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Abstract: Artificial intelligence techniques for pneumatic robot manipulators have become of deep
interest in industrial applications, such as non-high voltage environments, clean operations, and high
power-to-weight ratio tasks. The principal advantages of this type of actuator are the implementation
of clean energies, low cost, and easy maintenance. The disadvantages of working with pneumatic
actuators are that they have non-linear characteristics. This paper proposes an intelligent controller
embedded in a programmable logic device to minimize the non-linearities of the air behavior into a
3-degrees-of-freedom robot with pneumatic actuators. In this case, the device is suitable due to several
electric valves, direct current motors signals, automatic controllers, and several neural networks. For
every degree of freedom, three neurons adjust the gains for each controller. The learning process is
constantly tuning the gain value to reach the minimum of the mean square error. Results plot a more
appropriate behavior for a transitive time when the neurons work with the automatic controllers
with a minimum mean error of ±1.2 mm.

Keywords: robot arm; pneumatic actuators; neural network; FPGA; embedded; neuro-PID; control

1. Introduction

The employment of pneumatic actuators in the robotic field has great importance
in the manufacturing industry and the modern design of controllers [1,2]. Its significant
advantages are a low-cost, lightweight, and simple design. The disadvantages are the
highly non-linear behavior of the pneumatic actuators due to having the air as a means of
generating force, e.g., the flow of air into the valves is not uniform, friction in the joints,
and delay in air propagation, among others [3–7].

Artificial neural networks (ANN), fuzzy logic, genetic algorithms, and others are
practical when the mathematical model of the dynamic system is highly complex, highly
non-linear, or impossible to know due to the lack of knowledge, except for a few known
variables [8–13].

Programmable hardware devices, like FPGA, are suitable for hardware implementa-
tion of neural networks and PID controllers. They have the advantage of better accuracy,
repeatability, and lower noise sensitivity. Also, it is compatible with other types of pre-
processors [14–17].

This work aims to position a 3 DoF robot arm with pneumatic actuators and implement
an ANN-based auto-adjustable gain tuner for PID controllers. The main contribution
is an algorithm proposal to control each DoF of the pneumatic actuators embedded in
reconfigurable hardware.
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The pneumatic robot arm has six DoF, as presented in Figure 1, where θ1, θ2, and θ3
are the respective angle for each DoF. The moving forces are supplied by one pneumatic
motor and two pneumatic pistons.

Pneumatic

motor

Electric

valves

Pneumatic

robot arm

Figure 1. Pneumatic robot prototype with 6 DoF.

To convert a PID design into its VHDL code, we implement Octave software for
this work. For example, we set PID gains as integer inputs, and the output is in binary
fixed-point format.

Findings

Table 1 shows a brief comparison of the implementations and contributions of state
of the art. It mentions the hardware-implemented, and all these works are focused on
pneumatic actuators.

Table 1. State of the art.

Ref, Year Implementation Contribution

Sánchez, 2017 [18]
A micro-computer with a graphical

simulator developed in C++
using OpenGL libraries

A simulated backpropagation artificial
neural network controller for a two

DoF pneumatic manipulator

Rousbeh, 2018 [6] PCI-6602 DAQ board
and a PC

The design of a controller and its
implementation on a position-controlled

rotary pneumatic actuator

Humaidi, 2020 [19] Computer simulation in
Matlab and Simulink

The design of a controller based on
the Synergetic Control theory concept

for a DoF robot arm powered by
pneumatic actuators

Lin, 2021 [7] myRio board and a PC
with Labview

A PID controller and a high-order
sliding-mode feedback

controller for a 3 DoF pneumatic
robot manipulator

The prototype architecture proposed has several problems, such as frictions in the
joints and the non-linearity inevitably produced by the compressibility of the air. Airflow
is not constant and experiences a delay in propagating through the system [3]. The lack of
precision could cause catastrophic events that would affect the robot’s task and even harm
workers [20].

The proposed robot controller remarkably has a slightly more accurate performance,
adequately reducing alterations because of the non-linearities of the pneumatic actuators.

