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Abstract: The aim of this study is to develop an AI model that accurately identifies referable ble-
pharoptosis automatically and to compare the AI model’s performance to a group of non-ophthalmic
physicians. In total, 1000 retrospective single-eye images from tertiary oculoplastic clinics were
labeled by three oculoplastic surgeons as having either ptosis, including true and pseudoptosis, or
a healthy eyelid. A convolutional neural network (CNN) was trained for binary classification. The
same dataset was used in testing three non-ophthalmic physicians. The CNN model achieved a
sensitivity of 92% and a specificity of 88%, compared with the non-ophthalmic physician group,
which achieved a mean sensitivity of 72% and a mean specificity of 82.67%. The AI model showed
better performance than the non-ophthalmic physician group in identifying referable blepharoptosis,
including true and pseudoptosis, correctly. Therefore, artificial intelligence-aided tools have the
potential to assist in the diagnosis and referral of blepharoptosis for general practitioners.

Keywords: artificial intelligence; blepharoptosis; general practitioners; computer-aided diagnosis
(CAD)

1. Introduction

Blepharoptosis, also known as ptosis, is the drooping or inferior displacement of the
upper eyelid. Ptosis can obstruct the visual axis and affect vision and can be a presenting
sign of a serious medical disorder, such as ocular myasthenia [1], third cranial nerve
palsy [2], or Horner syndrome [3]. It is important for general practitioners to accurately
diagnosis ptosis to assist in decision making for referral and work up when necessary.
Ptosis is diagnosed by using a ruler and light source to measure the distance between the
pupillary light reflex and the upper eyelid margin (margin reflex distance 1, or MRD1)
with the eyes in the primary position [4]. With low repeatability and reproducibility in
measuring eyelid landmarks and the effect of learning curves [5,6], accurately recognizing
ptosis is challenging especially for non-ophthalmologists. Therefore, an automated tool for
ptosis diagnosis may be useful for general practitioners.

J. Pers. Med. 2022, 12, 283. https://doi.org/10.3390/jpm12020283 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm12020283
https://doi.org/10.3390/jpm12020283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0002-5048-9145
https://orcid.org/0000-0003-3331-261X
https://orcid.org/0000-0001-8104-2824
https://orcid.org/0000-0002-4390-0389
https://orcid.org/0000-0002-6174-2556
https://doi.org/10.3390/jpm12020283
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm12020283?type=check_update&version=1


J. Pers. Med. 2022, 12, 283 2 of 9

Currently, artificial intelligence (AI)-aided diagnostic tools play a promising role
in the automatic detection of certain diseases, such as diabetic retinopathy [7] and skin
cancer [8] from retinal fundus and skin images, respectively. Convolutional neural network
(CNN)-based deep learning methods, a subset of machine learning techniques, have been
the state of the art in AI for years, leading to enhanced performance in various medical
applications [9]. It requires less supervision and uses an end-to-end learning mechanism to
map raw inputs, such as image pixels, to outputs without human-directed manipulation of
data [10]. The image-to-classification approach in one classifier replaces the multiple steps
of previous image analysis methods [11].

In a previous study [12], a variety of CNN architectures, such as VGG-16 [13], ResNet [14],
and DenseNet [15], diagnosed true blepharoptosis without any inputs of eyelid measurements
from a clinical photograph, achieving a high accuracy of 83.3% to 88.6%. In this study, we
further trained an AI model using the VGG-16 architecture with larger and more diverse
datasets to accurately diagnose blepharoptosis and compared the AI model’s performance
to a group of non-ophthalmic physicians. Our goal was to determine if our AI model could
outperform physicians to support the need for an AI tool to diagnose blepharoptosis.

2. Materials and Methods
2.1. Image Preparation

Original photographs, taken by a hand-held digital camera (Canon DIGITAL IXUS 950
IS) at a tertiary oculoplastic clinic of adult patients over 20 years old, were retrospectively
collected over the past 20 years for surgical evaluation. A total of 1000 images were used
in this study. IRB approval was granted for this study by Stanford University, and the
research was conducted in accordance with National Taiwan University IRB protocol.

