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Abstract

The synapse is typically viewed as a single compartment, which acts as a linear gain controller on incoming input.
Traditional plasticity rules enable this gain control to be dynamically optimized by Hebbian activity. Whilst this view
nicely captures postsynaptic function, it neglects the non-linear dynamics of presynaptic function. Here we present
a two-compartment model of the synapse in which the presynaptic terminal first acts to filter presynaptic input
before the postsynaptic terminal, acting as a gain controller, amplifies or depresses transmission. We argue that
both compartments are equipped with distinct plasticity rules to enable them to optimally adapt synaptic
transmission to the statistics of pre- and postsynaptic activity. Specifically, we focus on how presynaptic plasticity
enables presynaptic filtering to be optimally tuned to only transmit information relevant for postsynaptic firing. We
end by discussing the advantages of having a presynaptic filter and propose future work to explore presynaptic
function and plasticity in vivo.

Introduction
Historically, the synapse has been viewed as a single
compartment in which synapse strength is represented
by a simple multiplicative factor, a form of gain control
that linearly scales incoming input. Synaptic plasticity
enables this gain control to be dynamic, placed under
the regulation of Hebbian activity. This view of the syn-
apse lies at the heart of many successful experimental
and computational models of neuronal and circuit func-
tion, and forms the basis of state-of-the-art machine
learning algorithms [13, 37, 43]. Despite the success of
this simple model of the synapse, these simplifications
do not map well to the actual biology and physiology of
the synapse, which consists of two distinct biological
compartments: a pre- and a postsynaptic terminal.
Whilst the idea of gain control nicely captures

postsynaptic function, it does not capture the non-linear
and stochastic nature of presynaptic transmitter release.
Here, based on recent experimental evidence we propose
a two-compartment model of the synapse, in which the
presynaptic terminal first acts to filter presynaptic infor-
mation before the postsynaptic terminal acts as a gain
controller to amplify or depress its impact on the post-
synaptic neurone. Importantly, we argue that each com-
partment must have unique plasticity rules to optimize
its function, and discuss specifically, based on recent ex-
perimental evidence, how presynaptic plasticity opti-
mally tunes presynaptic filtering to maximize efficient
information transfer (Fig. 1). Our proposed model en-
dows the synapse with a powerful means for optimally
adapting synaptic transmission to the statistics of pre-
and postsynaptic activity. We begin by discussing why
the pre- and postsynaptic compartments should be
viewed as mechanistically and functionally distinct con-
tributors to synaptic transmission.
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Pre- and postsynaptic compartments are
mechanistically and functionally distinct
For the purpose of simplicity, we will restrict our notion
of pre- and postsynaptic strength to the probability of
neurotransmitter release (Pr) and the current evoked by
transmitter release (q), respectively. Notably, the modus
operandi of the pre- and the postsynaptic terminal differ
as presynaptic release is highly non-linear and stochastic,
unlike the linear scaling implemented by the postsynap-
tic terminal. In general, the mechanistic and functional
differences between pre- and postsynaptic terminals can
be laid out as:

1. Pre- and postsynaptic terminals have access to distinct
aspects of neural activity
Due to the stochastic nature of presynaptic release, the
postsynaptic terminal experiences only the fraction of
presynaptic action potentials that is translated into suc-
cessful neurotransmitter release, while release failures
are indistinguishable from the complete absence of ac-
tion potentials. By contrast, the presynaptic terminal
does not have direct access to the postsynaptic mem-
brane potential and instead relies on the transmission of
feedback signals via retrograde messengers.

2. Changes in pre- and postsynaptic strength have
differential impact on the postsynaptic membrane
response
Given the binomial theorem, Pr and q have a similar im-
pact on the mean synaptic response (μ) but differentially
impact response variability (σ2) [22].

μ ¼ Pr � q σ2 ¼ Pr 1‐ Prð Þq2 ð1Þ

Moreover, whereas a change in q scales the amplitude
of all postsynaptic potentials approximately linearly, the
effect of Pr becomes only meaningful when responses
are considered over multiple presynaptic spikes. The op-
timisation of presynaptic strength must therefore be
made with respect to the temporal properties, such as
the firing frequency, of the input.