The order of this work is as follows: Section 2 deeply describes the materials and
methodology, including the hardware description of the PID controller, the configuration
of the encoder, and mainly the ANN. Section 3 presents the results obtained for the PID
controllers of the motors and the ANN auto-adjustable gains for the pneumatic actuators
controller. Section 4 is the discussion of results and their limitations. Finally, Section 5 gives
the conclusions of this investigation.
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2. Materials and Methods

This section presents the materials and methodology used in this work, such as
inverse kinematics, the instrumentation of the encoders, the design of PID controllers
and artificial neural networks, and some mathematical tools that helped us develop the
before mentioned.

2.1. Materials

In this work, we used 24-VDC and 12-VDC power supplies. An FPGA was the core
of this project and also a laptop for data acquisition, Octave script development, and
FPGA programming. Eighteen optocouplers isolated the FPGA control signals from the
motor drivers to prevent electric noise, and six solid-state relays activated the 12-VDC
electro-valves. The motors adjusted the airflow through the pneumatic actuators. The
pneumatic electro-valves controlled the direction movement of the links of the robot.
Figure 2 illustrates all these components

Power supply

Input: 120 VAC

Output: 24VDC

1.8A

Power supply step down

Input: 24 VDC

Output: 12VDC

Compact-sized FPGA

Development platform

Figure 2. Diagram block of all materials used for this project.

2.2. Inverse Kinematics of a 3 DoF Robot

Figure 3 depicts a geometrical model of a 3-DoF robot, and it provides information to
compute the final position (x1, y1, z1) of the robot [18], where:

• l1, l2, l3 → are the links of the robot.
• θ1 → is the angle of link l1 with respect to Y axis.
• θ2 → is the angle of link l2 with respect to XY axis.
• θ3 → is the angle of link l3 with respect to XY axis.
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x

y

z

Figure 3. Geometrical model of a 3-DoF robot.

The inverse kinematic calculated the value of the angles θ1, θ2, and θ3 needed to get the
final position required (x1, y1, z1). The Equations (1)–(3) represent the inverse kinematics
of the robot [18].

θ1 = tan−1
(

y1

x1

)
(1)

θ2 = cos−1

(
x2 + (z− l1)2 + l2

2 − l2
3

2l2
√

x2 + (z− l1)2

)
+ sin−1 z− l1√

x2 + (z− l1)2
(2)

θ3 = θ2 + cos−1

(
l2
3 + l2

2 − x2 − (z− l1)2

2l3l2

)
− 180◦ (3)

2.3. The Pneumatic System

Each DoF consists of one 5/3 electro-pneumatic valve, two airflow valves, two DC
motors, and one incremental encoder that allowed us to get the arm position. In Figure 4,
the schematic diagram of each DoF is drawn.

Pump

Electric valve

Piston

Air flow valve

DC motor

Figure 4. Schematic of one DoF pneumatic system.
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2.4. Structure Prototype for Airflow Control

We designed a mechanical base structure to couple the DC Motors to the airflow
valves. A bell-type piece was attached to the motor stem. Moreover, it contains an in-
ternal hexagonal hole to fit the valve connection. Figure 5 depicts the integration of the
mentioned parts.

Figure 5. Airflow control system valve with plastic base for DC motors.

2.5. Implemented Algorithm for Binarization of Variables

We developed Octave scripts to write VHDL code. They binarized numeric variables
of logic signals, variables and constants, and LUTs faster. More helpful information about
this is in [21].

For the binarization process, we used the fixed-point method. A fixed-point number
in base-2 format is in (4).

(. . . i2i1i0 · f−1 f−2 f−3 . . . )2 (4)

which is converted to a decimal number as in Equation (5).

. . . i2 · 22 + i1 · 21 + i0 · 20 + f−1 · 2−1 + f−2 · 2−2 + f−3 · 2−3 . . . (5)

We wrote the Algorithm 1 on a laptop. The input is an integer or fractional variable.
The same variable returned as a fixed-point output. b f = i + f , where i is the number
of bits for the integer part, f for the fractional part, and b f is the total of bits used for
that variable.

Algorithm 1: Binarization of a fixed-point variable.

Aux = variable× 2 f

if Aux < 0 then
Aux = f loor(2b f + Aux)

else
Aux = f loor(Aux)

end if

for i = b f : −1 : 1 do
Coe f f _binary(i) = Aux % 2
Aux = f loor(Auxiliar/2)

end for
Aux = variable× 2 f
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The Coeff_binary variable is a matrix with 1× b f size, bf is the number of zeros and
ones stored in the matrix.

