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Characterization of CD46 and β1 
integrin dynamics during sperm 
acrosome reaction
Michaela Frolikova1,2, Natasa Sebkova1,3, Lukas Ded1 & Katerina Dvorakova-Hortova1,2

The acrosome reaction (AR) is a process of membrane fusion and lytic enzyme release, which enables 
sperm to penetrate the egg surroundings. It is widely recognized that specific sperm proteins form an 
active network prior to fertilization, and their dynamic relocation is crucial for the sperm-egg fusion. 
The unique presence of the membrane cofactor protein CD46 in the sperm acrosomal membrane 
was shown, however, its behaviour and connection with other sperm proteins has not been explored 
further. Using super resolution microscopy, we demonstrated a dynamic CD46 reorganisation over 
the sperm head during the AR, and its interaction with transmembrane protein integrins, which was 
confirmed by proximity ligation assay. Furthermore, we propose their joint involvement in actin 
network rearrangement. Moreover, CD46 and β1 integrins with subunit α3, but not α6, are localized 
into the apical acrosome and are expected to be involved in signal transduction pathways directing the 
acrosome stability and essential protein network rearrangements prior to gamete fusion.

A great deal is known about the mammalian fertilization, and all the physiological changes that male gamete 
must undergo in order to be able to fertilize the egg. However, the actual sperm protein dynamics that precedes 
the interaction with the egg, is still covered in a veil of mystery. So far, many proteins have been selected to be 
the sperm-egg binding and/or fusing candidates, some of them (Izumo1, CD9, Juno) were proven to be essential, 
some of them were discovered to play an unsuspected new role (CD46, tetraspanins)1. These new proteins are 
predicted to be also involved in the actual membranes’ fusion, covering not only reproduction but also vesicular 
trafficking, immune reaction and neurotransmission. There are several crucial physiological checkpoints before 
the sperm fuses with the egg. Determining molecular mechanisms important for sperm-egg membrane interac-
tion is the major challenge to current reproductive biology, with significant importance to human assisted repro-
duction. Furthermore, it would also be of interest for the field of neuro-physiology, immunology, cell biology and 
even cancer research, by stretching the understanding of the membrane fusion process in general, beyond the 
most well understood virus-cell and intracellular vesicle fusion2.

This study focuses on the final, but the most dramatic mature sperm metamorphosis, called the acrosome 
reaction (AR), which is characterized by the controlled exocytosis of the single giant enzyme-rich secretory 
vesicle the acrosome. This is a critical Ca2+-dependent event that follows capacitation, enabling sperm to be 
fusion-competent. During this event, the plasma membrane of the acrosomal area of the sperm head fuses with 
the outer acrosomal membrane, intra-acrosomal proteins are released into the extracellular space and new pro-
tein domains appear on the surface of the sperm head3,4. The formation of the lipid raft clusters in the plasma 
membrane, during sperm maturation called capacitation, present a preferential site of hybrid vesicle formation 
during acrosomal secretion. This structural organization resembles the secretory vesicles of neurons and somatic 
cells5. Accordingly, acrosomal secretion shows remarkable parallels to the active zone of the presynaptic terminal 
in neurons where neurotransmitter vesicle fusion occurs and thus may be termed “acrosomal synapse”6. Many of 
the proteins present in the plasma membrane and in the outer acrosomal membrane lipid rafts are re-localized 
or lost3,7–9, along with dramatic changes in the organization of the cytoskeleton, which are an equally important 
part in this event10,11.

Although a function of cytoskeletal proteins, mainly actin, is well known during the AR, it remains unclear 
which proteins participate in directing the dynamics of its organisation. CD46 (membrane cofactor protein, MCP) 
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is expressed broadly on the surface of somatic cells in humans and plays a pivotal role in the cell’s self-protection 
against the complement, which is also used by tumour cells12. However in sperm, CD46 is present on the acro-
somal membranes and it is not surface exposed until the AR is completed, which suggests a new potential role 
of this protein. CD46−/− deficient males show a higher rate of spontaneous acrosome reaction compared to wild 
type males13. This finding led to the theory that CD46, via actin, may play a role in the stabilization of the acro-
somal membrane13–15 and consequently the whole acrosome region. The cytoplasmic domain of CD46 contains 
several phosphorylation and signalling motives16 and this protein is known to play an important part in the sig-
nalling pathway in different types of somatic cells17–19. It was also proved that CD46 could induce large cytoskele-
ton reorganization in epithelial cells and the T-cell20. It may imply that CD46 could also affect actin arrangement 
in sperm during the AR and play an active part in the rearrangement process, as it has been shown in somatic 
cells, where actin reorganization is affected either through specific protein kinases by CD4617,21 or via its binding 
partners such as β​1 integrin subunit22–24. Integrins are transmembrane proteins consisting of α​ and β​ subunits and 
they play an active part in signal transduction pathways and mediate specific cell-cell/cell-extracellular matrix 
interactions. Integrins are also present in sperm25 and as well as CD46 they possess the ability to influence the 
actin reassembly. These heterodimers serve as membrane receptors, which mediate the signal, both into and out 
of the cell26. β​ subunits of integrins directly or indirectly bind to actin and therefore they play a key role in con-
trolling actin remodelling26,27. It is known that integrins are often associated with other membrane receptors in 
multi-molecular complexes that participate in cell activation28–30.

One of these multi-molecular complexes, where integrins participate, was detected on the egg plasma mem-
brane and it is called – the tetraspanin web. The tetraspanin web is a complicated protein network formed by 
the interaction of members of the tetraspanin family and others proteins31–33. It is known that integrins, such as  
α6β​1, form clusters on the egg plasma membrane at the site of sperm contact34 and they are significantly relo-
calized after fertilization35 in a similar way as sperm β​1 integrins relocate into the area of fusion during the AR25. 
Interaction between egg α​6β​1 integrins and egg tetraspanins, mainly CD9 (an egg key player in gamete interac-
tion)36,37, was reported in the oolema38. Besides binding to integrins, CD9 is also able to bind to CD4622,23.

The interaction of CD46 and β​1 integrins is well known in somatic cells, including humans22, but there is no 
information about their interaction in sperm, however, due to the complexity of both proteins, their involvement 
in gamete attachment could be suspected. Hereby, we would like to present that in mouse sperm, CD46 and  
β1 integrins are binding partners and could play a crucial role in directing the onset of the acrosome reaction via 
their interaction with the actin cytoskeleton. Also, we suggest that the tetraspanin web or very similar structures 
could exist on sperm, and CD46 and integrins are part of them.

