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Abstract
We present a new wave-type model of saltatory conduction in myelinated axons. Poor conductivity in the neuron cytosol 
limits electrical current signal velocity according to cable theory, to 1–3 m/s, whereas saltatory conduction occurs with a 
velocity of 100–300 m/s. We propose a wave-type mechanism for saltatory conduction in the form of the kinetics of an 
ionic plasmon-polariton being the hybrid of the electro-magnetic wave and of the synchronized ionic plasma oscillations in 
myelinated segments along an axon. The model agrees with observations and allows for description of the regulatory role 
of myelin. It explains also the mechanism of conduction deficiency in demyelination syndromes such as multiple sclerosis. 
The recently observed micro-saltatory conduction in ultrathin unmyelinated C fibers with periodic ion gate clusters is also 
explained.
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Introduction

Na+/K+-ATPase plays a central role in the mechanism of 
action potential (AP) formation at nodes of Ranvier along 
myelinated axons (Debanne et al. 2011; Hodgkin and Huxley 
1952). Sodium and potassium selective pores that span cell 
membranes function to conduct sodium and potassium ions 
down their electrochemical gradient, doing so both rapidly 
(up to the diffusion rate of these ions in bulk water) and 
selectively (despite the sub-angstroms difference in ionic 
radius). In neurons, the sodium channels are responsible for 
the rising phase of AP, whereas the delayed counterflow 
of potassium ions shapes the AP (FitzHugh 1961). Before 
an AP occurs, the axonal membrane is at its normal rest-
ing potential, ca. − 70 mV and Na+ channels are in their 

deactivated state. In response to an increase of the mem-
brane potential to about − 55 mV, the gates rapidly open, 
allowing sodium ions to flow into the neuron through the 
channels, and causing the voltage across the neuronal mem-
brane to increase to + 30 mV (in human neurons). Because 
the voltage across the membrane is initially negative, as its 
voltage increases from − 70 mV at rest to a maximum of 
+ 30 mV, it is said to depolarize. This increase in voltage 
constitutes the rising phase of an AP. The resting concentra-
tion of sodium ions inside a neuron cell is ca. 10 mM and 
ca. 140 mM outside, thus the opening of Na+ channels in the 
neuron membrane causes a rapid diffusive inflow of these 
ions to the neuron cytosol according to the concentration 
gradient across the membrane. Next, with some time retar-
dation inter-membrane channels for K + ions also open. The 
concentration of potassium ions at the rest state is opposite 
to sodium ions and equals ca. 140 mM inside a neuron cell 
and ca. 4 mM outside. Such a gradient of K + ions causes 
the diffusive influx of potassium through now opened K + 
channels across the membrane and the neuron repolarizes 
itself. The related decrease in voltage constitutes the fall-
ing phase of the AP. The formation of the AP spike can be 
mathematically modeled by the Hodgkin–Huxley (HH) for-
malism (Hodgkin and Huxley 1952) by a system of mutually 
coupled nonlinear differential equations that approximates 
the electrical characteristics of excitable neuron cells with 
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electrically gated sodium and potassium channels across the 
cellular membrane. Due to the nonlinearity of the whole 
system the input signal to the block of ionic gates (as at the 
nodes of Ranvier along the myelinated axon) initiates the 
rapid increase of the trans-membrane electrical polarization 
which saturates at a constant its value shaping the AP spike. 
The input must be however larger than some threshold volt-
age, otherwise the response of the ion gate block does not 
occur (which follows from the Hopf bifurcation theorem for 
nonlinear differential equation systems). Such a behavior 
is called the all-or-none principle. Various modifications 
of HH models have been developed to include additional 
effects like e.g., leakage of ions due to the natural perme-
ability of the membrane to ions beyond the voltage-gated 
channels, or in more detail, complex geometries of dendrites 
and axons, thermodynamic (Forrest 2014) and stochastic 
effects (Pakdaman et al. 2010) and others. Several simpli-
fied neuronal models have been also proposed (such as the 
FitzHugh–Nagumo model FitzHugh 1961; Nagumo et al. 
1962), facilitating efficient large-scale simulation of groups 
of neurons, as well as mathematical insights into dynam-
ics of action potential generation. In the HH model and its 
developed versions, both sodium and potassium channels are 
taken into account via coupled and mutually time retarded 
coupled nonlinear differential equations, which allow for the 
deriving of a perfect shape and size of the AP spike at the 
node of Ranvier on the time scale of 1 ms. On the longer 
time scale (of order even of 1 s) Na+/K+-ATPase restores 
the steady state of the Ranvier node. This latter phase of 
AP formation costs energy. For each ATP molecule a net 
single positive ion is transported outside the neuron to the 
surroundings restoring the steady polarization of the neuron 
membrane, − 70 mV.