In order to crop a standardized image of a single eye, OpenFace [16], an open-source
package, was utilized to identify major facial landmarks in each photograph. Cropped single-
eye images were 400 × 600 pixels individually and were then resized to 200 × 300 pixels,
matching the input size, which was ready to be used in the CNN architectures.

2.2. Inclusion and Exclusion

After cropping, the photographs involved only the periocular region of a single eyes
Figure 1. The appearance of a healthy eyelid is illustrated in Figure 1a. The referable
ptosis group included mild ptosis, severe ptosis, and pseudoptosis (dermatochalasis), a
condition in which excess upper eyelid skin overhangs the eyelid margin Figure 1b. Upper
eyelid retraction was excluded Figure 1c. Poor quality images, including uncentered visual
fixation, uneven curves of the upper eyelids, and blurred upper eyelid margins due to
dense eyelashes, were excluded. A total of 1000 images were evaluated and 218 images
were removed, leaving 782 images for use in this study.

Figure 1. Healthy (a), referable ptosis (b), and excluded (c) group (right eyes).

The brow region was not included in the photographs; therefore, brow ptosis was not
excluded. Exact measurements, such as margin to reflex distance 1 (MRD-1), MRD-2 [17,18],
levator function [19], or palpebral aperture [20], were not provided. The condition of the
other eye and the history of the patients were withheld.
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2.3. Annotations for the Ground Truth

Two labelers, both oculoplastic surgeons, achieved an 82% consensus rate in discussion
meetings. The major reasons for their disagreements were decisions about healthy eyelids
and mild ptosis. To lessen spectrum bias, a third senior oculoplastic surgeon, as an arbiter,
yielded the decisive answer for these disagreements, which included 24 images. Figure 2
shows the voting system, with 593 images (accounting for 75%) in the referable ptosis
group and 189 (25%) images in the healthy group.

Figure 2. Flowchart for data labeling.

2.4. Data Allocation for Training, Validation, and Testing

A total of 50 images, including 25 healthy eyelids and 25 ptotic eyelids, were randomly
selected into testing datasets. The same testing datasets were used to test the AI model
and the physician group. The rest of the photographs were then divided into training and
validation datasets with the ratio of 8:2 Table 1.

Table 1. The number of images in the training, validation, and testing set.

Training Validation (for Training) Testing

Referable ptosis group 455 113 25
Healthy group 132 32 25

2.5. Model Architecture and Training

VGG-16 was used as the base structure [13,21]. The last few layers of VGG-16′s
architecture were replaced with a global max pooling layer followed by fully connected
layers and a sigmoid function for our binary classification problem. In order to reduce
memory usage, the size of the input images was adjusted to 200 × 300 pixels. The details
of our model architecture can be seen in Table 2.
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Table 2. Structure of the model.

Input Size Layer Output Size Number of
Feature Maps Kernel Size Stride Activation

- Image 200 × 300 × 3 - - - -

200 × 300 × 3 Convolution 200 × 300 × 64 64 3 × 3 1 ReLU

200 × 300 × 64 Convolution 200 × 300 × 64 64 3 × 3 1 ReLU

200 × 300 × 64 Max pooling 100 × 150 × 64 64 - 2 -

100 × 150 × 64 Convolution 100 × 150 × 128 128 3 × 3 1 ReLU

100 × 150 × 128 Convolution 100 × 150 × 128 128 3 × 3 1 ReLU

100 × 150 × 128 Max pooling 50 × 75 × 128 128 - 2 -

50 × 75 × 128 Convolution 50 × 75 × 256 256 3 × 3 1 ReLU

50 × 75 × 256 Convolution 50 × 75 × 256 256 3 × 3 1 ReLU

50 × 75 × 256 Global max pooling 1 × 256 - - - -

1 × 256 Fully connected 1 × 512 - - - ReLU

1 × 512 Fully connected 1 - - - Sigmoid

2.6. Transfer Learning and Data Augmentation

Transfer learning was performed by importing weights trained on ImageNet [22]. Ten-
sorflow 2.0 with Keras was used as our training framework. For learning rate optimization,
Adam optimizer was applied [21]. Data augmentation was also used to prevent overfitting.
The transformations of photographs included:

• Images flipped horizontally;
• Random image rotations of up to 15 degrees;
• Random zooms in or out between the range of 90% to 120%;
• Adjusted brightness/contrast by 50%;
• Images shifted horizontally or vertically by 10%.

