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Abstract: Eosinophils infiltration and releasing TGF-β1 in the airways has been implicated in the
pathogenesis of asthma, especially during acute episodes provoked by an allergen. TGF-β1 is a major
mediator involved in pro-inflammatory responses and fibrotic tissue remodeling in asthma. We aimed
to evaluate the effect of in vivo allergen-activated eosinophils on the expression of COL1A1 and FN in
ASM cells in asthma. A total of 12 allergic asthma patients and 11 healthy subjects were examined.
All study subjects underwent bronchial challenge with D. pteronyssinus allergen. Eosinophils from
peripheral blood were isolated before and 24 h after the bronchial allergen challenge using high-density
centrifugation and magnetic separation. Individual co-cultures of blood eosinophils and immortalized
human ASM cells were prepared. The TGF-β1 concentration in culture supernatants was analyzed
using ELISA. Gene expression was analyzed using qRT-PCR. Eosinophils integrins were suppressed
with linear RGDS peptide before co-culture with ASM cells. Results: The expression of TGF-β1 in
asthmatic eosinophils significantly increased over non-activated asthmatic eosinophils after allergen
challenge, p < 0.001. The TGF-β1 concentration in culture supernatants was significantly higher in
samples with allergen-activated asthmatic eosinophils compared to baseline, p < 0.05. The effect of
allergen-activated asthmatic eosinophils on the expression of TGF-β1, COL1A1, and FN in ASM cells
was more significant compared to non-activated eosinophils, p < 0.05, however, no difference was
found on WNT-5A expression. The incubation of allergen-activated asthmatic eosinophils with RGDS
peptide was more effective compared to non-activated eosinophils as the gene expression in ASM
cells was downregulated equally to the same level as healthy eosinophils.

Keywords: eosinophil; TGF-β1 signaling; airway smooth muscle cells; extracellular matrix proteins;
bronchial allergen challenge; collagen I; fibronectin

1. Introduction

Allergic asthma (AA) is a chronic inflammatory condition of the airways characterized by a type 2
inflammation with prominent eosinophilic infiltration in the bronchial mucosa [1,2]. When aeroallergen
gets to the sensitized airway, the immune response quickly takes action. Firstly, the inflammation during
the early phase starts with bronchoconstriction that clinically manifests as airway hyperreactivity [3].
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Later, the increased production of mucus, vasodilatation, as well as vascular permeability occurs.
Repeatedly inhaled allergens through various mediators stimulate eosinophils migration to airways
that cause inflammation and edema [4].

Eosinophils recruitment from the bloodstream to inflamed tissues depends on circulating
eosinophils becoming activated, which leads to eosinophil arrest on activated endothelium,
extravasation, and continued movement through the bronchial tissue by interaction with extracellular
matrix (ECM) [5]. Airway eosinophilia is one of the main features of asthma pathogenesis that leads
to the changed microenvironment, causing airway remodeling [6]. Airway remodeling refers to the
structural changes and activation of airway smooth muscle (ASM) cells and fibroblasts. Structural
changes include excessive repair processes followed by repeated airway injury, including the increased
deposition of several ECM proteins such as collagens and fibronectin in the reticular basement membrane
and bronchial mucosa as well as increased ASM mass, goblet-cell hyperplasia, and neoangiogenesis [7].
The main producers of ECM proteins are pulmonary structural cells such as ASM cells and fibroblasts.
ECM proteins contribute to the tissue structure and elasticity, which are seen unbalanced in asthma [8,9].
ECM can affect the behavior of the structural cell in lung tissue. The role of cell–matrix interactions
represents an area for active investigation on the ability of the lung matrix to prime the structural
pulmonary cells. Additionally, ECM proteins are responsible for ASM cell migration, contractility,
proliferation in asthma [10,11].

Chronic inflammation is caused by activated inflammatory and structural cells that secrete various
mediators. TGF-β plays a central role in the complex relationship between the activation of the
inflammatory cascade in the airways and suppression of T cell immune function [12,13]. TGF-β1 is
secreted by fibroblasts, endothelial cells, airway epithelial cells, vascular, and ASM cells. However,
migrated inflammatory cells, such as eosinophils, are the rich source of fibrogenic factors, particularly
TGF-β1 [1,5]. TGF-β1 is involved in increased expression of ECM proteins, tissue fibrosis, mucus
production, as well as promotes the proliferation of ASM cells and fibroblasts [14–16]. It was shown
that TGF-β can act differently depending on the situation—it can be an anti- or pro-inflammatory
cytokine [17]. As an anti-inflammatory cytokine TGF-β is capable of regulating the proliferation and
activation of B and T lymphocytes, deactivating macrophages [18–20]. At the same time, TGF-β is known
for pro-inflammatory properties as it can participate in chemotaxis of eosinophils, T lymphocytes,
B lymphocytes, neutrophils, induce proliferation of fibroblasts, suppress apoptosis of eosinophils,
T lymphocytes, and neutrophils in asthma [17]. Additioally, TGF-β affects airway structural cells,
such as epithelial cells, ASM cells, and pulmonary fibroblasts [21]. Once structural cells are activated
the chain reaction of responses that lead to airway remodeling, including increased ECM production
starts via the activated TGF-β–Smad signaling pathway. However, little is still known regarding
the effect of eosinophils on the ASM cell production of main ECM proteins such as collagen I and
fibronectin. In our previous study, it was shown that WNT-5A ligands may be the key regulators of
increased ASM cell proliferation and gene expression of ECM proteins in ASM cells [22].

We hypothesized that allergen-activated eosinophils might more intensively affect gene expression
of ECM proteins as COL1A1 and FN in ASM cells via activated TGF-β1 signaling. For this purpose,
we used the bronchial allergen challenge for eosinophil activation in vivo.

2. Results

2.1. Characteristics of the Study Population

Twenty-three non-smoking adults (nine men and 14 women) were included in the study: 12 patients
with AA and 11 healthy subjects (HS). All study participants were non-smokers and with normal lung
function at baseline. No significant age and sex differences were documented when both groups were
compared. Atopy was demonstrated only in subjects with AA. At the baseline, AA patients had a
significantly higher peripheral blood eosinophil count compared with the HS. Twenty-four hours after
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bronchial allergen challenge blood eosinophil significant increase was only in AA patients, but not in
HS (Table 1).