Results
CD46 and β1 integrin relocation.  To identify the behaviour of the studied proteins, CD46 and β​1 subunit 
of integrins, during sperm maturation and acrosome reaction, we firstly examined immunohistochemicaly their 
localization in the sperm head in freshly released epididymal sperm. We were interested whether CD46 would 
be confined only to the acrosome region of the sperm head, as previously reported15, or would it display a tet-
raspanin-partner like dynamic behaviour over the time of capacitation and/or AR. Similarly, we were interested 
in the pattern of β​1 integrin and aimed to compare the nature of both proteins under in vitro defined conditions.

Specific monoclonal antibodies (mAbs), see methods, were used to label the individual proteins and follow 
their localization over the sperm head. Epifluorescent microscopic observation detected distinct sperm head 
regions that showed a profound distribution of both proteins (Fig. 1) during the acrosome reaction, but not 
during the capacitation. However, the protein relocation depended on the length of capacitation, whether 60 or 
90 minutes. When sperm were left to capacitate for 90 min, the protein relocation during acrosome reaction was 
faster compared to the group capacitated for only 60 min (Fig. 2). CD46 displayed five clearly distinct labelled 
regions, such as the acrosome cap, residual acrosome cap, apical equatorial segment, equatorial segment and the 
whole sperm head (Fig. 1A). For the β​1 integrins, only three patterns could be followed, such as the acrosome cap, 
equatorial segment and whole sperm head (Fig. 1B, S1a,b).

The CD46 and β​1 integrin localization during the 60 or 90 min AR progress was clearly similar. Prior to the 
AR, or at its very beginning, both proteins could be detected in the apical acrosome cap (Fig. 1A,B line I) with a 
visible membrane location (Fig. 1A arrows). As the AR progressed, the other regions became positive for both 
proteins, as shown in Fig. 1A,B lines II-V for CD46 and II-III for β​1 integrin). The acrosome PNA labelling was 
only residual or absent when proteins entered the equatorial segment, and always absent when the whole sperm 
head was positively labelled. This could be interpreted that the studied protein relocation is triggered by the onset 
of the AR, but carries on after the acrosome content release.

There was also about 15% of acrosome reacted sperm during 60 min capacitation in vitro, which is in correla-
tion with previous findings14. In this sperm fraction, the beginning of the protein relocation was detectable, and 
progressed as far as the apical equatorial segment in the case of CD46 or even over the whole sperm head for β​1 
integrins.

To analyse the distribution of individual CD46 and β​1 integrin relocation patterns, among groups with differ-
ent times of capacitation followed by the induced AR, the depicted protein patterns were placed beside each other 
(Fig. 2). The proteins behaviour was shown to be similar. This was further confirmed by the statistical analysis of 
fluorescent intensities, which depicted fluorescent signal differences between protein distribution in intact acro-
some and in acrosome reacted sperm (Fig. 3). Both analyses are described in the following chapter.

Quantitative analysis of the relocation process.  The graphical and statistical output of our data is 
presented in Figs 2 and 3. In detail, Fig. 2 is represented by a column chart, where individual columns display 
the percentage distribution of the individual CD46 and β​1 integrin relocation patterns among different times of 
capacitation and induced AR. At the onset of in vitro capacitation, the majority of sperm display the acrosome cap 
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Figure 1.  Progress of CD46 and β1 integrin relocation prior and during AR. (A) CD46 (green), PNA lectin 
(red). (B) β​1 integrin (green), PNA lectin (red). The first column represents a schematic illustration of (A) 
CD46, (B) β​1 integrin localization in the acrosome intact sperm (line I) and in sperm during the AR progress. 
(A) CD46 detection in intact acrosomal membranes (line I), and the residual outer acrosomal membrane (line 
II) (see the green arrow), the inner acrosomal membrane begins to emerge (see the red arrow). CD46 relocation 
progress during the AR is seen across the apical equatorial segment towards the whole equatorial segment 
and the whole sperm head. (B) β​1 integrin is relocated across the apical equatorial segment towards the whole 
equatorial segment and the whole sperm head. In contrast to CD46, the residual acrosome cap and the apical 
equatorial segments were not detected. Scale bar represents 2 μ​m.
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(AC) pattern for both CD46 and β​1 integrin, which reflects the localisation of appropriate molecules in an intact 
acrosomal membrane. During the first 60 min of capacitation, the majority of sperm still kept the AC pattern, 
but the percentage of patterns related to the relocation of β​1 integrins to the equatorial segment, and CD46 to the 
residual acrosome cap (rAC) and the apical equatorial segment (aES) slightly increased, which was expected, due 
to a well-known spontaneous AR in mice that represents over 10% of the sperm population. The following induc-
tion of AR by calcium ionophore caused a dramatic change in the relocation dynamics for both CD46 and β​1 inte-
grin molecules. Only less than 10% of sperm now displayed the AC pattern, and on the other hand, the pattern 
related to the relocation of a fluorescent signal to the equatorial segment (ES) was most prominent for the CD46 
molecule. β​1 integrin showed even more rapid relocation dynamics with a positive pattern detectable over the 
whole sperm head (WSH), including the post-acrosome region (PAR) as the prominent one. In subsequent times 
of analysis, the percentage of sperm expressing relocation of CD46 and β​1 integrins into ES and post-acrosome 
region covering the whole sperm head continually increased. β​1 integrins still carried on with a slightly more time 
dependent rapid progress of its relocation to ES and PAR compared to CD46.

To further support our findings about protein relocation dynamics obtained by subjective microscopic evalu-
ation, we also performed quantitative analysis of the fluorescent intensities (Fig. 3) comparing sperm before the 
AR (panel A) and after the AR (panel B). The fluorescent intensity lines for CD46 and β​1 integrin involving the 
acrosome cap, equatorial segment and the post-acrosome region clearly showed the redistribution of fluorescent 
signals from AC to ES and WSH including PAR after the AR induction. We also performed a statistical compari-
son of fluorescent intensity data (panel C). Here, the statistical output comparing intensities of sperm before and 
after AR was in the accordance with our subjective analysis showing statistically significant increase of the inten-
sities in ES and PAR after AR with a higher difference in the fluorescent intensity related to β​1 integrins compared 
to CD46 (not subjected to statistical comparison).

CD46 – β1 integrin interaction.  Based on a similar distribution of both the proteins, their parallel time 
relocation during the AR and published data from the somatic cells17, we decided to perform a specific proxim-
ity ligation assay that extends the limits of traditional immunofluorescence assays and enables direct detection 
of specific protein – protein interactions with a single molecule resolution. Besides the studied proteins (CD46 
and β​1 integrin subunit), the positive (α​ tubulin and β​ tubulin) and negative (β​1 integrin and α​ tubulin) control 
protein pairs were selected. Using Proximity Ligation Assay Duolink (PLA) the proteins were adequately labelled 
(please, see methods for a detailed description) and evaluated under fluorescent microscopy (Fig. 4). Based on 
the obtained results, the CD46 - β​1 integrin - protein interaction was proven in both freshly released sperm 
(Fig. 4A, first column) and sperm after the acrosome reaction (Fig. 4B, first column). The dynamic distribution of 
studied proteins over the sperm head was also visible by this assay and it is possible to compare it with standard 
fluorescent results in the small picture in the left hand corner of Fig. 4. A positive (Fig. 4A,B second column) and 
negative control (Fig. 4A,B third column) gave relevant positive/negative results. The assay was repeated twice 
with the same outcome.