Despite a realistic model for the AP spike formation at 
nodes of Ranvier (Hodgkin and Huxley 1952), the transduc-
tion of the igniting signal between consecutive nodes of Ran-
vier is not well described as of yet. The cable model [origi-
nated by William Thomson (the Lord Kelvin) to describe 
submarine cables (Thomson 1854)] of ion diffusion through 
the myelinated segment is ineffective because the upper limit 
of the velocity of this diffusion is by 1–2 orders of mag-
nitude lower than the observed velocity. The cable model 
describes well the slow charge kinetics in dendrites (Rall 
et al. 1992; Rall 1989) and in nonmyelinated axons (Rall 
1977; Jack et al. 1983; Cooley and Dodge 1966; FitzHugh 
1973), being typically lower than 1 m/s, whereas the sig-
nal velocity in myelinated axons reaches 100–300 m/s, and 
reducing it by even only 10% prevents functionality of an 
organism. The mechanism behind these kinetics is appar-
ently beyond diffusion transport described in cable theory 
and is referred to as saltatory conduction because transduc-
tion of the initial signal between nodes of Ranvier resembles 
almost instant saltation of the voltage along the myelinated 

segment, something absolutely unreachable for ordinary dif-
fusion of ions according to cable theory. Moreover, there is 
evidence that the saltatory conduction has a wave type char-
acter. This conduction is maintained even if several nodes 
of Ranvier are damaged or the axon is broken into two parts 
with ends separated by a small break. This absolutely pre-
cludes the diffusion type current conduction because it is 
impossible for this to be maintained despite the break and 
indicates that the saltatory conduction must be of a wave 
type nature, which allows for jumping across small breaks 
and continuation of the travel despite damage and inactiva-
tion of several nodes of Ranvier (Debanne et al. 2011).

We propose a new model of saltatory conduction in the 
form of ionic plasmon-polariton dynamics, i.e., of collec-
tive synchronized ion oscillations in myelinated segments 
propagating as a wave along the periodically myelinated 
axon. The model takes advantage of the ion analogue to elec-
tron plasmon-polaritons in metallic linear periodic systems 
(Pitarke et al. 2007; Citrin 2004). Plasmons are collective 
fluctuations of the charge distribution, in metals—of mobile 
electron clouds (Maier 2007), in liquid electrolytes—of ion 
clouds (Jacak 2015b). In equilibrium states, the metals or 
electrolytes are neutral due to a perfect balance of opposite 
sign charges, but in excited states, some local polarization 
of charge clouds may oscillate and these oscillations are 
called plasmons (Pines 1999). A uniform movement of one 
sign charges with respect to oppositely signed ones results 
in surface plasmons in the case of finite systems (metal-
lic particles or electrolytes confined by membranes) where 
imbalanced charge fluctuations occur only on the system 
boundaries (Maier 2007). Surface plasmons have a lower 
frequency (lower energy) than their volume nonuniform 
counterparts and in noble metallic nanoparticles the sur-
face plasmon frequencies are located in the range of vis-
ible light (Maier 2007; Barnes et al. 2003). For confined 
electrolytes the frequency of ionic plasmons can be much 
lower because of ca. 104 times larger masses of ions than of 
electrons and orders of magnitude lower ion concentration 
in electrolytes in comparison to electrons in metals (Jacak 
2015b). The lower energy of ionic plasmons may fit with 
the energy scale of living bio-matter and might play a role 
in signaling at the cellular level of bio-matter organization. 
Of particular interest would be so-called plasmon-polari-
tons, which are synchronized surface plasmon oscillations 
in periodic arrangements of finite plasmonic systems with 
mobile charges (Barnes et al. 2003; Brongersma et al. 2000). 
Surface plasmon oscillations in each segment of their linear 
alignment, let us say of a chain of metallic nanoparticles 
or of a chain of ionic systems, interact between themselves 
mostly due to dipole interaction via the electromagnetic 
(e-m) field induced by local dipoles of plasmons oscillat-
ing in segments. As a result, a coherent plasmon oscilla-
tion arises in all segments synchronized by their mutual 
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e-m interaction, which propagates as a wave along a chain 
of plasmonic elements. This wave can transmit the energy 
and information and is called the plasmon-polariton (Pitarke 
et al. 2007; Berini 2009). No net electrical current is carried 
by plasmon-polariton waves but the transmission of a signal 
(as of a voltage of the local plasmon polarization) is similar 
as for ordinary electrical current. The group velocity of wave 
packets of plasmon-polaritons exceeds usually the velocity 
of carriers in ordinary charge currents. Thus the commu-
nication by plasmon-polaritons in periodic alignments of 
plasmonic segments will be more effective and quicker in 
comparison to diffusion-like charge currents.

The periodicity of a linear alignment of plasmonic seg-
ments is an unavoidable prerequisite for the organization of 
the plasmon-polariton dynamics. Therefore, the periodically 
myelinated axons with segments separated by small nodes 
of Ranvier are good candidates for the plasmon-polariton 
communication. In the present paper we will describe and 
analyze ionic plasmon-polariton kinetics in such neurons in 
order to explain the very quick so-called saltatory conduc-
tion in myelinated axons in a development of former ideas 
from the author (Jacak 2015c). The supporting argument for 
a new concept of signaling in periodically corrugated axons 
via plasmon-polariton propagation has arisen recently due to 
the discovery of periodicity in the distribution of ion gates 
along nonmyelinated thin C-fibers of peripheral axons trans-
mitting nociceptive pain sensations (Neishabouri and Faisal 
2014). The clustering of Na+ channels on lipid rafts periodi-
cally distributed along C-fibers resembles the structure of 
nodes of Ranvier in myelinated axons and also allows for 
plasmon-polariton communication with high speed, which 
can explain the quick and effective so-called micro-saltatory 
conduction in C-fibers.

The subject of this paper meets with a recent large 
increase in interest and advances in plasmonics and of plas-
mon-polariton kinetics in metallic nano-systems and aston-
ishing opportunities for subdiffraction light manipulations 
by plasmon excitations in nanoscale metallic components 
(Barnes et al. 2003), which caused the related rapid devel-
opment of the new field of nanoplasmonics that overlaps 
with many possible applications of nanophotonics and sub-
diffraction opto-electronics (Brongersma et al. 2000; Maier 
2007; de Abajo 2010; Barnes et al. 2003; Pitarke et al. 2007; 
Berini 2009).