3. Presynaptic strength is dependent on temporal
patterns of neuronal activity
Neuronal firing patterns trigger short-term forms of
plasticity, which predominantly impact pre-, rather than
post-, synaptic function [56]. Short-term plasticity is sen-
sitive to the temporal properties of the input and enables
the presynaptic terminal to act as a temporal filter [1,
15, 32, 35, 58, 62–64]. The filtering properties of the
presynaptic terminal are well-studied and depend on the
basal Pr of the synapse. In particular, high Pr synapses
typically exhibit short-term depression during high fre-
quency bursts, which enable them to act as low-pass
filters, preferentially releasing neurotransmitter in re-
sponse to single spikes or low frequency spiking. By con-
trast, low Pr synapses typically exhibit short-term
facilitation, which enable them to act as high-pass filters,
preferentially releasing neurotransmitter in response to
high frequency spiking [25, 26]. The impact of such syn-
aptic non-linearities on network function has been ex-
tensively explored in silico using dynamic synapses
employing phenomenological models of short-term plas-
ticity [4, 40, 41, 44, 51, 55, 63]. For example, short-term
presynaptic plasticity enables excitatory synapses to dif-
ferentially transmit glutamate depending on relative
changes in firing frequencies [2, 64], and to extract com-
plex temporal patterns from presynaptic firing, such as
precise spike-timing patterns [16, 40]. Despite much

Fig. 1 The two-compartment model of the synapse. a In the conventional single-compartment model, inputs are scaled linearly by the synapse,
often characterised by a weighting factor w. b The addition of the presynaptic terminal results in a dynamic temporal filter prior to the
postsynaptic gain control. This leads to a temporal decomposition of the presynaptic input spike train across presynaptic terminals along the
axon. Importantly, this filter is dynamically regulated by ongoing neural activity to adjust to the statistics of pre- and postsynaptic activity
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research into the non-linear dynamics of presynaptic
function, little is known about how presynaptic termi-
nals are optimally tuned to transmit information to their
postsynaptic partners. Such tuning would require unique
presynaptic learning rules that enable reliable transmit-
ter release to be triggered by only patterns of presynaptic
activity that are associated with postsynaptic spiking.

The two-compartment model of the synapse
Given these initial observations, we suggest that the syn-
apse should be viewed as two functionally distinct and
independently regulated compartments, in the form of
the pre- and the postsynaptic terminals (Fig. 1b). Im-
portantly, each compartment is subject to a set of inde-
pendent learning rules, which optimize their respective
functions: postsynaptic plasticity enables the synapse to
function as a dynamic gain control, whereas presynaptic
plasticity enables the synapse to function as a dynamic
temporal filter. This drastically increases the information
processing capabilities of the synapse as presynaptic in-
put can be first filtered before being amplified or
depressed.
Although the pre- and the postsynaptic terminal have

been previously viewed as a dynamic filter and gain con-
troller [1], a key extension of our model is recognizing
that the presynaptic terminal requires distinct learning
rules from the postsynaptic terminal in order to opti-
mally tune its function. In the following, we will briefly
discuss the evidence that strongly suggests a molecular
dissociation between pre- and postsynaptic plasticity
mechanisms at the well-studied Schaffer-collateral
synapses. We then introduce our recent discovery of a
novel presynaptic plasticity rule at these synapses and
discuss how it may optimally tune presynaptic filtering.
We conclude with an outlook on the functional conse-
quences of presynaptic filtering and propose necessary
future experiments to explore its role and relevance in
brain function in vivo.