Stimulated emission depletion (STED) super–resolution microscopy.  Dual immunofluorescent 
staining was used for the analysis of the accurate position of CD46 and integrins by STED super-resolution 
microscopy. The ability of STED microscopy to distinguish individual membrane structures of the mouse sperm 
head was previously published39. Thanks to a high lateral resolution of approximately 60 nm, this method enabled 
us to detect individual structures of mouse sperm head, such as plasma membrane, as well as the outer and inner 
acrosomal membrane, which helped us to investigate in detail the presence of studied proteins in each of them.

Figure 2.  Percentage distribution of individual CD46 and β1 integrin relocation patterns among different 
times of capacitation and induced AR. Individual bars denote the percentage distribution of CD46 and β1 
integrin staining patterns among individual times of capacitation and induced AR. Error bars denote SEM. 
AC – Acrosome Cap, rAC – residual Acrosome Cap, aES – apical Equatorial Segment, ES – Equatorial Segment, 
WSH – Whole Sperm Head. C – time of the capacitation, AR – time of the induced acrosome reaction.
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Figure 3.  Statistical analysis of the relocation process. (A) Coloured lines with error bars represent the 
relative fluorescent intensities of β​1 integrin (red) and CD46 (green) among the individual segments of the 
sperm head in 10 sperm with an intact acrosome. Horizontal coloured lines represent the arithmetic means of 
the fluorescent intensities for β​1 integrin (red) and CD46 (green). (B) Coloured lines with error bars represent 
the relative fluorescent intensities of β​1 integrin (red) and CD46 (green) among the individual segments of the 
sperm head in 10 acrosome reacted sperm. (C) Statistical comparison of the relative fluorescent intensities of β1 
integrin (red) and CD46 (green) among individual segments of the sperm head between the acrosome-intact 
and acrosome-reacted sperm. Horizontal coloured lines represent the arithmetic means of the fluorescent 
intensities for β​1 integrin (red) and CD46 (green). Error bars denote SEM. AC – Acrosome Cap, ES – Equatorial 
Segment, PAR – Post-Acrosomal Region. p value equal or lower than 0.05 was considered to be significant, 
*p ≤​ 0.05, **p ≤​ 0.01, ***p ≤​ 0.001.
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A detailed mutual localization of CD46 and β​1 integrins was visualised on freshly released epididymal sperm 
with an intact acrosome (Fig. 5AI, S2 video image). In this case, the presence of CD46 was detected solely in the 
acrosomal cap in both the outer and inner acrosomal membranes, but not on the plasma membrane covering 
the acrosome region. Contrary to that, the β​1 integrin subunit was present in the plasma membrane where it was 
detected in the area of acrosome cap (AC) and the hook marking the shape of the apical and dorsal sperm head 
(Fig. 5AI; 5BI and Fig. 6III, see the arrows). Unlike CD46, β​1 integrins are present in an intact sperm head only 
in the outer acrosomal membrane, but not in the inner one (Fig. 5AI) and only later during the AR is the protein 
relocated over the inner acrosome membrane, equatorial segment and eventually the whole sperm head.

In order not to ignore α​ subunits of integrin proteins we decided to characterize the localization of α​3 and 
α​6 subunits, which were previously detected in sperm25,40. As shown in Fig. 5B, their localization was remark-
ably different. Based on these results, we can conclude that the α​6β​1 and/or α​6β​4 pair could be localized in the 
plasma membrane covering an intact apical sperm head including the hook. Due to an absence of β​1 in the equa-
torial segment of intact sperm, it is probable that only the α​6β​4 pair would be localized in the equatorial region 
(Fig. 5BI, see the arrows), entirely excluding the acrosome vesicle. On the other hand, the α​3β​1 pair is confined 
to the plasma and outer acrosome membrane (Fig. 5BII,III, S3a–c left), however, the sperm hook is not labelled 
by α​3 integrins (Fig. 5BII,III), which gives us a clear difference between the α​3 and α​6 subunit of β​1 integrins. 
The co-staining of the α​3 integrin subunit with CD46 supports this observation and confirms that the α​3 integrin 
localizes into the outer, but not inner acrosome membrane in intact sperm. This is clearly visible in Fig. 5BIII, 
as the CD46 labels the entire acrosome vesicle and its signal outspreads the one given by the α​3 integrin subunit 
(Fig. 5BIII, see the arrow). The Estrogen receptor β​ (ERβ​) labelling, which is excusive to the plasma membrane 
was used to double confirm the expression of α​3 integrin (Fig. S3C right). A positive colocalization of ERβ​ with α​
3 integrin and a negative one with CD46, supports the identified α​3 integrin plasma membrane localization. All 
the results addressing localisation of various forms of integrins and CD46 among individual membrane structures 
in the sperm head are then graphically summarised (Fig. 7).

Dramatic membrane reorganization starts in the acrosome cap region after the initiation of the acrosome 
reaction41. However, the membrane changes have not been studied in the area of the rodent specific apical hook 
yet. Using the STED super-resolution microscopy, we focused on the hook part of the falciform sperm head, 
which plays an important role in sperm-sperm assembly42. Our results show that the α​6, β​1 integrin subunits 
(Fig. 5AI,BI and Fig. 6III), localized in the plasma membrane of the apical hook, remain in their localization 
during the following membrane rearrangements during the AR (Fig. 5AII). However, after the AR is completed 
and the acrosome vesicle is lost, even the CD46 protein relocates to the apical hook as well as into the equatorial 
segment (Fig. 5AIII,IV). So in the end, both CD46 and β​1 integrin subunit fill the entire sperm head including the 
hook (Fig. 5AIV and Fig. 6I,IV) where their mutual position is visible.