2.6. Design of the PID Algorithm

The continuous-time PID controller is given in (6). Its development and analysis are
described in [22].

u(t) = Kp

[
e(t) +

1
Ti

∫ t

0
e(τ)dτ + Td

de(t)
dt

]
(6)

where u(t) is the control variable, and e(t) is the error. The error is the difference between the
reference w(t) and the output y(t). In Figure 6 a control system with the previous specifications
is illustrated. The fundamental parameters of the PID controller are Kp, Ti, and Td.

The Laplace transform converts the Equations (6) to (7).

U(s) = Kp

[
1 +

1
Ti s

+ Td s
]

E(s) (7)

where s typically represents the Laplace transform operator. From (7), the transfer function
G(s) is in (8).

G(s) =
U(s)
E(s)

= Kp

[
1 +

1
Ti s

+ Td s
]

(8)

The proportional, derivative, and integral components in (6) are discretized to get the
PID controller. T0 is the sample period. For this work, we use T0 = 10 ms, and Equation (9)
represents the derivative error.

de
dt
≈ e(k)− e(k− 1)

T0
=

∆e(k)
T0

(9)

where e(k) is the error at the k-th sampling time, i.e., at t = kT0. The most convenient way
to do the integral is by summing. Hence we approximate the continuous-time function by
sampling using the direct trapezoidal method (see Figure 7). The integration of the error is
computed with (10), and the discrete-time PID controller is (11).

∫ t

0
e(τ)dτ ≈ T0

k

∑
i=1

e(i− 1) (10)

u(k) = Kp

{
e(k) +

T0

Ti

k

∑
i=1

e(i− 1) +
Td
T0

[e(k)− e(k− 1)]

}
(11)

The Equation (11) reduce the computational time processing on the FPGA, result-
ing in (12). The constants q1, q2, and q3 in Equation (13) are computed before the PID
time process.

u(k) = q1 e(k) + q2 e(k− 1) + q3 e(k− 2) + u(k− 1) (12)

q1 = Kp

(
1 +

T0

2 Ti
+

Td
T0

)

q2 = −Kp

(
1− T0

2 Ti
+

2 Td
Ti

)

q3 = Kp
Td
T0

(13)

Based on (12), we performed an Octave script to generate the VHDL code for a PID
controller. Figure 8 shows the architecture resulting, where the input signals are reset (RST),
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clock (CLK), setpoint (Sp), sampling time (Ts), actual position (Xin), and the constant values
(q1, q2, q3). The output signal is yk and the sampling time was 10 ms.

Figure 8 is the PID block diagram for hardware configuration; the Register_PP_n
module loads the input signal every period to compute the output yk. A subtraction
module was applied to compute the actual error ek = sp− xin; the q1, q2 and q3 signals
are the controller constants. An adder module is used to compute ykraw = q1 ek + q2 ek2 +
q3 ek3 + yk1, and four multipliers modules are implemented. The controller output signal
yk is set to 18 bits.

+

-

Controller Process

w(t) e(t) u(t) y(t)

Figure 6. Block diagram of a control system [22].

t

e(t)

T0

3T0

2T00

4T0

e(1)

e(2)

e(4)

Figure 7. The forward trapezoidal method.

ek

Xin1

Sp1

yk1

Register_PP_E_n

Register_PP_E_n

18

18

18

18

Ts
Q

Q

IEN

D

D

IEN

18

18

Sp

Register_PP_E_n

18 18
Q

IEN

D
18

Xin

ek2

ek1

Register_PP_E_n

18 18
Q

IEN

D
18

Register_PP_E_n

18 18
Q

IEN

D

A

B

C

D

yk_raw

34
yk

16

18

34

*
A

B

p

q1

ek

16

18

34

*
A

B

p

q2

ek1

16

18

34

*
A

B

p

q3

ek2

16

18

34

*
A

B

p

‘1'

yk1
p4

p1

p2

p3

yk

18

RST

CLK

Figure 8. VHDL diagram block for PID controller. The symbol * in this figure represents a multi-
plier module.
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2.7. PID Controller for the Airflow Valve

The arm position and speed are essential to perform the proper airflow control. The
DC motors are linear systems that are practical to open or close the valve at the desired
opening level to get the airflow required.