Pre- and postsynaptic plasticity are
mechanistically and functionally distinct
Long-term synaptic plasticity, such as long-term potenti-
ation (LTP) and long-term depression (LTD), enables
synapses to be optimally and dynamically tuned to the
statistics of the environment. The most widely studied
forms of Hebbian plasticity are NMDA receptor
(NMDAR)-dependent LTP and LTD, in which NMDAR
activity reports the extent of correlation between pre-
synaptic glutamate release and postsynaptic activity.
NMDAR-dependent forms of plasticity were traditionally
thought to be mediated by both postsynaptic changes in
AMPA receptor (AMPAR) number (q) and presynaptic
changes in Pr (Fig. 2a, [7]). Whereas there is strong ex-
perimental evidence supporting a causal link between

postsynaptic NMDAR Ca2+ influx and changes in AMPAR
number, the link between postsynaptic NMDAR Ca2+ in-
flux and changes in Pr has been far more tenuous. Indeed,
a number of studies have now shown that presynaptic
LTP can be obtained in NMDAR blockade in a manner
dependent on Ca2+ influx from L-type voltage-gated Ca2+

channels (L-VGCCs) [5, 9, 53, 66]. Moreover, presynaptic
LTD also appears to be independent of postsynaptic
NMDARs and is instead driven by presynaptic NMDAR
activity [3, 10, 57]. Thus, it appears that pre- and postsyn-
aptic forms of plasticity are mechanistically distinct.
A mechanistic distinction in plasticity rules also sug-

gests a functional distinction. It is well accepted that
postsynaptic plasticity enables the synapse to adjust its
gain in accordance with the correlation between pre-
synaptic glutamate release and postsynaptic spiking [7,
43]. In this way, the postsynaptic terminal is optimised
to promote the transmission of inputs that are associated
with postsynaptic spiking. However, it is less clear what
the functional role of presynaptic plasticity is, especially
since changes in Pr, unlike changes in q, non-linearly
impact synaptic transmission. Lowering Pr, for example,
would preferentially depress inputs at low frequencies,
but owing to short-term facilitation, would leave trans-
mission at high frequencies little changed. Changes in q,
by contrast, would similarly impact transmission
across all input frequencies. Given the well described
role of the presynaptic terminal as a frequency filter, a
reasonable hypothesis is that presynaptic plasticity may
optimise the presynaptic terminal to preferentially trans-
mit presynaptic frequencies that are associated with
strong postsynaptic spiking: if low frequency activity, or
even single spikes, are associated with postsynaptic spik-
ing, Pr should be set high to ensure efficient glutamate
release during low frequency activity, whereas if high
frequency activity is associated with postsynaptic
spiking, Pr should be set to lower values to ensure
glutamate is only released during high frequency ac-
tivity. Consistent with this reasoning, we found that
pairing high frequency bursts of presynaptic spikes
with strong postsynaptic depolarisation at hippocam-
pal synapses maintained Pr at low values, despite the
presence of Hebbian activity and high levels of glu-
tamate release. By contrast, pairing single presynap-
tic spikes with strong postsynaptic depolarization
reliably increased Pr, despite lower levels of glutam-
ate release [53]. Such findings diverge from predic-
tions made by standard NMDAR-dependent models
of postsynaptic plasticity, in which higher levels of
glutamate released during Hebbian activity triggers
larger increases in synaptic efficacy [29, 43, 45, 50].
These findings therefore prompted us to better in-
vestigate the mechanisms underlying presynaptic
plasticity.
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New understandings of the mechanism of
presynaptic plasticity
To better elucidate the mechanisms of presynaptic plas-
ticity we manipulated the levels of glutamate signalling
and Hebbian activity at hippocampal synapses and ob-
served the resulting change in Pr using optical ap-
proaches [53]. We found that presynaptic LTP could be
induced by Hebbian pairing of pre- and postsynaptic
spiking in the complete absence of glutamate signalling.
In particular, strong postsynaptic depolarisation, likely
by driving dendritic spikes, activated L-VGCCs, which
triggered retrograde release of nitric oxide (NO) from
neuronal dendrites. Retrograde NO signalling was suffi-
cient to trigger an increase in Pr provided that presynap-
tic terminals were active just prior to (7–10ms), but not
following, NO release (Fig. 2b). In this way, a presynaptic
terminal could be potentiated without releasing glutam-
ate, provided that its activity coincides with postsynaptic
spiking, which in a physiological setting would be driven