Figure 4.  The study of protein-protein interactions. Interactions of CD46 and β​1 integrin in C57BL/6 
spermatozoa determined by Duolink proximity ligation assay. (A) freshly released sperm, (B) sperm during 
the induced AR. Positive control (α​ tubulin/ β​ tubulin), negative control (β​1 integrin/ α​ tubulin). The small 
pictures in the corners represent the immunofluorescent dual staining of CD46 and β​1 integrin, CD46 (green), 
β​1 integrin (red). Scale bar represents 4 μ​m.
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Figure 5.  Dynamics of CD46 and β1/α6/α3 integrin captured by STED. (A) (line I) CD46 (green) is 
locked over the acrosome vesicle and β​1 integrin (red) is confined to both the plasma and the outer acrosomal 
membrane with prominent labelling of the perforatorium (see the red arrow); (line II) the onset of AR with 
the membrane vesiculation is visible, as well as the visibility of CD46 and β​1 integrin within the acrosome and 
plasma membranes (see green and red arrows); (line III) the loss of the acrosome including the CD46 and β​
1 integrin signal is visible. Relocation of CD46 and β​1 integrin over the equatorial segment in patchy clusters 
can be recognised; (line IV) CD46 is localized through the inner acrosome membrane (see the green arrow), 
the equatorial segment and over the post-acrosome region. β​1 integrin shows a similar pattern to CD46 and 
also remains localized in the perforatorium (see the red arrow). (B) (line I) α​6 (green) and β​1 (red) integrins 
occupy different regions of the intact sperm head, except the same localization in the plasma membrane over 
the acrosome and the hook. α​6 integrin is continues to be spread over the equatorial segment, even prior to AR 
(see the green arrows). β​1 integrin is further present in the outer acrosomal membrane (when compared with 
the CD46 dual staining in AI) and perforatorium (see the red arrows). (line II) The α​3 (red) integrin pattern is 
clearly different to the α​6 (green) subunit, but remarkably similar to the one of β​1 (red, line I) in the acrosome 
region. α​3 is expressed on in the outer acrosomal membrane and the plasma membrane over the acrosome. 
(line III) The differences in the localization of the α​3 (red) integrin and CD46 (green) are visible. The α​3 
integrin subunit is detectable on the plasma (see also Fig. S3b for detail) and the outer acrosomal membrane, 
when CD46 is defined strictly to the acrosomal membranes only. DAPI (blue); Scale bar represents 1 μ​m.



www.nature.com/scientificreports/

8Scientific Reports | 6:33714 | DOI: 10.1038/srep33714

Regarding the apical hook, we also show in intact sperm the presence of β​1 integrin in a “bridge” like three 
point structure (Fig. S4, see also 3D structure in S2) connecting the very tip of the hook with its ventral part and 
supporting the apical end of the nucleus. The presence of CD46 was completely absent though. This structure was 
previously described as a hook rim43, but its protein content or function remains unclear.

The important part of acrosome reaction is the relocation process of proteins involved in sperm-egg bind-
ing and fusion. The key role of actin cytoskeleton has already been described during this process8, which sup-
ports our findings of possible actin cytoskeleton participation in the relocation process of the studied proteins 
(Fig. 6). In the presented STED micrographs, actin cortical cytoskeleton (Fig. 6I) is visibly changing its pattern 

Figure 6.  Dynamics of CD46, β1 integrin and actin captured by STED super-resolution microscopy. (line 
I and III) Actin (red) fills the apical acrosome and equatorial segment of an intact sperm head, it copies the 
plasma membrane and overlays the CD46 (green, line I) labelled acrosome in a thin line pattern (see red arrow). 
(line III) β​1 integrin and actin display a similar localization in the apical acrosome cap region (plasma and 
acrosomal membrane). The perforatorium is filled with actin, but clearly marked with the β​1 integrin. (line II 
and IV) Actin (red) is confined to the equatorial and postacrosomal segment in the acrosome reacted sperm. 
CD46 (green, line II) and β​1 (green, line IV) relocation progress during the AR is visible. DAPI (blue); Scale bar 
represents 1 μ​m.

Figure 7.  3D cartoon summarizing the localization of CD46 and α3, α6 and β1 integrins among different 
membrane structures of the intact sperm head. (A) Apical acrosomal area, (B) Equatorial segment, (C) Sperm 
hook. PM – plasma membrane, OAM – outer acrosomal membrane, IAM – inner acrosomal membrane, NM – 
nuclear membrane. Using our experimental techniques, we are not able to determine, if integrins α​3 and β​1 are 
present on both PM and OAM or exclusively on PM in the equatorial segment (panel B).
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and localization according to the status of the acrosome cap and corresponds with the described dynamics of 
CD46 and β​1 integrin (Fig. 6II) during AR.

Super–resolution 3D Structured Illumination Microscopy (SIM) and colocalization analysis.  
Data collected by 3D super–resolution SIM was used for colocalization analysis of the mutual position of the 
CD46 and β​1 integrin subunit. 3D-SIM was chosen to collect data for colocalization analysis due to its higher 
resolution in z-axis (in our case approximately 350 nm). The mutual position of the CD46 and β​1 integrin subunit 
was visualised with dual immunofluorescence staining in freshly released epididymal sperm with an intact acro-
some (Fig. 8A) and microscopy images were captured with a 3D SIM equipped microscope. Pearson’s correlation 
coefficient was used for the evaluation of the colocalization of the studied proteins44. Fluorescent images were 
analysed with Huygens software and the resulting values were statistically evaluated. The value of the average 
Pearson’s correlation coefficient of CD46 and β​1 integrin was 0.784 ±​ 0.037. The result shows a high rate of colo-
calization of the studied proteins and it confirms the results obtained with the Duolink Proximity ligation assays 
(Fig. 4). The colocalization map by Huygens software, representing a visualization of Pearson coefficient, is shown 
in Fig. 8B and Fig. S9.

CD46 and β1 integrin relocation affected by Latrunculin A.  Latrunculin A, a toxin that binds to actin 
monomers and prevents them from polymerizing, significantly affected the ability of sperm to relocate both the 
CD46 and β​1 integrin subunit when the acrosome reaction was induced (Fig. 9). The co-incubation of sperm 
with Latrunculin A followed by an induced AR led to a decrease of protein relocation of about 60% for CD46 
and 40% for β​1 integrin (Fig. 9). This compares to 90% positively relocated proteins in the control. There is also a 
significant difference in the percentages of sperm with a relocation pattern between CD46 and β​1 integrin, where 
CD46 expresses a higher inhibition rate of the protein relocation compared to β​1 integrin (significance indicators 
not shown in Fig. 9). Relevant control samples of sperm incubated with Latrunculin A and induced AR were run. 
The acrosome status was monitored by PNA lectin and there was near to zero blocking of the acrosome exocytosis 
caused by Latrunculin A (Fig. S5).