Plasmons in metals correspond to oscillations of local 
charge density of electrons with respect to positive jellium. 
This effect is quantum in nature, because the coherent move-
ment of all charge carriers is conditioned by their mutual 
repulsion and cannot be understood classically. The suc-
cessful quantum description of this phenomenon has been 
provided by Pines (1999) in the form of a random phase 
approximation (RPA) approach. A similar plasmon effect 
concerns also electrolytes with charge carriers in the form of 

ions instead of electrons (Jacak 2015b). Ca. 104 times larger 
masses of ions in comparison to electrons and the concentra-
tion of ions in electrolytes much lower than of electrons in 
metals highly reduce the energy of ion plasmons to a scale 
which fits the energy scale of bio-systems. Similarly, the 
plasmonic size featured by a strong radiation of plasmons is 
shifted from the nano-scale for electrons to micrometer scale 
for ions, again just as for the scale of bio-cell organization. 
The RPA model of ion plasmons has been developed (Jacak 
2015b) including the application to synchronized plasmon 
oscillations in linear periodic alignments of electrolytes con-
fined by membranes (Jacak 2015c) in analogy to plasmon-
polaritons in metallic nano-chains (Brongersma et al. 2000; 
Maier and Atwater 2005; Pitarke et al. 2007; Huidobro et al. 
2010; Citrin 2004; Jacak 2013, 2014; Jacak et al. 2015).

The paper is organized as follows. In the next paragraph, 
the insufficiency of the cable theory to explain the saltatory 
conduction in myelinated axons is demonstrated. Next, the 
main idea of the new concept for the saltatory conduction 
in the form of wave type propagation of ionic synchronized 
plasmon oscillations, called plasmon-polaritons, in myeli-
nated segments of an axon is presented. This paragraph is 
followed by the rigorous mathematical formulation of plas-
mon-polariton dynamics in linear alignments of a confined 
electrolyte system and the velocity of an ionic plasmon-
polariton is derived. Next the fitting of the physical model 
to real chemical parameters and the geometry of neurons is 
analyzed. In the following paragraph the role of the thick-
ness of the myelin sheath is considered and a suitable model 
for a control mechanism over the saltatory conduction is 
demonstrated. Finally, the model developed for a wave type 
propagation of the signal along the periodic structure of 
C-axons, very thin and long unmyelinated peripheral axons 
responsible for transmitting nociceptive pain sensations, is 
proposed upon the plasmon-polariton model of the related 
micro-saltatory conduction in good agreement with recent 
experimental observations. The new wave type model of 
neuron signaling in periodic corrugated axons is placed in 
the context of real neuronal system behavior both in the cen-
tral and the peripheral human nervous systems. A review of 
the conventional cable theory model as a limiting diffusive 
regime for lengthy transmission that neglects inductance 
given in the Supplementary Information.

Insufficiency of the cable theory to explain 
the saltatory conduction

Signal kinetics in dendrites or unmyelinated axons is well 
described by cable theory (Ermentrout and Terman 2010; 
Dayan and Abbott 2001; Izhikevich 2007) (for short deriva-
tion cf. Supplementary Information). Upon this theory the 



346	 European Biophysics Journal (2020) 49:343–360

1 3

velocity of a signal is characterized by vc =
�

�
=

√
G

C
√
R
 , where 

C is the capacity across the neuron cell membrane per unit 
of the axon length, G is the conductance across the mem-
brane and R is the longitudinal resistance of the inner cyto-
sol, both per unit of the neuron filament length, and � and � 
are space and time diffusion ranges defined in the cable 
model (Ermentrout and Terman 2010; Dayan and Abbott 
2001; Izhikevich 2007; Debanne et al. 2011; Thomson 1854; 
Brzychczy and Poznański 2011). The velocity vc scales as √
d with the dendrite (axon) diameter, d, because C ≃

�0��d

�
 , 

1∕G ≃
�1�

�d
 and R ≃

4�

�d2
 , where � is the cell membrane thick-

ness, � is the longitudinal resistivity of the inner cytosol and 
�1 is the resistivity across the membrane. For example values 
of the membrane capacity per surface unit, cm = 1 μF/cm2 , 
�1� = 20,000 Ω cm2 , � = 100 Ω cm and the diameter of the 
cable d = 2 μ m, one gets vc ≃ 5 cm/s (Ermentrout and Ter-
man 2010).

Due to presence of a myelin sheath in myelinated axons, 
both the capacity and conductance across the myelinated 
membrane are reduced, roughly inversely proportional to the 
myelin layer thickness. Thus, the cable theory velocity, 
∼

√
G

C
√
R
 , grows ca. 10 times if the capacitance and conduct-

ance lower ca. 100 times. This is, however, still too low to 
match observations of kinetics in myelinated axons (Ermen-
trout and Terman 2010; Dayan and Abbott 2001; Izhikevich 
2007; Scurfield and Latimer 2018; Fribance et al. 2016; 
Richardson et al. 2000; Waxman and Bennett 1972; Gold-
man and Albus 1968; Moore et al. 1978; Debanne et al. 
2011; Song et al. 2019). Moreover, the activity of nodes of 
Ranvier slows down the overall velocity of the discrete dif-
fusion in the myelinated internodal segments to the level of 
factor 6 instead of 10 (Ermentrout and Terman 2010). For 
realistic axons with d ∼ 1 μ m the assessed cable theory 
velocity gives ca. 3 m/s instead of 100 m/s observed in such-
size myelinated axons in the peripheral human nervous sys-
tem (PNS). A similar inconsistency in the cable model esti-
mations is encountered in human central nervous system 
(CNS) with thinner myelinated axons of d ∈ (0.2, 1) μ m 
(Scurfield and Latimer 2018).