by glutamate release at other co-active synapses. When
glutamate release did occur at synapses, we found that it
decreased Pr by activating presynaptic NMDARs, and
promoted presynaptic LTD. Such decreases were de-
tected regardless of the accompanying levels of postsyn-
aptic spiking (Fig. 2b). Overall, our findings show that
net changes in Pr are driven by two parallel processes: 1)
Hebbian activity, which increases Pr (Fig. 3a), and 2) glu-
tamate release, which decreases Pr (Fig. 3b). Conse-
quently, when both processes occur simultaneously, i.e.
glutamate release is followed by postsynaptic spiking ac-
tivity, Pr remains unchanged (Fig. 3c).
More generally speaking, our presynaptic learning rule

describes a simple prediction error learning rule, akin to
the Rescorla-Wagner model of classical conditioning,
where the mismatch and the difference between the
levels of glutamate released (Glu) and the levels of Heb-
bian activity (H) during synaptic activity amounts to a

Fig. 2 Pre- and postsynaptic plasticity are mechanistically distinct. a Conventional model of NMDAR-dependent synaptic plasticity at central
synapses. Hebbian activity is sensed by postsynaptic NMDARs and translated into a postsynaptic influx of Ca2+. This leads to the exo- or
endocytosis of AMPARs, which depends on the magnitude of Ca2+ influx. Additionally, NMDAR-dependent Ca2+ influx is conventionally thought
to trigger the synthesis and release of retrograde signals such as nitric oxide (NO), which then modulates plasticity at the presynaptic terminal. b
Novel model of presynaptic plasticity [53]. At the hippocampal Schaffer collateral-CA1 synapse, changes in Pr are driven by two parallel molecular
mechanisms that are independent of postsynaptic NMDARs: 1) Presynaptic LTP, which is induced by Hebbian activity, involving the causal pairing
of presynaptic action potentials and strong postsynaptic depolarisation. Postsynaptic depolarisation, in the form of dendritic spikes or back-
propagating action potentials, driven by cooperative synaptic activity, triggers the synthesis and release of NO in dendritic branches [53]. At the
presynaptic terminal, NO can increase Pr but only when presynaptic activity precedes its release. Such timing requirements are likely mediated by
an as yet unidentified Hebbian coincidence detector in the presynaptic terminal. 2) Presynaptic LTD, which is triggered by glutamate release via
the activation of presynaptic NMDARs. Accordingly, presynaptic LTP is preferentially induced at synapses releasing little or no glutamate during
Hebbian activity
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proportional change in Pr scaled by the constant η,
which is known as the learning rate (Eq. 2).

ΔPr ¼ η H‐Gluð Þ ð2Þ

The above equation can be re-written in terms of prob-
abilities of Hebbian activity (H) and glutamate release
(Glu). Specifically, the probability of Hebbian activity (H)
relates to the conditional probability of postsynaptic spiking
given a presynaptic action potential [P(post|pre)]. Note that
postsynaptic spiking can refer to either backpropagating ac-
tion potentials or local dendritic spikes. Accordingly, high
probabilities of Hebbian activity reflect a high likelihood
that there will be a postsynaptic spike given a single pre-
synaptic spike. For the purpose of simplicity, the probability
of glutamate release (Glu) simply equates to basal Pr if we
assume the absence of short-term dynamics that influence
glutamate release. The model can be adjusted to take into

account short-term dynamics by using available models of
short-term plasticity which predict effective Pr for a given
pattern of neuronal activity [32]. However, for the purposes
of explanation we will consider the simpler formulation, in
which case we can re-write the above equation as (Eq. 3):

ΔPr ¼ η P postjpreð Þ‐ Pr½ � ð3Þ

Following this equation, changes in Pr will only occur
when there is a mismatch between P(post|pre) and Pr dur-
ing neuronal activity. Such changes will minimize this
mismatch by bringing Pr closer in value to P(post|pre).
Provided the statistics of the pre- and postsynaptic activity
do not change, Pr will eventually reach a steady state at
which ΔPr = 0. At this state, Pr will equate to P(post|pre);
that is the probability of glutamate release will match the
probability of Hebbian activity at the synapse.