2.7. Testing in Non-Ophthalmic Physician Group

Three specialists, one each from emergency medicine, neurology, and family medicine,
were tested on behalf of the non-ophthalmic physician group. The clinical experience
of each of the three physicians was over five years. The same testing set, including 25
healthy eyelids and 25 ptotic eyelids, was given to the group to distinguish ptotic eyelids
from healthy eyelids. No other information, such as MRD-1 measurements, the condition
of the other eye, or patient histories, were provided. Moreover, no further training on
blepharoptosis diagnosis was given. The decision making relied on each physician’s
personal background knowledge.

3. Results

There were 45 correct predictions, including 22 healthy and 23 ptosis answers, by the
CNN model from a total of 50 testing images. The accuracy of the AI model was 90%, with
a sensitivity of 92% and a specificity of 88%. Three false positives and two false negatives
were found.

3.1. Confusion Matrix and ROC Curve

The confusion matrix with a 0.5 threshold setting is shown in Figure 3. The receiver
operating characteristic (ROC) curve is presented in Figure 4. The area under the curve
(AUC) was 0.987. The mean accuracy of the non-ophthalmic physician group was 77.33%
(range: 70–82%) with a mean sensitivity of 72% (range: 68–76%) and a mean specificity of
82.67% (range: 72–88%), as seen in Figure 5.
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Figure 3. Confusion matrix. The threshold is 0.5.

Figure 4. ROC curve. The area under the curve (AUC) is 0.987.

Figure 5. Performance comparison.

3.2. Grad-CAM Results

Gradient-weighted class activation mapping (Grad-CAM) [23] was applied to visualize
the AI model. The result showed that the weight in the background was around 0~0.2. In
the ptotic eyelids, the area between the upper eyelid margin and the central cornea light
reflex showed the highest weight, around 0.5~1.0 (Figure 6).
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Figure 6. Original images and Grad-CAM results of the AI model predictions. Ptosis (upper),
pseudoptosis (middle), and healthy eyelids (lower). Grad-CAM results have been merged with
original images.

4. Discussion

It is important for general practitioners to promptly diagnose and refer eyelid ptosis,
including pseudoptosis, to ophthalmic specialists for further evaluation, work up, and
treatment. Pseudoptosis is a heterogeneous group of disorders where the upper eyelid
can drop in the absence of pathology of the upper eyelid muscles [24]. Dermatochalasis is
likely the most common eyelid condition that causes confusion when evaluating a patient
with apparent ptosis. Excess upper eyelid skin may overhang the eyelashes and obstruct
the visualization of the eyelid margin, giving the impression of a low-lying eyelid. In
a previous proof-of-concept study, we demonstrated that an AI model could detect true
ptosis from healthy eyelids [12]. In this study, we evaluated true ptosis and pseudoptosis
versus health eyelids, applied a larger dataset of 782 images, and compared the AI model
performance to non-ophthalmic physicians. Our results demonstrate that the AI model
achieved an accuracy of 90%, with 92% specificity and 88% sensitivity. Additionally, the AI
model performed well even when including pseudoptosis cases, which better mimic the
real clinical situation in primary care.

A non-ophthalmic group of three physicians, including experts in family medicine,
neurology, and emergency medicine, were chosen as a comparator group. The family
medicine doctor represented general practitioners who are commonly the first line in
seeing and diagnosing age-related and systemic causes of ptosis. The neurologist was
selected due to specialized training in diagnosing ptosis, particularly related to neurologic
or myogenic causes. Finally, the emergency medicine doctor was selected due to expertise
in diagnosing acute causes of ptosis, such as Horner syndrome, third nerve palsy [25],
or trauma. Hence, our non-ophthalmic group had previous experience in identifying
blepharoptosis. Our results demonstrate a mean accuracy of 77.33% (range: 70–82%), with
a mean sensitivity of 72% (range: 68–76%) and a mean specificity of 82.67% (range: 72–88%)
in the non-ophthalmic physician group, while the AI model achieved an accuracy of 90%,
with a sensitivity of 92% and a specificity of 88%. These results suggest that an AI-aided
diagnostic tool can accurately detect blepharoptosis and prompt referral for ophthalmic
evaluation when necessary.