To model larger velocities upon the cable theory accom-
modated to myelinated axons, much thicker axons are 
assumed with longer internodal distances, because upon the 
discrete diffusion model (Ermentrout and Terman 2010), the 
velocity in a myelinated axon, vm ≃

√
l

d0
vc , where l is the 

length of internodal segments and d0 is the length of the 
node of Ranvier. For instance, in Scurfield and Latimer 
(2018) and Richardson et al. (2000) d0 = 10 μ m (and greater) 
and l = 1150 μ m (and greater) have been assumed to gain 
the velocity of the AP transduction, vm ∼ 40 m/s (cf. also 
Waxman and Bennett 1972; Goldman and Albus 1968; 
Moore et al. 1978; Song et al. 2019), i.e., they are ca. ten 

times larger in dimension than the actual myelinated axons 
of a human. It is thus clear that the cable model is not effec-
tive in modeling the observed quick saltatory conduction in 
myelinated axons (Debanne et al. 2011; Richardson et al. 
2000; Keener and Sneyd 2009; Izhikevich 2007; Scurfield 
and Latimer 2018; Dayan and Abbott 2001; Fribance et al. 
2016; Waxman and Bennett 1972; Goldman and Albus 
1968; Moore et al. 1978; Song et al. 2019). The velocity 
predicted upon the discrete cable model for realistic axon 
parameters is by at least one order of magnitude smaller than 
observed.

Combining the Huxley–Hodgkin (HH) mechanism at 
nodes of Ranvier with the cable model diffusion at inter-
nodal myelinated segments results in the estimation of the 
AP propagation velocity (Waxman and Bennett 1972; Moore 
et al. 1978) only ca. six time greater than in unmyelinated 
axons with the same geometry (Ermentrout and Terman 
2010; Dayan and Abbott 2001; Izhikevich 2007), despite the 
reducing of the intercellular capacity and conductivity by 
the myelin sheath. The simplified formula for this velocity 
mentioned above (for iterative discrete diffusion model 
Ermentrout and Terman 2010) gives vm ∼

√
l

d0
 , and since 

d0 is often 1 μ m and l is around 100 μ m, the increase in 
velocity of myelinated axons can be almost 10 times that of 
unmyelinated axons [more precisely the factor is closer to 6 
(Ermentrout and Terman 2010)].

The velocity of the AP transduction must maintain a 
high value because deviation by 10% end bodily function 
(Scurfield and Latimer 2018). Continued mathematical 
attempts to optimize a model of the HH mechanism mixed 
with cable theory (Waxman and Bennett 1972; Moore et al. 
1978; Ermentrout and Terman 2010; Dayan and Abbott 
2001; Izhikevich 2007) in order to obtain a sufficiently high 
AP velocity in myelinated axons has not been successful 
over a long time, which strongly suggests that the way to 
understand the saltatory conduction must be linked with a 
different physical mechanism rather than any version of the 
cable theory of ion diffusion.

The cable theory is in fact the conventional model of a 
line of transmission widely applied in electronics and com-
munication science. The derivation of the cable model is 
presented in Supplementary Information.

The diffusion of ions according to cable theory is too slow 
to explain the rapid saltatory conduction along myelinated 
segments of axons. Apparently, a different mechanism for 
this conduction is required beyond local diffusion. We pro-
pose such a new approach by synchronized oscillations of 
local ion density, which can propagate along the periodically 
myelinated axon in the form of a wave plasmon-polariton, 
very well-known from the similar phenomenon in metal-
lic periodic linear systems. The mathematical model of a 
plasmon polariton will be described in the following section 
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based on the analysis of local oscillations of ion density, 
called ion plasmons. The mathematical model of ionic plas-
mons is presented in Jacak (2015b).

In the discrete diffusion model (Ermentrout and Terman 
2010) or in other modifications of the cable theory (Dayan 
and Abbott 2001; Izhikevich 2007) the HH cycle is included 
as the integrative element of local electricity in the clos-
est adjacent myelinated segments. In the plasmon-polariton 
model, the HH cycles at consecutive nodes of Ranvier are 
decoupled from the synchronic oscillations of ion density 
in myelinated segments. The HH cycles are triggered by the 
plasmon-polariton wave packet propagating along the axon 
with high speed. HH cycles play, however, a role in control 
over the plasmon-polariton via the resonance selection of 
particular modes which are supplemented in energy and thus 
traversing arbitrary long distances with constant amplitude 
despite large damping and Ohmic losses in ion oscillations.