Discussion
Protein relocation during the sperm acrosome reaction plays a crucial role for the ability of sperm to fuse with 
the egg as shown for the primary fusion protein IZUMO145. Such a process is also true for spontaneous AR, 
in selected rodents, where IZUMO1 relocation speed correlates with the species-specific level of promiscuity9, 
stressing the importance of protein dynamics in the classical environment of sperm competition. Similarly, 
CD46 has been shown to play an important role in fertilization and in maintaining the acrosome integrity13–15. 
The mechanism by which the presence of CD46 in the acrosomal membrane stabilizes this organelle has so far 
remained unknown. In this study, we present proteins CD46 and β​1 integrin subunit as a binding pair with their 
subsequent associations with the actin cytoskeleton. We bring evidence of the interaction between CD46 and β​
1 integrin, demonstrated by Proximity ligation assay and STED/SIM super-resolution microscopy. We present a 
dynamic relocation of CD46 and β​1 integrins into the sperm fusogenic domain during the AR, and discuss their 
involvement in sperm-egg fusion. Moreover, we present that integrins α​3 and α​6 subunits are possibly pairing 
with β​1, but occupying different compartments of the intact sperm head.

CD46 is a key membrane regulator of complement activation, which protects mammalian host cells from 
complement-mediated damage. Beside this role, CD46 is expressed in sperm solely as an unusual lower Mr 

Figure 8.  SIM super-resolution microscopy and visualization of mutual position of CD46 and β1 integrin. 
(A) SIM data show the localization of CD46 (green) on the inner and outer acrosomal membrane and β1 
integrin (red) on the plasma and outer acrosomal and plasma membrane of the acrosomal area. Scale bar 
represents 1 μ​m. (B) SIM super-resolution image analysed by Huygens software, showing the colocalization area 
(yellow) of selected proteins in the outer acrosomal membrane. The colocalization map is based on Pearson’s 
correlation coefficient. Scale bar represents 1 μ​m. DAPI (blue).
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hypoglycosylated isoform localized to the acrosomal cap and it only becomes surface exposed on the inner 
acrosomal membrane after sperm had acrosome-reacted46. Its role in fertilization was already noticed by using 
monoclonal antibodies to the first short consensus repeat (SCR1) ectodomain of CD46 which resulted in block-
ing the complement-independent interaction of human sperm with zona-free oocytes in vitro47,48. The recent 
discovery of a CD46 new physiological ligand Jagged-149, which is highly expressed by the oocytes50 calls for 
readdressing the role of CD46 as a mediator of the initial steps of the sperm interaction with oolema. Implying 
the above and the fact that the acrosome reaction results in a morphological change and remodelling of the ante-
rior sperm head, including the onset of protein network remodelling as a preparation for the gamete fusion, the 
presented relocation of CD46 during the AR further supports its possible interaction with an egg receptor, such 
as Jagged-1, inducing key signalling events for the initial steps of membrane fusions51. Delivering the evidence 
that CD46 was newly detected in the equatorial segment, by which mammalian sperm first touches the egg, 
would explain a previously made connection between CD46 reduced expression and an idiopathic infertility in 
humans52. Furthermore, we show that during later stages of the AR, when the acrosome vesicle is no longer pres-
ent, CD46 location spreads over the whole sperm head (Figs 1A and 5A). This also suggests CD46 involvement in 
the later stages of sperm-egg fusion when sperm is being fully surrounded by the oolema and integrated within 
the ooplasma. The sperm specific CD46 isoform carries the cytoplasmic end 246, which is responsible for signal 
transduction to the cytosol and IL-10 production in T- lymphocytes53. Giving a closer understanding of the CD46 
sperm dynamics, its involvement in intracellular sperm signalling is very likely, however, its solitary behaviour is 
highly improbable. Despite the on-going research on CD46 in sperm, there has so far been no information on its 
binding partners or its suspected interaction with the cytoskeleton.

Here we demonstrated that one of the binding partners of CD46 on sperm is the β​1 integrin subunit, which 
share the same acrosomal membrane localization and relocation behaviour. In intact sperm, we also identified, 
thanks to STED and SIM super-resolution microscopy, the localization of each protein across the individual 
apical head membranes and showed that the key integrin pair interacting with CD46 at the beginning of AR is α​
3β​1 and not α​6β​1, which however could later play an important role in CD46’s protein organization. A previous 
interaction of CD46 and β​1 integrins was detected in different somatic cell types22–24, as well as the presence of 
specific types of integrins in sperm25,54. Although the role of integrins in the fertilization process has been studied 
for a long time, it is mostly described in terms of the oocyte than in sperm. Interestingly, β​1 integrin shows a 
patchy pattern nature in germ cells, as it was previously described both on the ooloema during oocyte matura-
tion55 and in sperm25. Following our STED micrographs, the patchy localization is increasingly visible during 
relocation, especially into the ES (Fig. 5III) and may be relevant to the lipid raft dynamics. This is in correlation 
with previously shown α​6β​1 integrin clustering at the surface of the sperm head, which suggests its activation25. 
The fusing sperm could be expected to present this pattern, especially in the fusogenic region of the equatorial 
segment, and as this seems to be true for both CD46 and β​1 integrins it just supports our findings of their inter-
action, and therefore a possible joint movement. Integrins as transmembrane receptors mediate not only static 
binding, but also dynamic adhesion processes between cells40. They are capable of transducing a signal in both 
directions, inside and outside of the cell26. Due to the integrin characteristics and the ability to bind to the actin 
cytoskeleton56, it was interesting to look into integrin distribution across the sperm head when actin was blocked. 
Giving the integrin nature, it did not come as a big surprise that the dynamic pattern changes considerably, which 
strongly supports the idea of integrin association with actin filaments in sperm, even though not necessarily all 
the integrins may possess the dynamic relocation nature, which may also differ based on the membrane location. 
It is puzzling so far whether the parallel change in CD46 dynamics (Fig. 9) is due to integrins or whether there can 

Figure 9.  The differences in the percentage distribution of sperm with intact acrosome, sperm with absent 
relocation and sperm with protein relocation patterns of CD46 and β1 integrin after the AR induction 
between the control samples and samples incubated with Latrunculin A. Error bars represent standard 
deviations. ***p ≤​ 0.001.
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be an integrin independent CD46-actin binding in sperm. The report of an induction of a calcium flux on CD46 
signalling57 may be particularly relevant to the involvement of CD46 in maintaining acrosome integrity and play-
ing an active part in the onset of the acrosome reaction. This process is known to involve actin reorganization fol-
lowing protein kinase signalling and could be triggered, like in somatic cell, directly upon CD46 stimulation17,21 
or by specific CD46 binding to β​1 integrins and subsequent indirect associations through the integrin tail anchor 
to the surrounding cortical cytoskeleton22–24.