CNNs (convolutional neural networks) have achieved great success in image classifica-
tion. For example, in the current largest image classification dataset classification challenge,
ImageNet, all models with top performance used CNN architectures. The general trend is
that the deeper the model, the greater discernment the model can provide. Some model
structures can be very deep, such as Res Net-152, which has 152 CNN layers. In a previous
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smaller scale study [12], where less than 500 eyelid pictures were evaluated, a variety of
CNN models demonstrated high performance over an accuracy of 80%. This study showed
that, for ptosis classification, the most common models, such as VGG, ResNet, AlexNet,
SqueezeNet, and DenseNet, all have similar performance. Therefore, among those models,
we chose a relatively simple model, VGG-16, a computing resource-efficient model, as our
base model. The VGG-16 model is based on architecture developed by the Oxford Visual
Geometry Group (VGG) and achieved top performance in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2014.

Gradient-weighted class activation mapping (Grad-CAM) is a visual explanation of
the AI model, which is applicable to a wide variety of CNN model-families [23]. To aid
the understanding of AI model predictions, a heat map identifies the areas of the input
image that contributed most to the AI model’s classification using a technique called
class activation mappings. In addition, to visualize reasonable AI predictions, Grad-CAM
explanations also helped identify dataset biases in images. For example, a preoperative
marking around the eye or a postoperative suture on the eyelid may provide misleading
clues to the AI model, rather than eyelid information for blepharoptosis. The results of
Grad-CAM (Figure 6) demonstrated a hotspot area (0.5–1.0 in weights) between the upper
eyelid margin and central corneal light reflex, which is clinically compatible with the MRD-
1 concept. The cold zone (0–0.2 in weights) in the background successfully excluded dataset
biases, providing stronger faithfulness. With larger and more diverse data utilization in the
future, more precise results to understand the AI predictions can be expected.

AI-assisted ptosis diagnostic tools can be of great impact on the management of congen-
ital ptosis, since up to one-third of congenital ptosis patients are at risk for amblyopia [26].
The accurate diagnosis of ptosis based on external photographs would prove especially
helpful in the pediatric population for ophthalmologists and general practitioners alike,
as the eyelid exam can be challenging in uncooperative or crying children, patients with
developmental delays, and babies. The AI-assisted detection of congenital ptosis could
have a huge impact on preventing and treating amblyopia promptly. External validation
with outsourced images, including mobile phone photographs, to confirm the strength and
weakness of this AI model also deserves further investigation.

Limitations to this study include that the data resource was only from Asian ethnicities,
setting limitations in both model training and testing process. Future studies will analyze
external photographs from diverse ethnicities to further train the AI model and expand
the application for all users. Additionally, only adults were included in this study, setting
limitations for pediatric care. Furthermore, we did not measure variables including palpe-
bral aperture, levator muscle excursion, and brow position, which should be identified for
detailed and quantifiable ptosis assessment.

There were also inherent limitations in the labeling of the ground truths by three
oculoplastic surgeons. Some photos of mild ptosis were challenging to differentiate from
normal eyelids, even among experienced oculoplastic surgeons. Hence, the AI model
constructed in our study only provided information as to whether a photo might have
ptosis from an oculoplastic surgeon’s point of view. This might also explain why this
study did not achieve much greater accuracy then our previous study, since more data may
introduce more photos with uncertainty [12].

5. Conclusions

The AI model using CNNs achieved better performance than the non-ophthalmic
physician group and shows value as a diagnostic tool to be used in assisting the referral of
blepharoptosis, including true and pseudoptosis.