Table 1. Demographical and clinical data of study subjects.

AA Patients, n = 12 HS, n = 11

Age, median (range), years 28.5 (20–44) 26.0 (23–42)
Sex, (male/female), n 4/8 5/6

BMI, kg/m2 22.4 ± 2.6 24.0 ± 5.1
Sensitization to D. pteronyssinus/D.

farinae/birch/five grass mixture allergen, n 12/11/2/4 NR

Wheel diameter by D. pteronyssinus, median
(range), mm 5 (3–8) NR

PD20M, geometric mean (range), mg 0.09 (0.007–0.260) NR
PD20A, geometric mean (range), IR/mL 6.684 (1.631–9.403) NR

Maximum fall in FEV1after bronchial allergen
challenge, mean % (min–max) –31.2 (−52.1–−22.4) −3.8 (−7.2–0.0)

FEV1, % of predicted 99.0 ± 5.73 102.0 ± 7.05
FEV1, L 3.69 ± 0.36 4.14 ± 0.54

Baseline 24 h after
allergen challenge Baseline 24 h after

allergen challenge
Blood eosinophil count, ×109/L 0.34 ± 0.11 * # 0.52 ± 0.30 # 0.15 ± 0.06 0.16 ± 0.04

Blood eosinophil count, % 7.08 ± 3.98 * # 8.63 ± 3.01 # 2.00 ± 1.05 2.51 ± 0.74
Sputum cell viability, %

(AA n = 9, HS n = 7) 70.5 ± 5.34 * # 79.9 ± 11.2 # 51.5 ± 14.9 57.5 ± 12.3

Sputum eosinophil count, %
(AA n = 9, HS n = 7) 5.5 ± 5.4 * # 13.3 ± 12.87 # 0.1 ± 0.2 0.5 ± 0.4

Data presented as a median (range), geometric mean (range), or mean ± SD. AA—allergic asthma; HS—healthy
subjects; BMI—body mass index; PD20M—a provocative dose of methacholine causing a 20% drop in FEV1; IR—index
of reactivity; PD20A—a provocative dose of allergen causing a 20% drop in FEV1; FEV1—forced expiratory volume
in one second; NR—not responding.* −p < 0.05 compared to the result 24 h after allergen challenge; # −p < 0.05
compared to the HS group at the same visit.

Only nine AA patients and seven HS sputum samples were evaluated, as samples with more than
20% of epithelial cells were excluded. Cell viability and eosinophil count were significantly higher at
the baseline in the AA group compared to the HS, p < 0.05. Allergen challenge significantly increased
sputum cells’ viability as well as eosinophil count in AA compared to baseline, p < 0.05 (Table 1).

2.2. TGF-β1 Expression in Eosinophils and Airway Smooth Muscle Cells

TGF-β1 expression was evaluated in blood eosinophils before and 24 h after bronchial allergen
challenge. TGF-β1 expression in asthmatic eosinophils was evaluated by folds over healthy eosinophils.
Expression of TGF-β1 was significantly increased in AA patients’ eosinophils compared to healthy
eosinophils, p < 0.001. Twenty-four hours after allergen challenge with Dermatophagoides pteronyssinus
(D. pteronyssinus) tendency remained as asthmatic eosinophils had significantly higher TGF-β1
expression compared to HS, p < 0.001. The gene expression was significantly higher 24 h after
bronchial allergen challenge for 1.58 ± 0.18 folds over non-activated asthmatic eosinophils, p < 0.05
(Figure 1) while allergen challenge with allergen did not affect TGF-β1 expression in healthy eosinophils
(data not shown).

Expression of TGF-β1 was significantly increased in ASM cells after incubation with AA eosinophils
compared to healthy eosinophils at the baseline, accordingly 4.23 ± 0.38 vs. 2.18 ± 0.44 folds over
control ASM cells, p < 0.05, and after in vivo eosinophil activation with specific allergen the effect
of asthmatic eosinophils to TGF-β1 expression in ASM cells was even stronger compared to effect
of healthy eosinophils, accordingly 7.16 ± 0.82 vs. 2.04 ± 0.26 folds over control ASM cells, p < 0.01
(Figure 2C). The allergen challenge significantly increased asthmatic eosinophil effect to TGF-β1
expression in ASM cells, accordingly 7.16 ± 0.82 vs. 4.23 ± 0.38 folds over control ASM cells, p < 0.05,
however, had no significant effect to HS eosinophils.
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Figure 1. TGF-β1 expression in asthmatic eosinophils before and 24 h after allergen challenge. Data
represented as mean ± SEM evaluated as folds over healthy subjects’ eosinophils and as folds 24 h after
allergen challenge over baseline asthmatic eosinophils. TGF-β1–transforming growth factor β1 gene;
n = 12, * p < 0.001 comparing with HS group; # p < 0.05 comparing with eosinophils before allergen
challenge, n = 12. Statistical analysis—Wilcoxon matched-pairs signed-rank test for analysis between
the dependent groups; Wilcoxon signed-rank test for analysis against control ASM cells.