Fig. 3 The presynaptic terminal adapts to the statistics of pre- and postsynaptic activity. The presynaptic learning rule can be understood as a
minimisation of the prediction error between neurotransmitter release and postsynaptic spiking. a Hebbian activity, whereby postsynaptic spiking
(in the form of somatic or dendritic spikes) is causally paired with presynaptic action potentials triggers an increase in Pr by a positive feedback
signal (i.e. retrograde NO signalling). b Release of glutamate causes a decrease in Pr irrespective of postsynaptic spiking by a negative feedback
signal (i.e. presynaptic NMDAR activation). c Positive and negative feedback signals work in parallel and cancel each other out when
neurotransmitter release is followed by postsynaptic spiking. d This learning rule optimises Pr with respect to the conditional probability of
postsynaptic spiking given prior presynaptic activity. At steady-state, each release event will be followed, on average, by a postsynaptic spiking
event (Left). As a consequence, burst firing will generally result in low Pr (Middle), whereas synapses using spike-timing codes will tend towards
high Pr (Right). Pr is therefore optimally tuned to preferentially transmit presynaptic input that is predictive of postsynaptic spiking
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Functional consequences of the two-compartment
model
Presynaptic plasticity enables the presynaptic terminal to
act as an optimal frequency filter
In contrast to traditional learning rules which are only
driven by Hebbian activity, our new learning rule for pre-
synaptic plasticity is additionally negatively regulated by
glutamate release. This might explain previous reports
showing that the degree and direction of presynaptic plas-
ticity is negatively correlated with the initial Pr [28, 59].
As a consequence, presynaptic plasticity can optimize Pr
with respect to the temporal structure of presynaptic fir-
ing. For instance, consider a pair of neurones for which
burst firing in the presynaptic neurone is predictive of the
occurrence of a postsynaptic spike. Mechanistically, for
high Pr synapses, excessive glutamate will be released dur-
ing the action potential burst and presynaptic LTD will
predominate according to our proposed model of pre-
synaptic plasticity, triggering a decrease in Pr. With con-
tinued activity, Pr will continue to decrease until it is
sufficiently reduced such that the depressing effect of glu-
tamate release is matched to the potentiating effects of
NO signalling triggered by postsynaptic depolarization.
Formally, at such steady-state (ΔPr = 0), Pr will match
P(post|pre), and will be given by (Eq. 4):

Pr ¼ P postjpreð Þ ¼ Npost

Npre
ð4Þ

Here, for the purposes of illustration, we can sim-
plify P(post|pre) to Npost/Npre, where Npost is the num-
ber of postsynaptic spikes elicited by each presynaptic
burst and Npre is the average number of action potentials
in a presynaptic burst (Fig. 3d). This simplification as-
sumes that a single presynaptic spike can elict at most
one postsynaptic spike (i.e. Npost≤Npre) but allows us to
demonstrate intuitively how our learning rule optimally
sets Pr given the statistics of pre- and postsynaptic firing.
For example, if high frequency bursts of presynaptic ac-
tivity reliably predict single postsynaptic spikes, then Pr
will tend to low values as Npost/Npre will be low. Given
short-term facillitation at low Pr synapses, this change
would ensure that only high frequency bursts of activ-
ity reliably release glutamate. Conversely, if single pre-
synaptic spikes reliably predict single postsynaptic spikes
such that Npost/Npre = 1, as might be the case for spike
timing codes, then Pr will also equal 1 (Fig. 3d). Given
short-term depression at high Pr synapses, this change
would ensure that reliable glutamate release is mainly
triggered by single spikes (or low frequency spiking).
Our learning rule therefore enables Pr to be adjusted