J. Pers. Med. 2022, 12, 283 8 of 9

Author Contributions: Conceptualization, J.-Y.H. and K.-W.C.; methodology, J.-Y.H., K.-W.C., and
C.P.; software, K.-W.C.; validation, J.-Y.H. and C.-R.H. ; formal analysis, J.-Y.H.; investigation, J.-Y.H.;
resources, D.M., A.-C.L., and C.-S.F.; data curation, S.-L.L.; writing—original draft preparation, J.-Y.H.
and K.-W.C.; writing—review and editing, C.P. and H.-K.C.; visualization, K.-W.C.; supervision,
S.-L.L. and A.L.K.; project administration, S.-L.L. and A.L.K. All authors have read and agreed to the
published version of the manuscript.

Funding: Authors ALK and DM were supported by departmental core grants from Research to
Prevent Blindness and the National Eye Institute (P30-026877).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the 121st meeting of the Research Ethics Committee D of the National
Taiwan University Hospital (protocol code: NTUH-REC No. 201908066RIND, and date of approval:
12 November 2021).

Informed Consent Statement: Our IRB-approved data and the request for the waiver of patient
informed consent have been approved by the 121st meeting of Research Ethics Committee D of
the National Taiwan University Hospital on 12 November 2021. The reason for waiver of patient
informed consent is that the data is the retrospective large scale of single-eye-only regional images,
involving over 1000 cases, which were applied de-identification methods to remove all 18 identifiers,
in accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule, or
Standards for Privacy of Individually Identifiable Health Information, complying with standards
for the protection of certain health information by the U.S. Department of Health and Human
Services (HHS).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy issue.

Acknowledgments: We thank Taiwan National Center for High-performance Computing (NCHC)
for providing computational and storage resources, departmental core grants from the National
Eye Institute (P30 EY026877) and Research to Prevent Blindness (RPB) to the Byers Eye Institute at
Stanford, and Karen Chang for assisting in the research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Haidar, M.; Benatar, M.; Kaminski, H.J. Ocular Myasthenia. Neurol. Clin. 2018, 36, 241–251. [CrossRef] [PubMed]
2. Bagheri, A.; Borhani, M.; Salehirad, S.; Yazdani, S.; Tavakoli, M. Blepharoptosis Associated With Third Cranial Nerve Palsy.

Ophthalmic Plast. Reconstr. Surg. 2015, 31, 357–360. [CrossRef] [PubMed]
3. Martin, T.J. Horner Syndrome: A Clinical Review. ACS Chem. Neurosci. 2018, 9, 177–186. [CrossRef] [PubMed]
4. Putterman, A.M. Margin reflex distance (MRD) 1, 2, and 3. Ophthalmic Plast. Reconstr. Surg. 2012, 28, 308–311. [CrossRef]
5. Boboridis, K.; Assi, A.; Indar, A.; Bunce, C.; Tyers, A. Repeatability and reproducibility of upper eyelid measurements. Br. J.

Ophthalmol. 2001, 85, 99–101. [CrossRef]
6. Nemet, A.Y. Accuracy of marginal reflex distance measurements in eyelid surgery. J. Craniofacial Surg. 2015, 26, e569–e571.

[CrossRef]
7. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros,

J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus
Photographs. JAMA 2016, 316, 2402–2410. [CrossRef]

8. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer
with deep neural networks. Nature 2017, 542, 115–118. [CrossRef]

9. Shen, D.; Wu, G.; Suk, H.-I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [CrossRef]
10. Wang, F.; Casalino, L.P.; Khullar, D. Deep learning in medicine—promise, progress, and challenges. JAMA internal medicine 2019,