Based on Equations (12) and (13), Figure 9 shows the arm position and speed control
proposal, where Wp is the desired position, ep is the error position, up is the control signal.
We used a saturation block where Wv is the saturation value and the maximum velocity
desired. ev is the speed error, and uv is the control signal for the DC motor. The motor
encoder sends position and speed feedback to the controller.

Position

Speed

DC
Motor+ - + -

Position

control

Speed

control

�� �� �� ���� ��

saturation

Figure 9. Diagram block for the motors PID controller.

2.8. Encoder Instrumentation

The quadrature encoder module has two inputs, Channel A and B. DIR output signal
gives the direction of the motor. ENA is active when a state changes on channels A and B.
We implemented six flip-flops type D to catch the signals, one XOR Gate with two inputs
for DIR output and another XOR gate with four inputs for ENA output. Figure 10 displays
the architecture and the corresponding truth table of the encoder module.

A FF FF FF

B FF FF FF

DIR

ENA

AB

0

1

1

0

1

1

0

0

D
I
R
 =

 1

D
I
R
 =

 0A

B

0

1

0

1

Figure 10. Encoder module functionality.

Figure 11 presents the quadrature encoder instrumentation, written in Octave software.
The motor channel inputs are A and B. Ts is the period signal. We set a counter for the
pulses from the encoders for the speed. When the Ts signal activates the rising edge module,
the counter value is saved, and it is reset to start over. In Figure 11, outputs are drawn. The
vel_nom and pos_nom are the raw values of the velocity and position. These have 16 bits.

The third output signal represents the normalized velocity. We obtained the value
of the constant res_vel_norm in (14). Where vMAX = 108 RPM and Nv = 3432 ppr,
converted to 18 bits size. The vel_norm is the output of the normalized velocity given in
the Equation (15).
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ENA

Encoder

direction

vel_1

B B

AA

pos_s

Sp1

Counter_AD_E_n

Register_PP_E_n

16

16

16

ENA
Q

Q

IEN

IEN

D

D
16

direction

ena

dir

Counter_AD_E_n

E

D Q

Ts
RisingEdge

X XSP
Ts_1 nTs

RST

CLK

vel_nom

vel_norm

pos_norm

pos_nom

res_vel_nom

dir

18

34

34

*
A

B

p

vel_raw

pos_raw

18

18

*
A

B

p

res_pos_nom
18

L

Figure 11. VHDL diagram block for the encoder configurations. The symbol * in this figure represents
a multiplier module.

res_vel_norm =
60

VMAX × Nv × Ts
(14)

vel_norm = res_vel_norm× vel_nom (15)

For the normalization of the position in 18 bits, we considered the maximum of
10 rotations of the flow control valve for its constant given in Equation (16). The pos_norm
is the output of the normalized position in Equation (17).

res_norm =
1

PMAX × Nv
× pos_nom (16)

pos_norm = res_pos_nom× res_pos (17)

2.9. Neural Network Design

Artificial neurons are suitable for non-linear systems, providing continuous outputs,
gathering signals available on their inputs, and assembling them according to their opera-
tional and intuitive activation. Figure 12 illustrates each neuron of a network. The multiple
input signals coming from the external environment (specific application) are represented
by the set {x1, x2, x3, . . . , xn} [23].

Figure 12. Artificial neural network.

The weighting carried out by the synaptic junctions of the network is implemented on
the artificial neuron as a set of weights {w1, w2, . . . , wn}. Analogously, the relevance of each
of the {xi} inputs is measured by multiplying them by their corresponding weight {wi},
then weighting all the external information arriving at the neuron. Therefore, the neurons
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output is denoted by y, representing the weighted sum of its inputs. Equations (18) and (19)
synthesize the result produced by the artificial neuron [24].

u =
n

∑
i=1

wi xi − θ (18)

y = g(u) (19)

We trained the neurons by the method known as the backpropagation algorithm. By
this method, we got the mean square error of the Equation (20).