Plasmon‑polaritons in a chain of finite ionic 
systems—model of the saltatory conduction 
in myelinated axons

To solve the problem of explaining saltatory conduction, we 
develop a new model for it based on the kinetic properties 
of collective plasmon-polariton modes propagating along 
linear and periodically modified electrolyte systems, which 
for an axon is the thin cord of the nerve cell periodically 
wrapped by Schwann cells creating a periodic and relatively 
thick myelin sheath [Schwann cells myelinate axons in the 
PNS, whereas in the CNS, axons are myelinated by oligo-
dendrocytes (Lazarevich and Kazantsev 2013; Debanne 
et al. 2011)]. The plasmon-polaritons were investigated and 
understood based on the well-developed domain of plasmon-
ics (Barnes et al. 2003; Pitarke et al. 2007), especially nano-
plasmonics applied to long-range low-damped propagation 
of plasmon-polaritons along metallic nanochains (Maier and 
Atwater 2005). The main properties of these collective exci-
tations occurring on the conductor/insulator interface (Zay-
ats et al. 2005; de Abajo 2010) due to the hybridization of 
the surface plasmons (i.e., the charge density fluctuations on 
the conductor surface) with the electromagnetic wave are as 
follows: (1) much lower velocity of plasmon-polaritons than 
the velocity of light, which yields plasmon-polaritons with 
wavelengths much shorter than the wavelength of light at the 
same frequency, (2) the related strong discrepancy between 
the momenta of plasmon-polaritons and photons with the 
same energies causes the external electromagnetic waves to 
not interact with plasmon-polaritons, i.e., photons cannot be 
excited or absorbed by plasmon-polaritons due to momen-
tum conservation constraints, (3) all the electromagnetic 
field associated with propagation of plasmon-polaritons is 
compressed to the tunnel-volume of the chain, (4) all the 

radiative losses are quenched, and plasmon-polariton attenu-
ation occurs due to the Ohmic losses of oscillating charged 
carriers, which makes periodically corrugated conductors 
almost perfect waveguides for plasmon-polaritons, and (5) 
long-range and practically undamped propagation of plas-
mon-polaritons is experimentally observed in metallic nano-
chains (Maier and Atwater 2005; Brongersma et al. 2000). 
The plasmon-polaritons in metallic nanostructures are likely 
to be exploited for future applications in optoelectronics 
where conversion of light signals into plasmon-polariton 
signals circumvents diffraction constraints that greatly limit 
the miniaturization of conventional optoelectronic devices 
(as the nanoscale of electron confinement inconveniently 
conflicts with the several-orders-of-magnitude larger scale 
of the wavelength of light at an energy similar to the nano-
confined electrons) (de Abajo 2010; Citrin 2005).

All properties of plasmon-polaritons can be repeated in 
periodic linear arrangements of electrolyte systems with 
ions instead of electrons as charge carriers (Jacak 2015b, c). 
According to the larger mass of ions compared with that of 
electrons and the lower concentration of ions in electrolytes 
compared with the concentration of electrons in metals, the 
plasmon resonances in finite ionic systems (e.g., liquid elec-
trolyte confined to a finite volume by appropriately formed 
membranes, frequently found in biological cell structures) 
occur on the scale of micrometers rather than nanometers 
such as for metals and at frequencies (energy) several orders 
of magnitude lower (depending on the ion concentration).

For a spherical electrolyte system, the surface and volume 
plasmons are handled analogously to those of the metallic 
nanosphere as developed in Jacak (2015b). The ionic surface 
plasmon frequencies are given for the multipole lth mode by 
the formula �l = �p

√
l

�(2l+1)
 with the bulk plasmon fre-

quency �p =

√
4�q2n

m
 (n is the ion concentration, q and m are 

the ion charge and mass, respectively, and � is the dielectric 
relative permittivity of the surroundings). For dipole surface 
plasmons ( l = 1 ), this equation resolves to the Mie-type for-
mula (Mie 1908; Jacak et al. 2010) �1 =

�p√
3�

 . The plasmon 
oscillations intensively radiate their own energy and are 
quickly damped due to Lorentz friction losses (i.e., due to 
radiation of e-m waves by oscillating charges (Landau and 
Lifshitz 1973; Jackson 1998)), which for large systems with 
a large number of ions participating in the plasmon oscilla-
tions (thus strengthening the Lorentz friction) are much 
greater than the Joule-heat dissipation caused by Ohmic 
losses due to carrier scattering (scattering of ions on other 
ions, solvent and admixture atoms and the boundary of the 
system) (Jacak 2015a, b).

Surprisingly, for a linear chain of spherical ionic systems 
in a dielectric surroundings, the radiation losses are com-
pletely reduced to zero in exactly the same manner as in 
metallic chains (Citrin 2006; Markel and Sarychev 2007; 
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Jacak 2013). The radiation energy losses expressed by the 
Lorentz friction (Landau and Lifshitz 1973; Jackson 1998) 
are ideally compensated by the income of the energy due 
to the radiation from all the other spheres in the chain. As 
a result, the radiative losses are ideally balanced, and only 
the relatively small irreversible Ohmic energy dissipation 
remains due to ion scattering. Thus, the collective surface 
dipole plasmon-polaritons can propagate in the chain with 
strongly reduced damping, and if the energy is permanently 
supplemented to balance the small Ohmic losses, this propa-
gation can occur over arbitrarily long distances without any 
damping. However, if the ionic chain is embedded in an 
absorbing medium, like in another electrolyte, then strong 
damping of plasmon-polaritons occurs.

Plasmon‑polariton propagation in linear periodic 
ionic systems

We propose to apply the model of dipole plasmon-polariton 
excitations in a linear chain of electrolyte spheres to an axon 
cord periodically wrapped with myelin sheaths, as schemati-
cally depicted in Figs. 1 and 3. The periodicity makes the 
chain similar to a 1D crystal. Despite the cord of an axon 
being a continuous ion tube, the modelling of an axon by 
a chain of segments defined by the periodic myelin sheath 

meets well with plasmon-polariton kinetics maintaining 
the same character in discrete chains and in continuous but 
periodically corrugated wires. The interaction between the 
chain elements (or segments defined by the periodic myelin 
sheath) can be regarded as dipole-type coupling. For chains 
of ionic spheres, the results of the corresponding analysis 
for metallic chains can be adopted, which supports a dipole 
model of interaction of chain segments (Citrin 2005; Zhao 
et al. 2003; Zou et al. 2004).