Figure 2. COL1A1 (A), FN (B), TGF-β1 (C), and WNT-5A (D) expression in ASM cells after combined
culture with eosinophils before and 24 h after allergen challenge. Data represented as mean ± SEM
evaluated as folds over control ASM cells that were not incubated with eosinophils. AA—allergic asthma;
ASM—airway smooth muscle cells; COL1A1—collagen I A 1 gene; FN—fibronectin gene; HS—healthy
subject; RGDS—arginyl-glycyl-aspartyl-serine peptide (Arg-Gly-Asp-Ser); TGF-β1—transforming
growth factor β1 gene; WNT-5A—wingless/integrase-1-5A gene. * p < 0.05 compared to control ASM cells;
** p < 0.01 compared to control ASM cells; AA n = 12, HS n = 11. Statistical analysis—Mann–Whitney
U test for analysis between AA and HS; Wilcoxon matched-pairs signed-rank test for analysis between
the dependent groups; Wilcoxon signed-rank test for analysis against control ASM cells. Lines connect
comparison groups with p-value denoting the significant difference in pair-wise comparisons.
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2.3. TGF-β1 Concentration in Culture Supernatants

TGF-β1 concentration was significantly increased in supernatants after incubation with
asthmatic eosinophils before allergen challenge compared to healthy eosinophils, accordingly
1052 (772–1717) pg/mL vs. 662 (459–1061) pg/mL, p < 0.05. The same tendency was found 24 h
after challenge: allergen-activated eosinophils significantly increased the concentration of TGF-β1
in culture supernatants compared to healthy eosinophils, accordingly 1643 (1224–3160) pg/mL vs.
725 (606–1673) pg/mL, p < 0.05. The in vivo allergen-activated asthmatic eosinophils significantly
increased TGF-β1 concentration in culture supernatants compared to non-activated asthmatic
eosinophils, accordingly 1643 (1224–3160) pg/mL vs. 1052 (772–1717) pg/mL, p < 0.05. Data presented
in Figure 3.

Figure 3. TGF-β1 concentration in supernatants of control ASM cell culture, ASM cells with HS
eosinophils as well as ASM cells with AA eosinophils combined cultures before and 24 h after allergen
challenge. Data represented as median (range). AA—allergic asthma; ASM—airway smooth muscle
cells; HS—healthy subject; TGF-β1—transforming growth factor β1; control ASM cells that were not
incubated with eosinophils, AA n = 8, HS n = 7. Statistical analysis—Mann–Whitney U test for
analysis between control ASM cells, AA and HS; Wilcoxon matched-pairs signed-rank test for analysis
between the dependent groups. Lines connect comparison groups with p-value denoting the significant
difference in pair-wise comparisons.

2.4. WNT-5A Expression in Airway Smooth Muscle Cells

WNT-5A expression was significantly increased in ASM cells after incubation with asthmatic
eosinophils compared to healthy eosinophils at the baseline, accordingly 5.64 ± 0.99 vs. 1.76 ± 0.44
folds over control ASM cells, p < 0.01 (Figure 2D). The same tendency was 24 h after allergen challenge:
allergen-activated asthmatic eosinophils significantly increased WNT-5A expression in ASM cells
compared to HS eosinophils, accordingly 6.91 ± 0.25 vs. 2.26 ± 0.69 folds over control ASM cells,
p < 0.01. However, there was no statistically significant difference between allergen-activated and
non-activated asthmatic eosinophil effect to WNT-5A expression in ASM cells.

2.5. COL1A1 and FN Expression in Airway Smooth Muscle Cells

Before allergen challenge asthmatic eosinophils significantly increased COL1A1 and FN expression
in ASM cells compared to healthy eosinophils, accordingly 3.15 ± 0.36 vs. 1.64 ± 0.27 folds over
control ASM cells, p < 0.05, and 2.75 ± 0.59 vs. 1.35 ± 0.07 folds over control ASM cells, p < 0.05.
24 h after allergen challenge the similar tendency remained: allergen-activated asthmatic eosinophils
significantly increased COL1A1 and FN expression compared to healthy eosinophils, accordingly
5.70 ± 0.86 vs. 2.39 ± 0.37 folds over control ASM cells, p < 0.05; and 4.96 ± 0.76 vs. 1.73 ± 0.23 folds
over control ASM cells, p < 0.01; and compared to baseline result (for COL1A1 expression −5.70 ± 0.86
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vs. 3.15 ± 0.36 folds over control ASM cells, p < 0.05, and for FN expression −4.96 ± 0.76 vs. 2.75 ± 0.59
folds over control ASM cells, p < 0.05). Data presented in Figure 2A,B.

2.6. Suppression of Eosinophil Integrins with RGDS Peptide

Non-specific suppression of integrins on asthmatic eosinophil surface by incubating them with
arginyl-glycyl-aspartyl-serine (Arg-Gly-Asp-Ser) peptide (RGDS) significantly downregulated gene
expression of all four genes to healthy eosinophil gene expression level in ASM cells. Integrins’
suppression only affected asthmatic eosinophils—before and 24 h after bronchial allergen challenge on
all four—TGF-β1, WNT-5A, COL1A1, and FN-expression in ASM cells after incubation with eosinophils.
Gene expression was significantly downregulated before (accordingly COL1A1 3.15± 0.36 vs. 1.78± 0.21
folds over control ASM cells, p < 0.05; FN 2.75 ± 0.59 vs. 1.32 ± 0.08 folds over control ASM cells,
p < 0.05; TGF-β1 4.23 ± 0.38 vs. 2.51 ± 0.53 folds over control ASM cells, p < 0.05; WNT-5A 5.64 ± 0.99 vs.
2.87 ± 0.51 folds over control ASM cells, p < 0.05) and 24 h after allergen challenge (accordingly COL1A1
5.70 ± 0.86 vs. 1.69 ± 0.14 folds over control ASM cells, p < 0.01; FN 4.96 ± 0.76 vs. 1.61 ± 0.10 folds over
control ASM cells, p < 0.01; TGF-β1 7.16 ± 0.82 vs. 1.86 folds over control ASM cells, p < 0.01; WNT-5A
6.91 ± 1.86 vs. 2.32 ± 0.25 folds over control ASM cells, p < 0.05). However, the expression of selected
genes after the suppression of integrins on the eosinophil outer membrane remained significantly
higher compared to control ASM cells that were not incubated with eosinophil and did not differ from
the effect of healthy eosinophil (Figure 2A–D).

3. Discussion

In this study, we showed that eosinophil activation with D. pteronyssinus allergen in vivo increased
TGF-β1 gene expression in asthmatic eosinophils and enhanced their effect on TGF-β1, COL1A1, and FN
expression in ASM cells. However, asthmatic eosinophils increased WNT-5A expression in ASM cells
equally before and 24 h after bronchial allergen challenge. The addition of RGDS peptide reduced
asthmatic eosinophils effect on gene expression in ASM cells to a healthy eosinophils effect level.