such that the bandwidth of presynaptic firing frequencies
that are most informative or predictive of postsynaptic spik-
ing will be transmitted most efficiently. This is relevant

given that different frequencies of presynaptic firing are
likely to convey different information [17]. The presynaptic
terminal can therefore act as an optimal frequency filter
and transmit only relevant information to the postsynaptic
neurone. For example, Fig. 4a shows the hypothetical tun-
ing curve of an orientation-selective neurone in the visual
system. During synaptic transmission, the properties of the
tuning curve are transmitted via the synapse from the pre-
synaptic neurone to the postsynaptic neurone. If the post-
synaptic neurone has sharper tuning than its presynaptic
partner, then only a narrow band of presynaptic firing fre-
quencies bears relevance for postsynaptic output. With the
conventional, single-compartment synapse model, all pre-
synaptic firing frequencies are transmitted via the synapse.
Increasing (or decreasing) synaptic gain control can amplify
(or depress) transmission, but would do so equally at all
presynaptic firing frequencies, enhancing (or depressing)
the transfer of both relevant and irrelevant information. By
contrast, in the two-compartment model of the synapse, a
presynaptic frequency filter could first be employed to filter
out irrelevant presynaptic firing frequencies prior to post-
synaptic amplification, thereby improving the signal-to-
noise of synaptic transmission (Fig. 4b).
As a result of the presynaptic sharpening of tuning

curves, presynaptic neurones can transmit a higher band-
width of information, for example using a large range of fir-
ing frequencies, with only the relevant frequencies selected
for at a given synapse. Similarly, a local synaptic filter allows
the postsynaptic neurone to sample from a wider range of
presynaptic inputs as each input will be dynamically tuned
to maximally and optimally contribute to postsynaptic spik-
ing. This, for example, alleviates connectivity constraints, in
which neurones must selectively search for presynaptic
partners with similarly tuned inputs.
Notably, our learning rule does not explicitly make as-

sumptions about the nature of the postsynaptic spiking ac-
tivity. This means that in the case of strongly electrically
compartmentalised dendrites, presynaptic transmission
will be optimised to local rather than global patterns of
postsynaptic activity. For an axon that forms multiple con-
tacts with a postsynaptic neurone, which is often the case
for cortical neurones [38, 47, 61], this predicts that pre-
synaptic terminals sharing the same dendrite will have
more similar values of Pr than presynaptic terminals
across different branches, which appears to be the case ex-
perimentally [12, 39].

Beyond a simple presynaptic frequency filter
Our learning rule enables the presynaptic terminal to be-
have as an optimal frequency filter. However, the pre-
synaptic terminal is capable of more complex forms of
temporal filtering that can discriminate between differ-
ent patterns of spiking, or between the onset and fre-
quency of bursting activity [40, 41, 44, 64]. The

Tong et al. Molecular Brain           (2020) 13:79 Page 6 of 10



optimization of such complex functions may likely re-
quire additional presynaptic plasticity rules than what
we describe. Nonetheless, like frequency filtering, other
forms of presynaptic filtering can be of considerable
benefit for information processing in neuronal networks.
For example, both the onset and average frequency of

burst firing can be differentially informative, but each re-
quires distinct downstream mechanisms to be decoded.
Conventionally, adjustments to cell intrinsic properties [8]
or additional circuit mechanisms, such as inhibitory feed-
back [33], are needed to tune neurones to specific types of
temporal information. However, with the addition of a local
synaptic filter, each downstream neurone could independ-
ently adjust its synaptic filter to be sensitive to one or a
combination of types of temporal information. In particular,
high Pr synapses exhibiting short-term depression could be
used to convey the timing of presynaptic bursts, invariant
of burst frequency, whereas low Pr synapses exhibiting
short-term facilitation could be used to convey information
related to average burst frequency [48, 64]. Recently, trans-
mission at the mossy fibre-CA3 synapse was reported to be
sensitive to presynaptic spike number, independent of spik-
ing frequency and timing [19]. Such functions, in principle,
could also be mediated by presynaptic terminals that are
tuned by presynaptic plasticity to have the appropriate
short-term dynamics.
A presynaptic filter could also be used to normalize in-