The dipole interaction resolves itself to the electric and 
magnetic fields created at any distant point by an oscillating 
dipole �(�, t) pinned in � , and the electric field dominates 
this interaction. If the distant point is represented by the 
vector �0 (with the beginning fixed to the end of � , where 
the dipole is placed), then the electric field produced by the 
dipole �(�, t) takes the following form, including the relativ-
istic retardation (Landau and Lifshitz 1973; Jackson 1998),

with �0 =
�0

r0
 and v = c√

�
 , c is the light velocity. The terms 

with denominators of r3
0
 , r2

0
 , and r0 are usually referred to as 

the near-field, medium-field, and far-field components of the 
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Fig. 1   In analogy to metallic nanochains, microchains of finite elec-
trolytic segments ranged with dielectric membranes can be consid-
ered; in these electrolytic microchains, the ionic plasmon-polariton 
modes can propagate similar to in metallic nanochains; we propose 

to model a periodically myelinated axon as a chain of electrolyte seg-
ments, because the plasmon-polaritons can traverse equally discrete 
and periodically corrugated continuous linear plasmonic system 
alignments
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interaction, respectively. The formula above will serve to 
describe the mutual interaction of the plasmon dipoles at 
each sphere in the chain. The spheres in the chain are num-
bered by integers l, and the equation for the surface plasmon 
oscillation of the lth sphere can be written as follows (where 
d denotes the separation between the centers of the spheres),

� = z indicates the longitudinal polarization, whereas 
� = x(y) the transverse polarization (the chain orientation is 
assumed to be along the z direction, as illustrated in Fig. 1). 
The first term on the right-hand side of Eq. (2) describes the 
dipole coupling between the spheres, and the other two 
terms correspond to the plasmon attenuation due to Lorentz 
friction radiation losses and the force field arising from an 
external electric field, respectively; �1 =

�p√
3�

 is the self-
frequency of the dipole surface plasmons. Ohmic losses are 
included via the term 2

�0
 similar to what is applied to metals 

(Brongersma et al. 2000) but with the Fermi velocity of elec-
trons in metals substituted by the mean velocity of ions for 
a nondegenerated classical Boltzmann distribution regard-
less of the quantum statistics of ions, i.e.,

where �B is the mean free path of the carriers (ions) in the 
bulk electrolyte, � is the mean velocity of the carriers at 
temperature T, � =

√
3kBT

m
 , m is the mass of the ion, kB is the 

Boltzmann constant, C is a constant on the order of unity (to 
account for the type of scattering of carriers by the system 
boundary) and a is the radius of a sphere. The first term in 
the expression for 1

�0
 approximates ion scattering losses such 

as those occurring in the bulk electrolyte (collisions with 
other ions, solvent and admixture atoms), whereas the sec-
ond term describes losses due to the scattering of ions on the 
boundary of a sphere of radius a. According to Eq. (1), we 
can write the following quantities that appear in Eq. (2),

Because of the periodicity of the chain, a wave-type col-
lective solution of the dynamical equation in the form of 
Fourier component can be assumed (2),

(2)
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In the Fourier picture of Eq. (2) (the discrete Fourier trans-
form (DFT) with respect to the positions and the continuous 
Fourier transform (CFT) with respect to time) this solution 
takes a form similar to that of the solution for phonons in 
1D crystals. Note that DFT is defined for a finite set of num-
bers; therefore, we consider a chain with 2N + 1 spheres, 
i.e., a chain of finite length L = 2Nd . Then, for any dis-
crete characteristic f (l), l = −N,… , 0,… ,N of the chain, 
such as a selected polarization of the dipole distribution, 
we must consider the DFT picture f (k) =

∑N

l=−N
f (l)eikld , 

where k = 2�

2Nd
n, n = 0,… , 2N . This means that kd ∈ [0, 2�) 

because of the periodicity of the equidistant chain. The 
Born–Karman periodic boundary condition, f (l + L) = f (l) , 
is imposed on the entire system, resulting in the form of k 
given above. For a chain of infinite length, we can take the 
limit N → ∞ , which causes the variable k to become quasi-
continuous, although kd ∈ [0, 2�) still holds.

The Fourier representation of Eq. (2) takes the follow-
ing form,

with

Similar to metallic nanochains, ImF�(k,�) ≡ 0 (for 
� = z, x(y) ), which indicates perfect quenching of the radia-
tion losses at any sphere in the chain (meaning that to each 
sphere, the amount of energy that comes in from the other 
spheres is the same as the energy outflow due to Lorentz 
friction). We can easily verify this property, as the related 
infinite sums in Eq. (7) can be found analytically (Grad-
shteyn and Ryzhik 1994). Radiation losses occur, however, if 
the chain with the plasmon-polariton is embedded in another 
electrolyte, which will be addressed later.
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Equation (6) is highly nonlinear with respect to the com-
plex � and can be solved both perturbatively in an analytical 
manner (Jacak 2013) or numerically even beyond the per-
turbation approach (Jacak 2014). The solutions determined 
for Re� and Im� (i.e., for the self-frequency and damping 
of the plasmon-polaritons, respectively) can be applied to 
the initial axon model as an effective chain of electrolyte 
spheres with ion concentrations adjusted to the actual neuron 
parameters.