AA is associated with eosinophilic airways inflammation [23]. The maturation of eosinophils is
activated in bone marrow, and they are recruited to the airways to cope with environmental triggers that
lead to inflammation. These processes are associated with type 2 inflammation as the airway epithelial
cells release alarmins such as interleukin (IL) 25, IL-33, and thymic stromal lymphopoietin (TSLP),
which activate innate and humoral immune system [24–27]. Inhaled allergens sensitize dendritic
cells that stimulate the proliferation of T helper type 2 (Th2) cells and subsequent release of cytokines
that include IL-4, IL-5, IL-13 [4,27]. IL-5 is crucial for eosinophils maturation in the bone marrow,
while other cytokines are responsible for eosinophils release to blood flow. CC chemokine receptor 3
(CCR3) on the outer eosinophil membrane and eotaxins regulates the migration to inflamed airway
tissues through permeable blood vessel walls [28–30]. Additionally, in the migration processes the
eosinophil outer membrane receptors and integrins play a critical role. It was shown that eosinophils
have various integrins, but the two heterodimers (αMβ2 and α4β1) are the most important integrins in
migration as they recognize the adhesion molecules of pulmonary structural cells and are dysregulated
in asthma [31]. In our previous publications, we showed that AA eosinophils had higher outer
membrane integrins αMβ2 and α4β1 gene expression compared to HS [27,32]. It shows that AA
eosinophils are more activated as the molecules that are responsible for adherence are upregulated,
and it helps eosinophils to migrate through the wall of vessels and continue the movement to bronchial
tissue interacting with pulmonary structural cells and ECM proteins. Previously we showed that
in vivo allergen-activated eosinophils demonstrate a higher adhesion, viability, and pro-proliferative
effect on ASM cells and pulmonary fibroblasts compared to non-activated eosinophils [33]. A possible
limitation of this study is that we used peripheral blood eosinophils instead of airway tissue eosinophils.
However, peripheral blood eosinophils taken before extravasation to lung tissues are already in an
active state.
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Remodeling and repair processes in the lung are associated with permanent structural and functional
changes in homeostatic cellular and physiological state. These processes include dysregulation of expression
and increased deposition of ECM proteins, cellular differentiation to more active cell subtypes, disbalance
of apoptosis and necrosis, increased cell proliferation [34]. Collagen I and fibronectin together are the
main ECM proteins that are responsible for cell behavior such as proliferation, increased survival under
stress, and migration [35–39]. Collagens are known to modulate cell behavior and function directly or via
interactions with integrins and growth factor-mediated mitogenic pathways [40]. COL1A1 codes collagen I
α chain molecule. Collagen I forms fibrils that are responsible for scarring and tissue repair. In asthma
studies, collagen I was shown to be accumulated more in asthmatic airways compared to healthy airways
and is associated with increased mass of ASM bundles [41]. Another ECM protein that changes cell
behavior is fibronectin. It was shown that fibronectin expression in asthmatic airways was higher than
in healthy airways [42]. However, it remains unclear if the ASM cells themselves are different, or the
inflammatory cells, such as eosinophils, act differently depending on the severity and type of asthma.
In the study, we showed that COL1A1 and FN expression in healthy ASM cells was increased after
incubation with asthmatic allergen-activated eosinophils compared to baseline (Figure 2A,B). It shows
that eosinophils are capable of changing ASM cell activity and increase gene expression of ECM proteins.
Additionally, the addition of RGDS peptide on activated eosinophil significantly downregulated the gene
expression of these ECM proteins (Figure 2A,B). However, the similar changes in the airways, only in vivo,
were shown in a study where several ECM proteins such as collagen I, fibronectin, elastin as well as
matrix metalloproteinases (MMP) 9 and 12 were increased in large and small airways during an autopsy
in fatal asthma patients [43]. The possible limitation of our study is that we evaluated the changes in
gene expression but not in the protein level. It is stated that the quantity of transcript may not always
correlate with the protein level. However, Antonis Koussounadis et al. in 2015 showed that differentially
expressed mRNA correlates significantly better with their protein product than non-differentially expressed
mRNA [44]. It means that under different conditions, for example comparing disease affected patients
with healthy subejcts, the changes in mRNA correlate with the protein level. In our study, the ASM cells
incubated with AA and HS eosinophils have significant differences in gene expression. Studies with
biopsies from asthmatic subjects showed that the gene expression as well as protein expression of TGF-β,
collagen I and fibronectin were significantly increased compared to HS [45–47]. Therefore, we suggest that
our study data, as well as this in vitro model, might be helpful in understanding the asthma pathogenesis
in vivo.

Integrins are α and β subunits containing cellular receptors found on cells’ outer membranes.
Cell–ECM and cell–cell interaction is generally controlled by integrins, and this interaction is required
not only for eosinophils rolling and tethering but also for their activation [48]. We previously
demonstrated that adhesion of eosinophils to pulmonary structural cells or ECM proteins increases
their viability [33]. Eosinophils express seven integrins heterodimers, and each type interacts with
its own set of ligands, which may be deposited in ECM or as a counter-receptor on other cells [31].
Eosinophils do not express RGD-binding integrins; however, several studies showed that in the
fully activated state of eosinophils, the α4β1 and αMβ2 integrins can recognize RGD motifs [48–51].
It is probably because integrins that do not bind via an RGD-motif on their ligands seem to have
RGD-binding structures within their ligand-binding pockets [52]. The linear form of RGD containing
peptides demonstrates very little selectivity among the integrin receptors [32]. We used RGDS peptide
to suppress the integrins and in that way reduce the intensity of eosinophil adhesion. [53]. Our study
showed that suppression of eosinophil integrins downregulated target gene expression; however,
it remained significantly higher than in control ASM cells. We presume that it may be caused by
increased TGF-β1 expression. In the previous study we showed that suppression of eosinophil integrins
with RGDS peptide reduced TGF-β concentration in combined cultures between ASM cells and
eosinophils [32]. However, TGF-β concentration remained significantly higher compared to the healthy
eosinophils effect. The way that the suppression of eosinophil integrins contributes to the TGF-β1
and ECM protein expression can be explained. Firstly, suppression may affect eosinophils viability
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due to decreased adhesive intensity. As the eosinophil lifetime is prolonged, it can produce various
mediators that participate in the promotion of gene expression, but the suppression of eosinophil
adherence reduces their viability thus reducing the possible impact for airway remodeling. Furthermore,
suppressed eosinophils may produce less mediators, proteinases, and reactive oxygen species (ROS)
leading to decreased activation of TGF-β1. However, this part needs to be clarified more in future
work. A possible limitation of the study is that residual RGDS that may be left after the washing step
could be added together with eosinophils into the culture well. The residual RGDS could bond to the
ASM cell integrins or expressed fibronectin, thus reducing the number of eosinophil attachment sites
and can bind to RGDS binding integrins on the ASM cell outer membrane thus changing cell behavior.
However, the residual amount of RGDS could not dramatically change results as the eosinophils were
washed several times.