E(t) =
1
2 ∑ e2(t) (20)

2.10. Neuron Learning Algorithm

The specific purpose of this design is to properly use perceptron neurons to tune the
variables kp, Ti, and Td of a digital PID controller in Equation (13). The objective is the mean
square error, with a ±0.5 tuning on each variable. These neurons are constantly learning.
And the steps for the algorithm are the following [23].

1. The error signals e and ∆e in (21) and (22) are computed from the desired position for
each of the robot joints q = (θ1, θ2, θ3), and the actual position being measured of the
system r = (x1, x2, x3).

e(t) = y(t)− w(t) (21)

∆e(t) = e(t− 1) + e(t) (22)

The error and derivative error are the inputs for each neuron. The description of this
is in the Equation (23).

X(t) =
[
e(t) ∆e(t)

]
(23)

2. Initialize w with small random values. For example w = 0.1. We defined them in (24),
and it represents the sum of the neuron weights in the first layer.

3. We set the learning rate to η = 0.99. And the following steps are repeated permanently,
and the neuron is constantly learning.

4. The s variable is computed in (24).

s = w1 e(t) + w2 ∆e(t) (24)

5. The activation function, a sigmoid, of the intermediate neurons in (25) is computed,
and Figure 13 is its representation.

h =
0.5

1 + e−s (25)

6. The adaptive Equations (26) and (27) allowed the proportional coefficient Kp values
to be adjusted. We used a similar development to find the adjustment equations for
Td and Ti. The value η is the learning coefficient of the neural network and was 0.9.

v(t + 1) = v(t) + ηe(t)2h (26)

wj(t + 1) = wj(t) + ηe(t)2vh(1− h)xj (27)

7. The proportional gain is denoted by the Equations (28) and (29), where v is the weight
of the last neuron and h is the activation function.

∆Kp = vh (28)

Kp = Kp + ∆Kp (29)
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8. Return to step 4.

0.0

0.5

Figure 13. The sigmoid function.

Figure 14 shows the design of the neurons for kp, and identical block diagrams are
implemented for Td and Ti. And they need to be initialized in this structural design. Kpc, Tic,
and Tdc are the constant inputs. The Rising_edge and Latch modules detect the first pulse
of the period signal T0, adding these variables to a summand that stores the initial value
and updates the value of the kp, ti, and td variables. For ∆ek, a subtraction with a delay
module is implemented to achieve ∆e(k) = e(k− 1)− e(k), for s signal two multipliers
with an adder module were implemented for (24). To achieve (25) a LUT was implemented,
and it contains 210 values between −1 to 1.

1 A
B

C
D*

A
B

C
D*

Register_pp_n

QIEN

D

Register_pp_n

QIEN

D

W

Wn
T0

T0

T0

T0

V

V1n

h

ek

W1 A
B * A

B *A
B *

S

W2

Dek

Register_pp_n

QIEN

D

Register_pp_n

Q IEN

D

ek1

ek

T0

LUT_Activation

Rising_edge Latch

h

Dkp

D Q D Q

0

1

OL

Kp1

Kpc Kp
Dkp

ek

Figure 14. NNET module, neuro tuning variable for kp. The symbol * in this figure represents a
multiplier module.

For v in Equation (25), a multiplication module with four inputs was implemented,
and an adder with a period delay module to compute v(k + 1). For the values of the
weights w1 and w2 another four variables multiplier was needed, the η e(t)2 h factor in (25)
was repeated for (26). A single multiplier is needed to calculate (27). The value of kp is
constantly tuning, and kpc is the initial value of kp. To get kp an adder is implemented,
summing ∆k p every period.

Finally, Kp, Ti, and Td are computed to obtain q0, q1, and q2 in Equation (13), Figure 15
is this conversion.
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ek

kpc

Tic

Tdc

T0

NNET

q0

2

calculation

kp

Ti

Td

q1

q2

Figure 15. The calculation for q0, q1, and q2.

Figure 16 presents the general diagram of a DoF, as it is observed inverse kinematics
compute the desire angle values for a particular position of the end effector. Though only
the second DoF is drawn, identical architecture was designed for the first and last DoF.
According to ek signed value, the direction of the valve was chosen.