179, 293–294. [CrossRef]
11. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks; Springer: Cham, Switzerland, 2014; pp. 818–833.
12. Hung, J.-Y.; Perera, C.; Chen, K.-W.; Myung, D.; Chiu, H.-K.; Fuh, C.-S.; Hsu, C.-R.; Liao, S.-L.; Kossler, A.L. A deep learning

approach to identify blepharoptosis by convolutional neural networks. Int. J. Med. Inform. 2021, 148, 104402. [CrossRef] [PubMed]
13. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint 2014,

arXiv:1409.1556.
14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Proceedings of the IEEE

conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

http://doi.org/10.1016/j.ncl.2018.01.003
http://www.ncbi.nlm.nih.gov/pubmed/29655447
http://doi.org/10.1097/IOP.0000000000000336
http://www.ncbi.nlm.nih.gov/pubmed/25376747
http://doi.org/10.1021/acschemneuro.7b00405
http://www.ncbi.nlm.nih.gov/pubmed/29260849
http://doi.org/10.1097/IOP.0b013e3182523b7f
http://doi.org/10.1136/bjo.85.1.99
http://doi.org/10.1097/SCS.0000000000001304
http://doi.org/10.1001/jama.2016.17216
http://doi.org/10.1038/nature21056
http://doi.org/10.1146/annurev-bioeng-071516-044442
http://doi.org/10.1001/jamainternmed.2018.7117
http://doi.org/10.1016/j.ijmedinf.2021.104402
http://www.ncbi.nlm.nih.gov/pubmed/33609928


J. Pers. Med. 2022, 12, 283 9 of 9

15. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

16. Amos, B.; Ludwiczuk, B.; Satyanarayanan, M. Openface: A general-purpose face recognition library with mobile applications.
CMU Sch. Comput. Sci. 2016, 6.

17. Bodnar, Z.M.; Neimkin, M.; Holds, J.B. Automated Ptosis Measurements From Facial Photographs. JAMA Ophthalmol. 2016, 134,
146–150. [CrossRef]

18. Lou, L.; Yang, L.; Ye, X.; Zhu, Y.; Wang, S.; Sun, L.; Qian, D.; Ye, J. A Novel Approach for Automated Eyelid Measurements in
Blepharoptosis Using Digital Image Analysis. Curr. Eye Res. 2019, 44, 1075–1079. [CrossRef]

19. Lai, H.-T.; Weng, S.-F.; Chang, C.-H.; Huang, S.-H.; Lee, S.-S.; Chang, K.-P.; Lai, C.-S. Analysis of Levator Function and Ptosis
Severity in Involutional Blepharoptosis. Ann. Plast. Surg. 2017, 78, S58–S60. [CrossRef]

20. Thomas, P.B.; Gunasekera, C.D.; Kang, S.; Baltrusaitis, T. An Artificial Intelligence Approach to the Assessment of Abnormal Lid
Position. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3089. [CrossRef]

21. Da, K. A method for stochastic optimization. arXiv preprint 2014, arXiv:1412.6980.
22. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. Imagenet

large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
23. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via

gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29
October 2017; pp. 618–626.

24. Cohen, A.J.; Weinberg, D.A. Pseudoptosis. In Evaluation and Management of Blepharoptosis; Springer: New York, NY, USA, 2011.
25. Huff, J.S.; Austin, E.W. Neuro-Ophthalmology in Emergency Medicine. Emerg. Med. Clin. N. Am. 2016, 34, 967–986. [CrossRef]
26. Zhang, J.Y.; Zhu, X.W.; Ding, X.; Lin, M.; Li, J. Prevalence of amblyopia in congenital blepharoptosis: A systematic review and

Meta-analysis. Int. J. Ophthalmol. 2019, 12, 1187–1193. [CrossRef] [PubMed]

http://doi.org/10.1001/jamaophthalmol.2015.4614
http://doi.org/10.1080/02713683.2019.1619779
http://doi.org/10.1097/SAP.0000000000001007
http://doi.org/10.1097/GOX.0000000000003089
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1016/j.emc.2016.06.016
http://doi.org/10.18240/ijo.2019.07.21
http://www.ncbi.nlm.nih.gov/pubmed/31341812

	Introduction 
	Materials and Methods 
	Image Preparation 
	Inclusion and Exclusion 
	Annotations for the Ground Truth 
	Data Allocation for Training, Validation, and Testing 
	Model Architecture and Training 
	Transfer Learning and Data Augmentation 
	Testing in Non-Ophthalmic Physician Group 

	Results 
	Confusion Matrix and ROC Curve 
	Grad-CAM Results 

	Discussion 
	Conclusions 
	References