TGF-β is a multifunctional cytokine that, depending on the disease, participates in stimulation
or inhibition of cell proliferation, controls ECM synthesis and degradation as well as cell and tissue
response to injury [54]. This cytokine is one of the key players in airway remodeling in asthma [55].
TGF-β is synthesized by inflammatory and lung structural cells—such as eosinophils, fibroblasts,
and ASM cells. TGF-β is a major mediator in asthma, and a number of secondary anti-inflammatory
effects result from the autocrine/paracrine actions of the TGF-β production. It was shown that TGF-β
transcription is regulated by p38, extracellular signal-regulated kinases (ERK), mitogen-activated
protein kinases (MAPK), and c-Jun N-terminal kinases (JNK) signaling pathways [56]. Eotaxins induce
eosinophil degranulation and release of biologically active mediators through the activation of ERK2
and p38 MAPK signaling [57]. In the previous study, we showed that the level of eotaxins was increased
in serum collected from AA patients compared to HS [27]. We presume that an increased level of
eotaxins induces TGF-β transcription in blood eosinophils. Furthermore, it was shown that the p38
and ERK signaling pathways are promoting TGF-β transcription as they are activated in asthmatic
ASM cells [58].

TGF-β is secreted as the latent complex that accumulates in ECM and requires activation to be
a functionally active molecule. The proteases such as MMP-2 and MMP-9, ROS, pH, and integrins
contribute to the liberation of active TGF-β from ECM. Eosinophils produce increased levels of
MMP-9, ROS as well as TGF-β in asthma [59–61]. Prolonged viability of eosinophils after migration to
airways and adhesion to ECM and/or ASM cells creates conditions for the secretion of mediators by
eosinophils [33]. It was shown that ASM cells can activate TGF-β1 via αVβ5 integrins—specifically
through the β5 cytoplasmic domain [62]. The expression of αVβ5 integrin heterodimer in ASM cells is
increased in asthma, and the blocking of this integrin prevents TGF-β activation. The TGF-β signaling
pathway is a complex mechanism of the phosphorylation of downstream Smad proteins, comprising
the receptor-regulated Smad 2/3, and the co-mediator Smad 4 and the inhibitory Smad 7. Activated
Smad complexes translocate to the nucleus to upregulate the transcription of ECM proteins genes such
as COL1A1 and FN through a Smad-dependent mechanism [54,63–65]. In the murine study model, it
was shown that the antibody of TGF-β1 prevents phosphorylation of Smad2 in prolonged allergen
challenge-induced asthma [66]. Additionally, the anti-TGF-β antibody resulted in the phosphorylated
Smad2 signaling inhibition, reduced mucus production, and ECM deposition in the airway wall, as
well as decreased ASM cell proliferation in mice [66]. These findings suggest that TGF-β may be
responsible for the increased expression of phosphorylated Smad2 in the airways of asthmatics in
humans also.

Previously, it was found that the TGF-β1 levels in serum of atopic asthma patients are increased
compared to non-atopic control subjects [67]. In the biopsies taken from asthmatic bronchi, it was
found that about 70–80% of all TGF-β expressing cells are eosinophils, showing the link between
TGF-β expression and airway inflammation [45,55]. In our study, we showed that allergen challenge
activates asthmatic eosinophils as the expression of TGF-β1 is significantly higher 24 h after allergen
challenge compared to baseline (Figure 1). The TGF-β1 protein concentration in culture supernatants
was significantly higher in those samples that were obtained from combined cultures between
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ASM cells and asthmatic eosinophils compared to the effect of healthy eosinophils (Figure 3).
Allergen-activated eosinophils significantly increased TGF-β1 concentration compared to baseline.
The TGF-β1 concentration in supernatants matched gene expression results. Previously, it was found
that in murine, the Th17 cells also play an important role at the asthma pathogenesis by producing
IL-17, IL-23, IL-25, which results in airway inflammation [68,69]. Studies revealed that the Th17 cells
number in human peripheral blood and mice lung tissue were increased after allergen challenge
with D. pteronyssinus [70,71]. The following study showed that eosinophils stimulation by IL-17A
and IL-17F promotes these cells to secrete TGF-β [72]. Allergen-activated eosinophils damage the
airways, and it leads to remodeling through various signaling pathways. One of these signaling
pathways is TGF-β1/WNT-5A. Wingless/Integrase-1 (WNT) is a signaling pathway associated with
normal various organ morphogenesis in embryogenesis and lung repair in adults. Some studies show
the WNT signaling pathway has an important role in asthma pathogenesis [22,73]. Several growth
factors, including TGF-β1, are responsible for non-canonical WNT-5A signaling pathway activation
through β-catenin directly as well as by autocrine increased production of WNT ligands. Still, it is not
known how WNT-5A signaling is changed during acute asthma, but there is an increased expression
of WNT-5A in asthmatic ASM cells. These changes have been linked to type 2 inflammation [74].
Additionally, it was shown that non-canonical WNT-5A signaling is important in TGF-β induced
ECM production by ASM cells in asthma [75]. In this study, we showed that asthmatic eosinophils
significantly increase WNT-5A expression in ASM cells (Figure 2D). As activated and non-activated
asthmatic eosinophil increased WNT-5A expression without significant differences in the asthma group,
we presume that the WNT-5A signaling pathway was not the major signaling pathway responsible for
changes in ASM cell activity.