The resonance frequency ( Re�(k) ), its k-derivative, 
which is the group velocity, and the attenuation rate (in 
dielectric surroundings) ( Im�(k) ) of the dipole plasmon-
polariton modes numbered by the wave vector k, derived by 
the solution of Eq. (6) (Jacak 2013, 2014) for ionic chains 
with example concentrations, chain size and ion parameters, 
are plotted in Fig. 2.

Plasmon‑polariton model of saltatory 
conduction: fitting the plasmon‑polariton 
kinetics to the axon parameters

The bulk plasmon frequency is �p =

√
q2n4�

m
 (in Gauss units, 

or 
√

q2n

�0m
 in SI) (we assumed for the model that the ion 

charge is q = 1.6 × 10−19 C and the ion mass is m = 104me , 
where me = 9.1 × 10−31 kg is the mass of an electron) and 
for a concentration of n = 2.1 × 1016 1/m3 , we obtain the 

Mie-type frequency for ionic dipole oscillations, 
�1 ≃

�p√
3�1

≃ 4 × 106 1/s, where the relative permittivity of 
water is �1 ≃ 80 for frequencies in the MHz range (Meissner 
and Wentz 2004) (though for higher frequencies, beginning 
at approximately 100 GHz, this value decreases to approxi-
mately 1.7, corresponding to the optical refractive index of 
water, � ≃

√
�1 = 1.33 ). The axon consists of a cord with a 

small diameter of 2r (for the model we assumed here unre-
alistically small, r = 3.4 nm), and this thin cord is wrapped 
with a myelin sheath of a length of 2a per segment; however, 
for the effective model, we consider fictitious electrolyte 
spheres of radius a. Thus, the auxiliary concentration n of 
ions in the fictitious spheres corresponds to an ion concen-
tration in the cord of n� = n4∕3�a3

2a�r2
 , which yields a typical 

concentration of ions in a nerve cell of n� ∼ 10 mM (i.e., 
∼ 6 × 1024 1/m3 ). This is because all the ions participating 
in the dipole oscillation correspond in the sphere model to a 
much smaller volume in the real system, that of the thin cord 
portion (the insulating myelin sheath consists of a lipid sub-
stance without any ions). For a model calculation we 
assumed here smaller than realistic radius of the axon cord, 
r = 3.4 nm. This is caused by the fact that for a more realistic 
larger diameter of the axon cord the plasmon-polariton fre-
quency would be too large, giving too high a speed of the 
plasmon-polariton signal. The above calculation illustrates 
here that the MHz frequency of plasmons results in the cor-
rect value of the plasmon-polariton speed. Here we have not 

Fig. 2   Exact solution for the self-frequencies of the longitudinally 
and transversely polarized modes of the plasmon-polaritons in an 
electrolyte chain ( � in units of �1 ) obtained by solving of Eq. (6) in 
the region kd ∈ [0, 2� ) (left) and the corresponding group velocities 
for both types of polarization, vg =

d�

dk
 (central); damping of plasmon-

polaritons, i.e., the functions ImFz(k;� = �1) and ImFx(y)(k;� = �1) 
for chains of electrolyte spheres of radius a with separations of 
d = 3a , 4a, and 6a, the shift of the singularities toward the band 
edges with decreasing d/a is noticeable (right)
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yet accounted for another mechanism for reducing the plas-
mon frequency, which is the role of the myelin sheath thick-
ness (tentatively substituted by the reducing of r). If this 
mechanism (as described in the next paragraph) is included 
the required frequency of plasmon is achieved at the realistic 
diameter of the axon cord.

The insulating, relatively thick myelin coverage creates a 
periodically broken channel (corrugated conductor-insulator 
structure) required for plasmon-polariton formation and its 
wave-type propagation. To reduce the coupling with the sur-
rounding inter-cellular electrolyte and protect against any 
leakage of plasmon-polaritons, the myelin sheath must be 
sufficiently thick, much thicker than what is required merely 
for electrical insulation.

Here, we considered an initial model of the dielectric sur-
roundings. In the electrolytic surroundings, plasmon oscil-
lations in separated myelinated segments have strongly red 
shifted self-frequency due to non-radiative damping of plas-
mons. The dipole oscillating in a segment induces the oppo-
sitely oscillating dipole in the surrounding electrolyte, which 
dissipates energy into heat eventually. This large effect 
causes the reducing of the �1 frequency, according to the 
damped oscillator scheme, ��

1
= �1

√
1 −

1

�2�2

1

 , where 2
�
 is 

the overall damping rate for plasmons in a single chain ele-
ment. This damping causes a similar increase of damping of 
the plasmon-polariton (Jacak 2019). Inclusion of this damp-
ing and related of the plasmon self-frequency gives the fre-
quency of the order of MHz for a realistic diameter of the 
axon, r = 2−3 μm.