To present, 18α​ and 6β​ integrin subunits and 24 of their heterodimers have been described in mammals58,59.  
β​1 integrin is one part of 12 and so it is the most represented integrin subunit of all58. Trying to concretely charac-
terize β​1 heterodimers interacting with CD46, we described the localization of α​3 and α​6 subunits that is known 
to form a heterodimer with β​1, which was previously detected on sperm25,40. Up to now it has been described that 
the α​3 subunit forms only part of the α​3β​1 heterodimer instead of the α​6 subunit, which forms two heterodimers 
α​6β​1 and α​6β​458. β​4 was also detected on sperm where it forms a heterodimer with only α​640. We demonstrate 
the same localization of the α​3 and β​1 subunit on the plasma membrane surrounding the acrosomal cap and on 
the outer acrosomal membrane of acrosomal intact sperm probably forming the α​3β​1 heterodimer. In relation 
to its localization, it is probable that α​3β​1 is re-localized during the acrosome reaction and so it could play a 
role in sperm – egg binding. It is supported by the fact that in somatic cells, α​3β​1 associates with CD151 and 
CD8160. These proteins are also present on the egg35. Moreover, it was suggested that the α​3β​1 integrin is neces-
sary for neuronal-glial recognition61. Thus α​3β​1 might participate in gamete recognition too. In the case of α​6, 
we detected the same localization for α​6 and β​1 integrins in the plasma membrane of the acrosomal cap and the 
apical hook. At the same time we detected a localization exclusive for α​6 without the presence of β​1 in the plasma 
membrane of the equatorial segment. Thus it seems very probable that both α​6β​1 and α​6β​4 are present on mouse 
sperm. It was published62 that in the epithelial cell, α​6β​4, activates the signalling molecules of IP3 kinase and 
Rho kinase and affects the actin cytoskeleton, which can lead to the stimulation of other integrins such as α​3β​1. 
In sperm, IP3 kinase and Rho kinase are key signalling molecules that participate in the control of the acrosome 
reaction and actin cytoskeleton remodelling63–65.

Colocalization of the α​6 and β​1 subunit in the plasma membrane of the acrosomal cap area and apical hook 
indicate the possible presence of the α​6β​1 heterodimer in these structures. Moreover, the presence of α​6β​1in 
mouse sperm has been previously described25. Identification of the α​6β​1 integrin pair localization at the very 
end of sperm hook of the mouse sperm head may be of further importance. An unusual rodent sperm-sperm 
assembly into fast swimming sperm trains was previously described42,66, but the molecular basis of the assembly 
has not been discovered so far, apart from identifying a presence of actin cytoskeleton in the hook. Using a STED 
resolution, we show that α​6β​1 integrins are in the plasma membrane of the hook and therefore they are over-
laying the previously documented position of actin42. Therefore, it seems likely that α​6β​1 integrins could also be 
involved in the formation of sperm trains. Moreover, we show a β​1 integrin presence (Fig. S2,4) in a three point 
“bridge” like structure in the apical tip of the sperm hook, described as the hook rim43. This “bridge” is supporting 
the tip of the nucleus, anchoring it to the very tip of the hook. Supposedly, it has a resemblance of a sperm tail43, 
but this has not been further characterised with regards to a protein composition. We would expect there to be 
a membrane-surrounded structure based on the specific presence of β​1 integrin, but due to a complete absence 
of CD46, it is unlikely to be formed by acrosome vesicle membranes. It could be, together with actin, actively 
involved in sperm hook deployment and the attachment to the sperm head or tail of another sperm, however, it 
still remains to be clarified.

To visually represent our new findings about the CD46 and β​1 integrin localization and put them into the 
context of the known sperm membrane transformation processes occurring during AR, we have drawn 3D mod-
els and visualizations combining our own data with the data from other relevant publications. The topological 
localization of CD46 and β​1 integrin molecules among individual sperm membranes is depicted in Fig. S6. In the 
intact sperm cells, β​1 integrin occupied both the cytoplasmic and outer acrosomal membrane, but it is not present 
in the inner acrosomal membrane. On the other hand, CD46 molecules occupied both acrosomal membranes, 
but they are not present in the cytoplasmic membrane. During the fusion of the cytoplasmic and outer acrosomal 
membrane, both CD46 and β​1 integrin are present in the newly formed structures called hybrid vesicles67. After 
the release of these vesicles, the surface of the sperm in the acrosomal area is newly formed by the intra-acrosomal 
part of the retaining inner acrosomal membrane, with the intra-vesicular domains of CD46 molecules exposed 
to the outer environment.

In Fig. S7, the potential mechanisms enabling the relocation of CD46 and β​1 integrin molecules are addressed. 
Contrary to the acrosomal cap area, there is no fusion of the outer acrosomal membrane and the plasma mem-
brane in the equatorial segment of the sperm head. The fusion takes place only at the interface between the acro-
somal cap area and the equatorial segment (here we suggest naming it the ‘hybrid area’). In this specific location 
on the sperm head, the proteins from the outer acrosomal membrane are supposed to be able to relocate to the 
plasma membrane of the hybrid area and then to more distal parts of the equatorial segment. Furthermore, the 
hybrid vesicles resulting from the fusion of plasma and the outer acrosomal membrane are supposed to be able to 
re-fuse with the intact plasma membrane of other segments of the sperm head and thus relocate the material from 
the outer acrosomal membrane to the plasma membrane (both relocation mechanisms were suggested previously 
for the equatorin protein68. Finally, to also graphically address the temporal aspect of the relocation process, we 
generated a 3D simulation of the AR (Fig. S8), where the formation of hybrid vesicles, their release, together with 
the acrosomal matrix and the relocation of the CD46 and β​1 integrin, are visualized. The simulation of the differ-
ential relocation speed of CD46 and β​1 integrin is based on quantitative data sets from the population of sperm 
presented in Figs 2 and 3. This simulation thus enables one to visually approximate the most likely scenario of the 
relocation process in the average sperm cell.

In conclusion, we have shown that: 1) CD46 relocates from the acrosome into the equatorial segment and over 
the whole sperm head during the acrosome reaction, which is an important protein behaviour prior to sperm-egg 
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fusion; 2) CD46 associates with the β​1 integrin subunit and shares the same relocation pattern, which is disrupted 
when actin cytoskeleton is blocked, stressing their involvement in specific signalling pathways; 3) α​3β​1, but not 
the α​6β​1or α​6β​4 integrin pair, is confined to the intact acrosome vesicle and is consequently responsible, together 
with CD46, for maintaining its stability; 4) α​6β​1 integrins are localized to the apical hook of the intact mouse 
sperm head, which plays a role in the sperm train assembly.

Materials and Methods
Animals.  Inbred C57BL/6 mice were obtained from a breeding colony of the Laboratory of Reproduction, 
Faculty of Science, Charles University. Mice were housed in the animal facilities of the Faculty of Science, Charles 
University, and food and water were supplied ad libitum. The male mice used for all experiments were a reproduc-
tive age of 10–12 weeks. All animal procedures and all the experimental protocols were approved by Local Ethics 
Committee of Faculty of Science, Charles University, carried out in strict accordance with the Animal Scientific 
Procedure, Art 2010, and subjected to review by this Local Ethics Committee of the Faculty or Science, Charles 
University, Czech Republic (accreditation no. 247732008-10001).