TGF-β1 as multifunctional cytokine has an important role in immune and stem cell regulation
and differentiation, so it is a highly researched cytokine in the auto-immune, infectious diseases, as
well as in cancer fields. Additionally, TGF-β1 is one of the growth factors that play a significant role
in airway remodeling via increased ASM contractility and activity [76]. Burgess et al. showed that
using corticosteroids or long-acting β2-agonists did not suppress TGF-βmediated ECM production
in ASM cells [77]. Moreover, the corticosteroid itself may increase connective tissue growth factor
(CTGF), collagen I, and fibronectin production. Blood eosinophils from asthmatics have significantly
higher expression of TGF-β1 [78]. In the current study, TGF-β1 expression in asthmatic eosinophils
and in ASM cells that were incubated with allergen-activated eosinophils was significantly increased
(Figure 2C). This study shows that TGF-β1 may be the critical player in airway remodeling. Additionally,
we showed that allergen-activated eosinophil effects could be managed using a RGDS peptide that
non-specifically suppresses eosinophil adhesion to ASM cells and has a direct effect on them. Addition
of RGDS peptide downregulated expression of TGF-β1 in ASM cells (Figure 2C). We presume that
remaining increased gene expression in ASM cells is due to increased allergen-activated eosinophil
expression of TGF-β1.

Allergen-induced responses are associated with increased airway eosinophilia, which has been
measured in induced sputum samples from AA patients [79]. In our study, patients with AA had a
significantly greater sputum eosinophil count as well as increased blood eosinophil count at the baseline
compared to HS. Twenty-four hours after bronchial allergen challenge with D. pteronyssinus allergen
eosinophil count in sputum was significantly higher compared to asthma patients at the baseline
(Table 1). Additionally, one of the most important features of AA patients was increased sputum cell
viability that was significantly higher compared to HS, and after bronchial allergen challenge, viability
percentage was even higher. It means that in the airways, there is not only more migrated eosinophils,
but their apoptosis is reduced. In the previous study, we showed that blood eosinophils apoptosis
from AA patients and allergic rhinitis patients were significantly lower compared to HS [59]. Similar
results were shown in another study where asthma was phenotyping using sputum cell analysis or
looking at the associations between sputum eosinophils apoptosis level and asthma severity [80].
Recent studies reported that blood and sputum eosinophilia are important factors for the prediction of
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asthma exacerbations [81]. Based on our study data, we state that avoiding the allergen is a rational
part of an allergic asthma treatment plan that can help to reduce airway remodeling processes.

4. Materials and Methods

The research protocol was approved on 15 of November in 2016 by the Kaunas Regional Biomedical
Research Ethics Committee of the Lithuanian University of Health Sciences with permission no. BE-2-13.
The research study was registered in the US National Institutes of Health trial registry ClinicalTrials.gov
with identifier NCT03388359.

4.1. Study Subjects

The study group consisted of 12 AA patients and the controls—11 HS aged between 18 and 65
years. AA patients were recruited from the Department of Pulmonology, Hospital of the Lithuanian
University of Health Sciences. All study participants gave written informed consent. In the recruitment
stage, all subjects were screened: they underwent a clinical examination, spirometry, methacholine
challenge test, skin prick test, complete blood count.

The applied inclusion criteria for the AA group were inhaled steroid-free AA, approved with
disease-specific symptoms and medical history more than one year with the mild-to-moderate course
of the disease, positive skin prick test (≥3 mm) in response to house dust mites D. pteronyssinus, airway
hyper-responsiveness to methacholine.

The applied inclusion criteria for the HS group were no use of medications, negative skin prick
test; negative bronchial methacholine challenge test; no other chronic respiratory disease.

Exclusion criteria for both groups were defined as clinically significant permanent allergy
symptoms, asthma exacerbation, or active airway infection one month prior to the study; use of oral
steroids less than one month prior to the study; smoking.

4.2. Study Design

At the screening visit, inclusion/exclusion criteria were checked, and study subjects signed
informed consents. After that, spirometry, methacholine challenge, and skin prick tests were performed.
During the baseline visit, blood samples were collected, and bronchial allergen challenge with
D. pteronyssinus was performed. The second study visit was scheduled 24 h later, and blood samples
were re-taken.

A flow chart of the study design is presented in Figure 4.

4.3. Lung Function Testing

The lung function was evaluated according to baseline forced expiratory volume in 1 s (FEV1),
forced vital capacity (FVC), and FEV1/FVC ratio using a Ganshorn spirometer (Ganshorn Medizin
Electronic, Niederlauer, Germany). Baseline FEV1, FVC, as well as FEV1/FVC ratio, were recorded
as the highest result of three reproducible measurements and compared with the predicted values
matched for body height and weight, age, and sex according to the standardized methodology. Each of
these values were repeatedly measured three times, and only the highest value FEV1 was taken
for analysis.

4.4. Measurement of Airway Responsiveness to Methacholine

All study subjects underwent measurement of airway responsiveness to methacholine.
The methacholine and allergen challenge tests were performed with a pressure dosimeter (ProvoX,
Ganshorn Medizin Electronic, Germany). Aerosolized methacholine was inhaled with 2 min intervals
starting with 0.0101 mg methacholine dose, increasing it step by step up to 0.121, 0.511, 1.31 mg
of the total cumulative dose was achieved either until a 20% decrease in FEV1 from the baseline.
The bronchoconstricting effect of methacholine after each dose was expressed as a percentage of
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decrease in FEV1 from the baseline values. The provocative dose of methacholine causing a ≥ 20% fall
in FEV1 (PD20M) was calculated using the log dose-response curve by linear interpolation of the two
adjacent data points.

