communities. Appl Environ Microbiol 68:
3673–3682. https://doi.org/10.1128/AEM.68.8.3673-3682.2002.

47. Arrhenius O. 1921. Species and area. J Ecol 9:95–99. https://doi.org/10
.2307/2255763.

48. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara R,
Simpson GL, Solymos P, Stevens MHH, Wagner H. 2015. Package ‘vegan’.
Community ecology package, version 2.

Kim et al.

September/October 2021 Volume 6 Issue 5 e00648-21 msphere.asm.org 14

https://doi.org/10.1016/j.shpsc.2008.06.005
https://doi.org/10.1016/j.shpsc.2008.06.005
https://doi.org/10.1046/j.1462-2920.2002.00280.x
https://doi.org/10.1046/j.1462-2920.2002.00280.x
https://doi.org/10.1007/s00253-012-4002-7
https://doi.org/10.1007/s00253-012-4002-7
https://doi.org/10.1021/acs.est.7b05579
https://doi.org/10.1021/acs.est.7b05579
https://doi.org/10.1038/s41598-019-40872-4
https://doi.org/10.1111/j.1462-2920.2006.00996.x
https://doi.org/10.1111/j.1462-2920.2006.00996.x
https://doi.org/10.2307/3546568
https://doi.org/10.1007/s12224-008-9015-8
https://doi.org/10.1111/mec.12640
https://doi.org/10.1111/j.2005.0906-7590.04273.x
https://doi.org/10.1111/j.2005.0906-7590.04273.x
https://doi.org/10.1038/nbt.3601
https://doi.org/10.1038/nbt.3601
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.01043-13
https://doi.org/10.1128/AEM.01043-13
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/mSphereDirect.00073-17
https://doi.org/10.1093/bioinformatics/btl478
https://doi.org/10.1093/bioinformatics/btl478
https://doi.org/10.1093/genetics/131.2.479
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
https://doi.org/10.1128/AEM.68.8.3673-3682.2002
https://doi.org/10.2307/2255763
https://doi.org/10.2307/2255763
https://msphere.asm.org

	RESULTS
	Community richness and dissimilarity.
	Distance decay of the whole community similarity.
	Distance decay of specific microbial groups.
	Environmental heterogeneity and geographic distance.
	Impacts of geographic scale and site selection.
	Seasonal changes in microbial community composition.

	DISCUSSION
	MATERIALS AND METHODS
	Wastewater treatment facility description.
	Sample collection and DNA extraction.
	Amplicon sequencing.
	DNA sequence analysis.
	Data analysis.
	Accession number(s).

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