Capacitation.  Sperm from the distal regions of cauda epididymis were released into a 200 μ​l droplet of 
M2-fertilising medium (Sigma Aldrich, M7167) under paraffin oil (P-Lab, Czech Republic, P14501) in a Petri 
dish and pre-tempered at 37 °C in the presence of 5% CO2. Released sperm were assessed for motility and viabil-
ity under a light inverted microscope with a thermostatically controlled stage at 37 °C. Sperm stock was diluted 
to the required concentration (5 ×​ 106/ml) in 100 μ​l of M2 medium under paraffin oil. Sperm were left freely to 
capacitate. Sperm samples were collected at both 60 and 90 min experimental times or the incubation was contin-
ued by an induction of the acrosome reaction. The freshly released epididymal sperm, which had not undergone 
capacitation, were used for protein detection to monitor protein status prior to capacitation.

Acrosome reaction induction.  Spermatozoa from the distal regions of the cauda epididymis were capac-
itated as described above. AR was induced by Calcium Ionophore (A23187 (CaI), Sigma Aldrich) at a final con-
centration of 5 μ​M. At both experimental capacitating times of 60 and 90 min CaI was left in the M2 medium for 
60 or 90 min. All the sperm samples were incubated at 37 °C under 5% CO2.

Monitoring of sperm quality and acrosome status.  All the sperm samples were incubated at 37 °C 
under 5% CO2. Sperm motility and viability were assessed at every experimental time point, when a drop of sper-
matozoa was placed onto a glass slide and 2.5 mM PNA lectin (Molecular Probes, L-32458) was added. The status 
of the acrosome was examined immediately under a fluorescent microscope.

Immunofluorescent detection of CD46 and β1 integrin subunit.  Sperm smears were prepared for 
every in vitro incubation time stated above. Sperm were washed twice in PBS, smeared onto glass slides and 
air-dried. Sperm smears were fixed with 3.7% formaldehyde in PBS (pH 7.34) at room temperature for 10 min,  
followed by washing in PBS. Sperm were blocked with 10% BSA in PBS for 1 h and incubated with: primary 
antibody anti β​1 integrin (sc-8978, Santa Cruz Biotechnology, Inc) diluted 1:10 in PBS and/or primary antibody 
anti-CD46 MM10 (HM-1118, Hycult Biotech) diluted 1:50 in PBS over night at 4 °C, followed by Alexa Fluor 488 
goat anti-rabbit IgG or Alexa Fluor 568 donkey anti-rabbit IgG (Molecular Probes, Prague, Czech Republic) and/or  
Alexa Fluor 488 donkey anti-rat IgG (Molecular Probes, Prague, Czech Republic) secondary antibodies 1:300 
in PBS for 1 h at room temperature. In case of dual staining, both secondary antibodies were applied together. 
Furthermore, PNA lectin (Molecular Probes, L-32458) was added at a concentration of 2.5 mM in PBS. After 
washing, the slides were mounted into a Vectashield mounting medium with DAPI (Vector Lab., Burlingame, 
CA, USA). The samples were examined with an Olympus IX81 fluorescent microscope and photographed with 
Hamamatsu ORCA C4742-80-12AG, using Olympus Soft Imaging Solutions software (Laboratory Imaging Ltd., 
Prague, Czech Republic). Representative results are shown.

For every experiment, we collected sperm data from eight mice. The positive or negative signal was evaluated 
from a total of 200 spermatozoa on every slide. In each group, at least two samples were analysed. Data were 
analysed statistically.

Super-resolution microscopy.  Freshly released, capacitated and acrosome reacted sperm were used for 
STED and SIM super-resolution microscopy. Sperm were collected, as described previously, with the follow-
ing differences. Sperm samples were always prepared onto high precision cover glasses (thickness No. 1,5 H, 
170 μ​m ±​ 5 μ​m, Marienfeld). Moreover, after the application of the primary and secondary antibodies, sperm 
were incubated for 5 minutes with DAPI (0.85 μ​g/ml, Thermo Scientific) and washed 3x in PBS. At the end, 
sperm were washed 1x in distilled water and air-dried. Dry samples were covered with 90% glycerol with 5% 
anti-fade N-propyl gallate (Sigma Aldrich). In the case of anti-actin labelling the sperm were fixed for 10 min-
utes in 3.7% formaldehyde at room temperature, centrifuged and immediately incubated with NH4Cl v PBS for 
15 minutes. After washing 3x in PBS, sperm were smeared onto a glass slide and air-dried. Fixed sperm were 
permeabilized with acetone for 7 minutes in −​20 °C. Further steps were the same as those described previously. 
For STED and SIM visualization, the following antibodies were used: primary antibodies anti- β​1 integrin (sc-
8978, Santa Cruz Biotechnology, Inc) 1:10 in PBS, anti-CD46 MM10 (HM-1118, Hycult Biotech) 1:50, anti-actin 
clone Ac-40 (A4700, Sigma Aldrich) 1:100, anti-α​3 integrin (N19) (sc-6588, Santa Cruz Biotechnology, Inc) 
1:10, anti-α​3 (H-43) (sc-28665 Santa Cruz Biotechnology, Inc) 1:10, anti α​6 integrin (F6) (sc-374057, Santa Cruz 
Biotechnology, Inc) 1:10, anti-estrogen receptor β​ H-150 (sc-8974, Santa Cruz Biotechnology, Inc) 1:50; second-
ary antibodies Alexa Fluor 568 donkey anti-rabbit IgG, Alexa Fluor 488 donkey anti-rat IgG, Alexa Fluor 568 
goat anti-mouse IgG, Alexa Fluor 488 goat anti-mouse IgG, Alexa Fluor donkey anti-goat 568 IgG (Molecular 
Probes, Prague, Czech Republic) 1:300 in PBS. Fluorescent images were collected with a Leica TCS SP8 STED 
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3X microscope and DeltaVision OMX™​ with the Blaze SIM Module microscope (Microscopy Centre, IMG AS, 
Prague, Czech Republic). Huygens Professional version 16.05 (Scientific Volume Imaging, The Netherlands, 
http://svi.nl) software was used for deconvolution of STED images and 3D visualization. An open source software 
Fiji was used for other image processing.