puts. For example, a neurone might receive inputs from

brain regions that differ in their average firing frequen-
cies. In this case, inputs that have higher average spiking
frequencies are also more likely to drive postsynaptic
spiking. Synaptic integration at the postsynaptic neurone
therefore becomes highly biased. A dynamic synaptic fil-
ter could, however, rescale the inputs to a similar fre-
quency range. Moreover, a recent study reported that
short-term plasticity of Schaffer collateral-CA1 synapses
are altered along the length of CA1 dendrites in order to
counteract electrotonic attenuation [27]; presynaptic fil-
tering in such instance normalizes the contribution of
synapses towards postsynaptic spiking independent of
their position along the dendrite.
In summary, the two-compartment synapse model

greatly increases the information processing capacity of
neurones by allowing synaptic inputs to be locally fil-
tered and adjusted. These filters can work complemen-
tary to those implemented on a circuit level, such as
tight inhibitory feedback or organised connectivity and
might alleviate some of their anatomical or metabolic
constraints.

Future work
Much remains to be understood about presynaptic filter-
ing. Short-term plasticity and related synaptic non-
linearities have been extensively studied in vitro, both on
a phenomenological and molecular level [32, 56]. We be-
lieve that such a detailed in vitro characterisation of the

Fig. 4 The presynaptic filter locally sharpens the tuning curve of the input neurone. a Example tuning curve of an orientation-selective neurone
in the primary visual cortex. The single-compartment model leads to a postsynaptic amplification of the orientation tuning curve transmitted by
the presynaptic neurone. This amplification uniformly impacts all presynaptic firing frequencies, which leads to the transmission of potentially
irrelevant stimuli, for example when the tuning curve of the postsynaptic neurone is sharper (see mismatch between tuning curve of the input
(dashed line) and tuning curve of the postsynaptic neurone). b In the two-compartment model, the same tuning curve is first sharpened due to
the presynaptic frequency filter. For example, by using a low Pr synapse, high frequency presynaptic firing can be preferentially transmitted,
enabling selective transmission of only relevant stimuli. The postsynaptic terminal can then selectively amplify this input. The two-compartment
model can therefore optimize the signal-to-noise ratio of synaptic transmission
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synapse will continue to be invaluable for understanding
the computational role of the synapse. These in vitro stud-
ies are, and will be, especially useful for setting bounds on
what the synapse is capable of. Studies of synaptic plasticity
will help clarify conditions driving synapse changes and the
scale of these changes. For example, it will be crucial to de-
termine the maximum temporal resolution of the synaptic
filter. Can Pr be adjusted so that the resulting short-term
dynamics of glutamate release is sensitive to arbitrary pat-
terns of action potentials? Or can the presynaptic filter act
only on the average frequency of spiking over a larger time
window?
Of additional importance is better understanding the

mechanisms regulating long- and short-term presynaptic
function. Although we have elucidated the role of NO and
glutamate release in regulating presynaptic function, other
factors are also likely to be involved, including retrograde
signalling by endocannabinoids [18], as well as glia-
mediated release of glutamate and other gliotransmitters
at the synapse [24]. How such factors impact presynaptic
filtering remains to be elucidated. One possibility is that
these factors might report aspects of postsynaptic activity
on different spatial or temporal scales. To investigate this,
a better understanding of the conditions that drive the re-
lease of different regulators of presynaptic function is
needed. For example, we have shown that the release of
NO requires the activation of L-VGCCs [53], which have
high activation thresholds and fast inactivation kinetics,
meaning that NO release preferentially encodes short pe-
riods of strong postsynaptic depolarisation.
Finally, of immense importance is the in vivo character-

isation of synaptic function and plasticity rules, which is
severely lacking, especially for the presynaptic terminal.
Little is known about how ongoing basal activity, neuro-
modulatory tone, and interactions between excitatory and
inhibitory activity, impact synaptic properties in vivo.
Moreover, although it is established that both pre- and
postsynaptic changes accompany learning in vivo [21, 36,
46], it remains unclear whether such learning rules are
similar to those established in vitro. Indeed, the properties
of one form of hippocampal synaptic plasticity observed
in vivo during environmental exploration was recently re-
ported to deviate substantially from in vitro findings [6].
Therefore, future studies need to focus on elucidating the
properties of synaptic function and plasticity in vivo.
To better elucidate the function of the presynaptic ter-

minal in vivo, we suggest the following guiding questions
for future studies:

What are the properties of stochastic presynaptic
neurotransmitter release and short-term plasticity
in vivo?
The lack of an in vivo characterisation of presynaptic
properties can be largely attributed to technical

difficulties of measuring Pr. Most techniques rely on the
optical detection of neurotransmitter release events,
which requires good optical access and probes that re-
port transmitter release with high signal-to-noise ratios
[52], previously not feasible for in vivo use. The recent
development of novel, high-sensitivity Ca2+ and glutam-
ate sensors should greatly facilitate the introduction of
techniques such as optical quantal analysis into an
in vivo setting [20, 23, 31, 34, 49, 54]. This paves the
way for extensive characterisation of presynaptic proper-
ties at different connections and under different regimes
of network activity.

How are presynaptic properties regulated in vivo?
A consequence of the two-compartment synapse model
is that the presynaptic filter is locally adjusted to
optimize synaptic transmission between the pre- and the
postsynaptic neurone. This predicts that presynaptic ter-
minals along a common axon will differ in their release
properties depending on the firing statistics of each asso-
ciated postsynaptic neurone. This can be explored by
imaging neurotransmitter release using glutamate sen-
sors at boutons along identified axonal branches as these
will experience the same presynaptic input but might
differ in their pattern of release. Variations in trans-
mitter release between boutons along the same axon
should be explained by differences in the firing prop-
erties of the corresponding postsynaptic neurones.
This can for example be assessed by recording or im-
aging activity from paired connections using Ca2+ or
voltage-based sensors [14, 42, 54, 60].
Next, novel techniques for labelling recently potenti-

ated synapses [30] can be combined with optical mea-
surements of presynaptic function to study changes
following learning, as well as pharmacological and gen-
etic manipulations to study the underlying molecular
mechanisms. These experiments would delineate simi-
larities and differences in the induction, maintenance,
and molecular underpinnings of pre- and postsynaptic
plasticity, and can be compared with in vitro findings.

How does the synaptic filter contribute to the input-
output function of a neurone?
Lastly, the presynaptic filter needs to be understood in
the context of a neurone’s input-output function. To do
this, one has to compare qualitative differences between
computational models of synaptic activity in vivo with
and without presynaptic non-linearities. For example,
improved circuit tracing techniques such as single cell-
initiated retrograde tracing [65], in combination with
genetically encoded reporters of activity, would make it
possible to make simultaneous measurements of pre-
synaptic action potentials, neurotransmitter release, and
postsynaptic activity in vivo. These measurements can
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be used to construct models that map either 1) pre-
synaptic action potentials to postsynaptic spiking or 2)
glutamate release to postsynaptic spiking. If presynaptic
filtering is significantly contributing to the generation of
the input-output function, a qualitative difference be-
tween the models should be apparent. This can be used
as a basis for further theoretical studies on the func-
tional impact of the two-compartment synapse model
on neural circuits.

Conclusion
Viewing the synapse as more than a linear gain control-
ler will help to better understand the role of the synapse
in the emergence of complex network behaviour. Similar
to the identification of local dendritic computation [11],
the two-compartment model of the synapse will help to
better assess the computational power of the neurone.
This will lead to more precise models of synaptic integra-
tion and enable the formulation of more sophisticated hy-
potheses that can be tested experimentally. The rapidly
expanding tool kit of novel techniques to interrogate syn-
aptic function in vivo will encourage the translation of the
expansive knowledge of the synapse in vitro into a physio-
logical context.
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