Figure 4. The flowchart of the study design: recruitment of study subjects, clinical examination,
and experimental workflow. TGF-β1—transforming growth factor β1; TGF-β1—transforming
growth factor β1 gene; WNT-5A—wingless integrase-1 5A gene; COL1A1—collagen I alpha 1 gene;
FN—fibronectin; ASM—airway smooth muscle cells; RGDS—arginyl-glycyl-aspartyl-serine peptide
(Arg-Gly-Asp-Ser); qRT-PCR—quantitative reverse transcription polymerase chain reaction.

4.5. Skin Prick Test

All study subjects were screened for allergies using standardized allergen extracts (Stallergenes
S.A., Antony, France) by the skin prick test for the following allergens: D. pteronyssinus, D. farinae,
cat and dog dandruff, five mixed grass pollen, mugwort allergen, birch pollen, Alternaria, Aspergillus,
and Cladosporium. As a positive control, the histamine hydrochloride (10 mg/mL) was used, negative
control—diluent (saline). The skin prick test was evaluated 15 min after application. The results of



Int. J. Mol. Sci. 2020, 21, 1837 12 of 19

the test were considered as positive if the wheel diameter was ≥ 3 mm. Only patients sensitized to D.
pteronyssinus were included in the study.

4.6. Bronchial Allergen Challenge

All study subjects underwent bronchial allergen challenge with D. pteronyssinus allergen
(Stallergenes S.A., Antony, France). The allergenicity of allergen was evaluated by the index of
reactivity (IR), which is not comparable to the other allergen units. First of all, the bronchoconstricting
effect of nebulized saline was assessed, and after that aerosolized allergen was inhaled at 10-min
intervals starting with 0.1 index of reactivity (IR) allergen concentration, increasing it step by step up
to 1.0 IR/mL, 10.0 IR/m, 33.0 IR/mL, or a 20% decrease in FEV1 from the baseline was achieved.

4.7. Isolation of Eosinophils from Peripheral Blood

Peripheral blood was collected in dipotassium ethylenediaminetetraacetic acid (K2EDTA)
vacutainers (BD Vacutainer®, Becton Dickinson U.K. ltd, Wokingham, UK) before and 24 h after
bronchial allergen challenge. Samples were diluted 1:1 by adding 1× phosphate buffer saline (PBS).
Then, the suspension was centrifuged using density gradient centrifugation as it was carefully
layered over Ficoll-Paque (ρ = 1.077 g/mL) in tubes and centrifuged at 400 g for 30 min at 20 ◦C
(Labmaster®ABC-CB200R, HANLAB Ltd., Cheongju, Korea). A top layer with mononuclear cells was
removed. Granulocytes were separated using hypotonic lysis of erythrocytes. Later, the granulocytes
pellet was resuspended in cold MACS buffer and incubated with Biotin-Antibody Cocktail as well
as Micro-Beads for magnetic eosinophil separation from granulocytes using the manufacturer’s
protocol (Miltenyi Biotec, Somerville, MA, USA). The manufacturer states and confirms that the
eosinophils separation kit does not influence eosinophils viability, and separation efficiency is
more than 97%. Eosinophils were counted using an automatic cell counter ADAM (Witec AG,
Sursee, Switzerland)—eosinophils viability was found to be at least 98%.

The complete blood count test was performed on an automated hematology analyzer (Sysmex
XE-5000, Sysmex Corporation, Kobe, Japan).

4.8. Airway Smooth Muscle Cell Culture

Healthy human ASM cells, immortalized by stable expression of human telomerase reverse
transcriptase (hTERT), as described previously [82], were used for experiments. For all experiments,
the same hTERT ASM cell line was used, thus avoiding changes in ASM activity and viability
that could result from repeated thawing and passage. Cells were cultivated on plastic dishes
with standard culture conditions of 5% CO2 in air at 37 ◦C with medium renewal every 48–72 h.
For all experiments, cells were grown on plastic dishes in Dulbecco’s modified Eagle medium (DMEM)
(GIBCO®; Life Technologies, Paisley, UK) supplemented with streptomycin/penicillin (2% v/v; GIBCO®;
Life Technologies), amphotericin B (1% v/v; GIBCO®; Life Technologies), and fetal bovine serum (FBS)
(GIBCO®; Life Technologies). Cells were serum-deprived in DMEM supplemented with antibiotics and
insulin, transferrin, and selenium (ITS) reagent (GIBCO®; Life Technologies) before each experiment
to stop ASM cell proliferation and avoid possible errors in gene expression analysis due to the effects
of mediators of FBS in the growth medium.

4.9. Combined Culture of Airway Smooth Muscle Cells and Eosinophils

Isolated eosinophils were separated into two parts: one part was used as control eosinophils
before and 24 h after allergen challenge; another part of eosinophils was used for experiments with
eosinophil integrins suppression peptide arginine-glycine-aspartate-serine (Arg-Gly-Asp-Ser, RGDS by
Sigma Aldrich, Merck KGaA, St. Louis, MS, USA) (Figure 4). Respectively, the amount of eosinophils
suspended in the serum-free growth medium was taken, and the solution of RGDS was added to the
final concentration of 0.125 mg/mL. Freshly isolated eosinophils with RGDS were incubated for 1 h at
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37 ◦C. After incubation eosinophils were centrifuged, the serum-supplemented growth medium was
removed and resuspended in a fresh serum-free growth medium.

For ASM cells, cultivation dishes with approximately 2 × 105 cells were prepared, and combined
cultures were made by adding suspension with 0.5 × 105 isolated viable eosinophils to the ASM
cells. To observe and visualize the cell growth, an inverted microscope (CETI Inverso TC100; Medline
Scientific, Oxford, UK) was used.

The combined cultures of ASM cells and eosinophils were incubated for 24 h. After incubation,
eosinophils were washed out using warm PBS ×1 (GIBCO, Life Technologies) incubating co-cultures
for 5 min at 36.6 ◦C and gently tapping on dish sides. ASM cells were then collected and lysed for gene
expression analysis.