(xd, yd, zd)

One DoF

PID Control
+

-

if ekv > 0

Neural

network

FPGA

Air Flow

PID Control
+

-

+

-
Air Flow

PID Control

if ekv < 0

Piston Encoder

d

d

d

Encoder

Module

Inverse

Kinematics

Electro

valve

5/3

Left coil

Right coil

Air-flow

valve

control

Air-flow

valve

control

Figure 16. General diagram for a DoF.

The FPGA resources implemented in the project are observed in Table 2. We spent
almost half of the resources, but the multipliers, that our project used 100%.

Table 2. Total resources of the hardware implementation and its quantities.

Total Resources Quantity

Logic elements 10,134/22,320 (45%)
Registers 1671

Pins 50/154 (32%)
Multipliers 9 bits 132/132 (100%)

3. Results

This section, first shows the flow air control signals, position, and speed, including
simulations and experimental results. Then, a graph with a PID and Neuro-PID experimen-
tal results for comparison. After that, we plotted the results of the 3 DoF, and we included
error and derivative error signals graphs.

3.1. DC Motors Control for Airflow

As a first step, controlling the airflow valves is necessary. The VDC motors are the
appropriate actuators due to their linear behavior and easy tuning. Figure 17 plots the
simulations of the position and speed. When the system starts, the motor reaches the
maximum allowed speed; it tends to be zero once it gets to the desired position. Figure 18
contains the experimental results, which are similar to those simulated. The sample
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timeairflows. As the air flow valves have ten spins maximum, the top position is 63 rads.
The full speed of the motors is 210 RPM, which means 22 rad/s.

0 2 4 6 8 10

time [s]

P
o
s
it
io

n
 [

ra
d
]

2

4

6

(a)

0 2 4 6 8 10

0

2

4

6

time [s]

S
p
e
e
d
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Figure 17. Simulated results for position and velocity control of DC motors where the blue lines are
the setpoint and red ones the control signals. (a) Position plot. (b) Velocity plot.
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Figure 18. Experimental results for position and velocity control of DC motorswhere the blue lines
are the setpoint and red ones the control signals. (a) Position plot. (b) Velocity plot.

We first considered a Texas Instruments DSP for the experimental results, which gave
excellent results. However, PID controllers and neural networks needed a fast response due
to the number of encoders. We decided to switch to the FPGA, a device that can perform all
these processes in parallel. For these results, the position PID parameters are q0 = 0.1030,
q1 = −0.0949, and q2 = 0.003, for speed q0 = 0.0770, q1 = −0.0140, and q2 = 0.007.
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3.2. PID vs. Neuro-PID Controller

Once the robotic arm was configured, we performed tests with the designed con-
trollers. For the PID and Neuro-PID gains, we are using the heuristic method, and the gain
adjustment was performed by experimental tests. Figure 19 and the blue line is the classic
PID controller. The red line is the Neuro-PID controller, which has a particular behavior
with a faster response time, a little less overshoot, and reaches the steady-state before the
typical PID. Table 3 displays the transient response specifications of these controllers.

2 4 6

time [s]

0

0.1

0.2

P
o
s
it
io

n
 (

1
=

3
6
0
°)

Figure 19. Experimental results for PID (blue) vs. Neuro-PID (red) controller for a DoF.

Table 3. Transient response specifications of PID and Neuro-PID controllers.

PID Neuro-PID

Kp = 2.5, Td = 0, and Ti = 0.98

Rise time [s] 0.61 0.33

Peak time [s] 1.07 0.52

Overshoot [mm] 39.1 36.3

Settling time [s] 4.38 2.37

steady-state-error [mm] 2.22 2.2

We observed that the intelligent controller has some disturbances, possibly due to
the adjustment of the variable Kp. For this test, we set Kp = 2.5, Ti = 0.98, and Td = 0.
In addition, for this and the following tests, the position and velocity variables were
normalized. The maximum value of the signals is equal to one; this helps to use the
computational resources better.

3.3. Positioning for the 3 DoF Links

The graph of the first DoF is in Figure 20. This is the one controlled by the pneumatic
motor. Within these tests, this was the easiest to tune. It performs well, even when moving
in conjunction with the other two DoFs.
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Figure 20. Experimental results for the first DoF. The Setpoint signal is colored in red, control signal
in blue.
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Figures 21 and 22 plot the second and third DoFs. These are controlled by the pistons
located on the robot. Their tuning was more complex than the first one. In the second DoF,
there are disturbances, but it is possible to tune to the marked reference. The third one was
the most difficult to implement.