Monitoring of Latrunculin A effect on CD46 and β1 integrin relocation.  Sperm were left freely to 
capacitate for 60 min with the subsequent induction of the acrosome reaction (described above). Latrunculin A at a 
final concentration of 10 μ​M was added into the capacitating medium at the beginning of the 60 min sperm capac-
itation. AR was induced by 5 μ​M CaI, and sperm were incubated for another 60 min. Control sperm samples were 
prepared in the same way but without the addition of Latrunculin A. To detect the possible influence of the ongo-
ing acrosome reaction by Latrunculin A, control samples were prepared; sperm were incubated with Latrunculin 
A both during capacitation and induction of AR. The status of the acrosome was detected using PNA lectin.

Protein – protein interactions.  To detect the interaction of proteins CD46 and β​1 integrin, Proximity 
Ligation Assay Duolink (PLA) was used. Proteins α​ tubulin (DM1A, Sigma, 1:20) and β​ tubulin (sc-9104, Santa 
Cruz Biotechnology, Inc, 1:10) were selected as a positive control (DUO92101 Duolink®​ In Situ Red Starter Kit 
Mouse/Rabbit, Olink Bioscience), β​1 integrin (sc-8978, Santa Cruz Biotechnology, Inc) and α​ tubulin (DM1A, 
Sigma) as a negative control (DUO92101 Duolink®​ In Situ Red Starter Kit Mouse/Rabbit, Olink Bioscience). 
The interaction of experimental proteins CD46 and β​1 integrin was studied using a specially prepared starter 
kit, which was (inter alia) comprised of one PLA probe (DUO92005 Duolink®​ In Situ PLA®​ Probe Anti-Rabbit 
MINUS, Olink Bioscience) and one Probemarker kit (DUO92009 Duolink®​ In Situ Probemaker PLUS, Olink 
Bioscience) was used to prepare the PLA probe anti-rat, using an unconjugated secondary antibody (A18741 
donkey anti rat IgG, Thermo Fisher Scientific) which was conjugated with a short DNA strand.

Freshly released sperm and sperm after CaI induced AR (see above) were washed twice in PBS, smeared onto 
glass slides and air-dried. Sperm smears were fixed with 3.7% formaldehyde in PBS (pH 7.34) at room tempera-
ture for 10 min, followed by washing in PBS. Sperm were blocked with 10% BSA in PBS for 1 h and incubated with 
primary antibodies. In each experiment, two primary antibodies were used, each directed against one of the target 
proteins. These antibodies were raised in different species. Species-specific secondary antibodies (PLA probes) 
bind to primary antibodies, and each of them has a unique short DNA strand attached to it. Both DNA strands 
interacted through a subsequent addition of two other circle-forming DNA oligonucleotides, forming a DNA 
circle, which was closed by DNA Ligation. DNA circles were amplified using a DNA polymerase. The amplified 
DNA was detected by hybridization with labelled oligonucleotides, which produced a visible fluorescent spot. 
These spots were detected with an Olympus IX81 fluorescent microscope and photographed with Hamamatsu 
ORCA C4742-80-12AG, using Olympus Soft Imaging Solutions software (Laboratory Imaging Ltd., Prague, 
Czech Republic). Representative results are shown.

SDS–PAGE immunoblotting.  SDS electrophoresis and immunoblotting technique were used for the  
β​1, α3 and α​6 integrin and CD46 protein detection was performed by protocols based on standard methods69,70. 
A suspension of noncapacitated sperm from a sperm stock released from cauda epididymis was used. The 
sperm solution was diluted with PBS and a sperm pellet was re-suspended in an equal volume of SDS–PAGE 
non-reduced sample buffer and heated at 97 °C for 3 min. Samples were run on 5% stacking and 10% running 
SDS–polyacrylamide gel using Precision Plus Protein Dual colour Standards (Bio-Rad) as MW markers. Proteins 
were then transferred onto a nitrocellulose membrane (BioRad,). Non-specific sites on the membrane were 
blocked with PBS-blocking solution for 1 h (5% skimmed milk and 0.05% Tween 20 in PBS). The nitrocellulose 
membranes were incubated with the primary antibody for 1.5 h, washed six times for 5 min with a wash solution 
(0.05% Tween-20 in PBS) and incubated with a peroxidase-conjugated secondary antibody for 1 h. Proteins were 
identified as follows; CD46: rat monoclonal antibody (MM10, Hycult Biotech), 1:100 followed by donkey anti rat 
IgG antibody conjugated to HRP (170 5046, Bio-Rad), 1:10000; β​1 integrin: rabbit polyclonal antibody (M-106: 
sc-8978 Santa Cruz Biotechnology) 1:20, followed by a peroxidase goat anti rabbit IgG (170–6515 BioRad), 
1:3000; α​3 integrin: primary rabbit polyclonal antibody (H-43): sc-28665 Santa Cruz Biotechnology diluted 1:20 
and peroxidase goat anti rabbit IgG secondary antibody conjugated to HRP (170–6515 BioRad), 1:3000; α​6 inte-
grin: mouse monoclonal antibody (F-6): sc-374057 Santa Cruz Biotechnology 1:20, followed by a goat anti mouse 
IgG conjugated to HRP (170–6516 BioRad) 1:5000. Protein staining was visualized by chemiluminescence (Super 
Signal West Dura Extended Duration Substrate, Thermo Fisher Scientific). These experiments were performed at 
least three times with similar results. Representative results are shown.

Statistical analysis.  Experimental data were visualized and analyzed using STATISTICA 6.0. (Statsoft, Prague, 
Czech Republic) and GraphPad Prism 5.04 (GraphPad Software Inc., La Jolla, CA, USA). The differences in the  
relative fluorescent intensities between the acrosome-intact and acrosome-reacted sperm among individual relocation 
segments in Fig. 3C were analyzed by One-way analysis of variance (ANOVA) and Bonferroni’s Multiple Comparison 
Test. The differences in the percentage distribution of sperm with intact acrosome and sperm with protein  
relocation patterns for CD46 and β​1 integrin between the control samples and samples incubated with Latrunculin A 
in Fig. 9 were analysed by the Mann-Whitney test. p value equal or lower than 0.05 was considered to be significant, 
*p ≤​ 0.05, **p ≤​ 0.01, ***p ≤​ 0.001. Huygens Professional version 16.05 (Scientific Volume Imaging, The Netherlands,  
http://svi.nl) was used for the colocalization analysis and its visualisation. A colocalization analyser computed a 
Pearson’s correlation coefficient and created a colocalization map. The Pearson’s correlation coefficient expresses the 
rate of correlation of colocalizing channels in a dual-colour image and gives a value between minus 1 to plus 1. In 
this case, 1 means an absolutely positive correlation, 0 means no correlation and -1 means a perfect anti-correlation. 
The value between 0.5 and 1 is interpreted as colocalization. Costes method was used for a background estimation.

http://svi.nl
http://svi.nl
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