4.10. RNA Isolation and Quantitive Real-Time PCR Analysis

For gene expression, the eosinophils were separated from ASM cells after 24 h of incubation. Total
ribonucleic acid (RNA) was isolated according to the manufacturer’s instructions using the miRNeasy
Mini Kit (Qiagen, Valencia, CA, USA). Quantitive real-time polymerase chain reaction (qRT-PCR) was
performed in the 7500 Fast Real-Time PCR System using a PowerSYBR®Green RNA-to-CT™ 1-Step
Kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s protocol.

Primers that were used to analyze gene expression are shown in Table 2.

Table 2. Sequences of primers used for gene expression analysis.

Gene Forward 5′-3′ Reverse 5′-3′

18S CGCCGCTAGAGGTGAAATTC TTGGCAAATGCTTTCGCTC
WNT-5a GGGTGGGAACCAAGAAAAAT TGGAACCTACCCATCCCATA
TGF-β1 GTACCTGAACCCGTGTTGCT GAACCCGTTGATGTCCACTT
COL1A1 TCGAGGAGGAAATTCCAATG ACACACGTGCACCTCATCAT

FN AGCCAGCAGATCGAGAACAT TCTTGTCCTTGGGGTTCTTG

4.11. The Concentration of TGF-β1 in Culture Supernatants Analysis

For TGF-β1 protein concentration in culture supernatants the Quantikine ELISA kit for Human
TGF-β1 (R&D Systems®, Minneapolis, MN, USA) was used according to the instructions provided by
manufacturers. The mean of the minimum detectable dose is 4.61 pg/mL. The TGF-β1 concentration
was evaluated in control ASM cell culture supernatants; ASM cells and asthmatic eosinophils as well
as ASM cells and healthy eosinophils cultures’ supernatants before and 24 h after bronchial allergen
challenge. As the manufacturer notes, the Sample Activation Kit was used. The optical density was
determined within the 30 min using a microplate reader set to 450 nm and for wavelength correction,
the 540 nm wavelength was set to correct the optical imperfections in the plate. Every sample was
done in two replicates. The results are shown as the median (range).

4.12. Sputum Induction, Processing, and Cell Analysis

The prepared sputum cytospins samples of induced sputum were prepared using a cytofuge
instrument (Shandon Southern Instruments Inc, Sewickley, PA, USA) were stained by the
May-Grünwald-Giemsa method for differential cell counts. Viability was calculated using ADAM-MC
Automatic Cell Counter (NanoEnTek Inc, Mountain View, CA, USA). Cell differentiation was determined
by counting approximately 500 cells in random fields of view under a light microscope, excluding
squamous epithelial cells in four replicates. All samples with more than 20% of squamous epithelial
cells were eliminated. The cells were identified by standard morphological criteria, nuclear morphology,
and cytoplasmic granulation. Cell counts were expressed as percentages of total cells.
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4.13. Statistical Analysis

Statistical analysis was performed by using GraphPad Prism 6 for Windows (Version 6.05, 2014;
GraphPad Software, Inc., San Diego, CA, USA). The normality assumption of data was verified
using the Shapiro–Wilks test. All the data were distributed not normally and were presented as
the mean and standard error of the mean (SEM) or standard deviation (SD). The concentration of
TGF-β1 in culture supernatants was presented as the median (range). Nonparametric tests were used
because of a skewed distribution of the variables. The differences between two independents in data
before and after bronchial challenge independent groups were evaluated for statistical significance
by the Wilcoxon matched-pairs signed-rank test for analysis between dependent groups. Differences
between two independent groups were evaluated using the Mann–Whitney U test for analysis between
groups. Wilcoxon signed-rank test was used for gene expression analysis against the control ASM cells.
Statistical significance was assumed when p < 0.05.

5. Conclusions

Increased activity and prolonged viability of eosinophils caused by allergens is one of the main
causes of airway remodeling in AA. TGF-β1 is the key regulator of airway structural cells’ function
and production of ECM proteins, including collagen I and fibronectin. Increased TGF-β1 expression
in allergen-activated asthmatic eosinophils are responsible for increased TGF-β1, COL1A1, and FN
expression in ASM cells. Suppression of allergen-activated eosinophil integrins downregulates
TGF-β1, COL1A1, and FN expression in ASM cells to the healthy eosinophil effect level showing that
eosinophils might affect and change ASM cell behavior directly via integrins as well as indirectly via
eosinophil-derived TGF-β1.
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Abbreviations

AA Allergic asthma
ASM Airway smooth muscle
BMI Body mass index
CCR3 CC chemokine receptor 3
COL1A1 Collagen I alpha 1 gene
CTGF Connective tissue growth factor
DMEM Dulbecco’s Modified Eagle Medium
DTT Dithiothreitol
ECM Extracellular matrix
ELISA Enzyme-linked immunosorbent assay
ERK Extracellular signal-regulated kinases
FBS Fetal bovine serum
FEV1 Forced expiratory volume in one second
FN Fibronectin gene
FVC Forced vital capacity
GM-CSF Granulocyte-macrophage colony-stimulating factor
HS Healthy subjects
hTERT Human telomerase reverse transcriptase
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IL Interleukin
IR Index of reactivity
ITS Insulin-Transferrin-Selenium
JNK c-Jun N-terminal kinases
K2EDTA Ethylenediaminetetraacetic acid
MAPK Mitogen-activated protein kinases
mRNA Messenger ribonucleic acid
MMP Matrix metalloproteinase
qRT-PCR Quantitative real-time polymerase chain reaction
PBS Phosphate buffer saline
PD20A The provocative dose of allergen causing a 20% drop in FEV1
PD20M The provocative dose of methacholine causing a 20% drop in FEV1
RGDS Arginyl-glycyl-aspartyl-serine peptide (Arg-Gly-Asp-Ser)
ROS Reactive oxygen species
RNA Ribonucleic acid
SD Standard deviation
SEM Standard error of the mean
TGF-β1 Transforming growth factor β1 gene
TGF-β1 Transforming growth factor β1
TSLP Thymic stromal lymphopoietin
WNT-5A Wingless integrase-1 5A gene
WNT-5A Wingless integrase-1 5A
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