0 10 20 30 40 50 60 70

time [s]

0

0.1

0.2
P

o
s
it
io

n
 (

1
=

3
6
0
°)

Figure 21. Experimental results for the second DoF. The Setpoint signal is colored in red, control
signal in blue.
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Figure 22. Experimental results for the third DoF. The Setpoint signal is colored in red, control signal
in blue.

Figure 23 plots the error signal in blue color, the derivative error in red color. These
signals are important for the PID and Neural network modules, and the error at steady-state
is 1.2 mm.
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Figure 23. Experimental results for the error signal (blue) and derivative error (red) of a DoF.

4. Discussion

The proposed model has been developed to be applied to a 3 DoF pneumatic robot.
The model uses three optical encoders with 1000 pulses by turn. Therefore, the resolution
of the movement arm is 6.28 mrad. A limitation of the model is that the arm only has 120°
to turn. That is due to the mechanical limitations.

The flow control is implemented with electrical motors coupled with flow control
valves. Each motor for the air valve uses an encoder to know the state of the valve
(open, close, and intermediate level). The DC motors use an electromagnetic encoder
with 3432 pulses by turn. A limitation of the model is that we need two DC motors with
encoders and their hardware to control them. In consequence, the model requires 6 DC
motors with an encoder.

The implemented model must consider the hardware implementation for nine en-
coders, 3 PID control algorithms, 3 ANN algorithms, and the external logical signals
used were 50 pins. We are using the following hardware of the FPGA D0-Nano board:
45% elements, 1671 registers, 32% pins, and 100% of the 9 bits multipliers.
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In Section 3, according to Table 3 and Figure 19, we can observe that the Neuro-PID
algorithm requires less rise time, overshoot, and settling time. The error is similar in
both cases, but we consider that the ANN-PID algorithm has a better behavior than a
simple PID. The limitation of the algorithm is the disturbances observed in Figure 19 on
the Neuro-PID graph.

The disturbances in ANN-PID are due to the self-tuning process of the ANN algorithm
to obtain the appropriate gains for the corresponding arm. One of the advantages of this
process is that in the event of any disturbance that occurs in the arm positioning, the system
will automatically respond to adjust itself. Moreover, the system has the advantage that if
you change the weight being moved or add weight to one of the arms, the system responds
by adjusting gains accordingly.

5. Conclusions

This work had three phases. The first one was the airflow control through the pneu-
matic system; although we did not control the air pressure directly, the positioning of the
motors is adequate for its regulation. We performed the first tests on development boards
based on microcontrollers. The motor speed control is considered for this design to avoid
abrupt airflows. Figure 18a, shows the position of DC motor control, with an error of
less than 0.01 rad. Moreover, Figure 18b represents the speed control, with an error of
±0.5 rad/s. In this phase, the goal was achieved, With accurate position control and the
speed controlled at slow or medium values.

The second phase was the control design for 1 DoF. This step was performed entirely
in VHDL. Moreover, in this phase, the results in Figure 19 show a better performance when
the neural network was active, improving the overshoot, response time, and reaching the
steady state. We got a minimum error of 1.2 mm in the steady-state. The results in this
phase were satisfactory.

The last phase is the implementation of the 3 DoFs. Results in Figures 20–22 show that
the last two DoF were positioned to the desired position and had an error of 2 mm. We
concluded that these results were acceptable. In future work, We consider implementing
algorithms with fuzzy logic, neuro-fuzzy, and ANFIS.
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Abbreviations
The following abbreviations are used in this manuscript:

DoF Degree of freedom
LUT Look-Up Table
PID Proportional, integral, and differential control
ANN Artificial Neural Network
FPGA Field Programming Gate Array
VHDL Very High-Speed Integrated Circuit Hardware Description Language
DSP Digital Signal Processing
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DC Direct Current
VDC Volts of Direct Current
VAC Volts of alternating Current
ANFIS Adaptive neuro-fuzzy inference system
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