For the resulting plasmon self-frequency in each seg-
ment, �1 ≃ 4 × 106 1/s, one can determine the plasmon-
polariton mode frequencies in a chain of segments of length 
2a = 100 μ m (for a Schwann cell length of 2a) and for small 
chain separations of d∕a = 2.01 , 2.1, and 2.2 (corresponding 
to Ranvier node lengths of 0.5, 5, and 10 μ m, respectively) 
within the approach presented above (via the solution of 
Eq. (6)). The derivative of the obtained self-frequencies with 
respect to the wave vector k determines the group velocities 
of the plasmon-polariton modes. The results are presented in 
Fig. 4. We observe that for the ionic system parameters listed 
above, the group velocity of the plasmon-polaritons easily 
reaches 100 m/s. The longitudinal mode is polarized suitable 
to the prolate geometry of segments, assuming that the initial 
post-synaptic AP or that from the synapse hillock predomi-
nantly excites longitudinal ion oscillations. Moreover, what 
is even more important, the geometry of myelinated seg-
ments separated by nodes of Ranvier with the ion inter-mem-
brane channels gated by the voltage prefers the longitudinal 
modes of plasmon-polaritons propagating along the axon, 
which are able to polarize/depolarize consecutive nodes of 
Ranvier (cf. Fig. 3d) in contrast to the transverse polarized 
modes. The complete theory of plasmon-polariton in a chain 

of confined electrolyte segments accounts for both longi-
tudinal and transverse polarization modes (Jacak 2015c), 
but apparently the transverse modes cannot be synchronized 
with the HH cycles at Ranvier nodes (they cannot polar-
ize/depolarize the nodes of Ranvier), and thus are quickly 
damped as not supplemented in energy. This circumstance 
supports also the approximation of dipole-type interaction 
between surface plasmons oscillating at the chain segments, 
though in general, especially in a spherical model for chain 
segments and transverse modes, higher multipole correc-
tions might contribute.

From Fig. 4 we see that it is possible to arrange the wave 
packet (by selection of appropriate subset of k as shadowed 
in the right panel of the figure) which can propagate with 
the appropriately high velocity. This subset of k determines 
also the frequency of plasmon-polariton as visualized by 
shadowing in the left panel in the figure. The mechanism 
which selects the appropriate k range is the HH mechanism 
at nodes of Ranvier and the thickness of the myelin sheath. 
The frequency of the plasmon polariton must be adjusted 
to the characteristic time of the triggering of the opening of 
Na+ channels at each node of Ranvier (we assume it at the 
microsecond level). MHz frequency allows for synchroniza-
tion with μ s time of gate triggering. Such a mode of plas-
mon-polariton is stabilized in contrast to modes with larger 
frequencies. For larger frequency the k region right-shifts, 
which causes lowering of the velocity of plasmon-polari-
ton—cf. Fig. 4, whereas for lower frequency the k region 
left-shifts, which also causes lowering of the velocity on the 
left side of the maximum.

The regulatory role is played here by the thickness of the 
myelin layer (as detailed in the next section). The dipole 
oscillating in a myelinated segment of the axon cord induces 
in the outer intercellular electrolyte the opposite dipole. Both 
dipoles coupled across the myelin layer of thickness � cre-
ate the pair of coupled oscillators with beating frequency 
determined by � . This beating frequency can be precisely 
tuned by � to a required value at which the frequency of the 
plasmon-polariton is synchronized with the gating-time of 
Na+ channels, and thus synchronized with HH cycle at nodes 
of Ranvier. Such a selected mode of plasmon-polariton is 
continuously supplied with energy form the AP formation 
at Ranvier nodes. This mode is thus not damped and propa-
gates with the optimal velocity. Other frequency modes are 
damped as their energy losses are not covered by the AP 
formation out of synchronization. A thinner myelin sheath 
causes an increase of the beating frequency of the dipole 
oscillator pair, which rises the frequency of plasmon-polar-
iton mode but lowers its velocity, as visible from Fig. 4. Too 
thick a myelin sheath is also inconvenient—it causes lower-
ing of beating frequency, thus lowering the frequency of 
the plasmon-polariton mode and with also reduced velocity 
(the left side with respect to maximum velocity in Fig. 4). 
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Such behavior agrees with observations of the saltatory con-
duction velocity lowering at demyelination syndromes like 
Multiple Sclerosis.

Note that for �1 = 4 × 106 1/s and a = 50 μ m, the 
light-cone interference conditions kd − �1d∕c = 0 and 
kd + �1d∕c = 2� are fulfilled for extremely small values 

of kd and 2� − kd , respectively, (of the order of 10−6 for 
d∕a ∈ [2, 2.5] ) and thus are negligible with regard to the 
plasmon-polariton kinetics [though are important for met-
als (Jacak et al. 2015; Jacak 2014)]. The related singulari-
ties on the light-cone induced by the far- and medium-field 

A B

C
D

Fig. 3   Schematic illustration of a long axon with a chain of periodi-
cally repeated myelinated sectors of approximately 100 μ m in length 
separated by unmyelinated Ranvier nodes, corresponding to a num-
ber of segments of order 10,000 per 1  m of axon length (a); time-
pattern of the AP forming on a Ranvier node (b); periodic fragments 

of a myelinated axon with a fictitious periodic chain of spherical ionic 
systems proposed as an effective model (c); the equivalence of polar-
ized Ranvier nodes with longitudinal surface plasmons on myelinated 
sectors (effective concentration of ions n in the auxiliary sphere cor-
responds to the actual ion concentration n′ ) (d)

Fig. 4   Solutions for the self-frequencies and group velocities of the 
longitudinal mode of a plasmon-polariton in the model ionic chain; 
� is presented in units of �1 , here �1 = 4 × 106 1/s, for a chain of 
spheres with radius a = 50 μ m and Ranvier separation d, d∕a = 2.01 , 
2.1, or 2.2, for an equivalent ion concentration in the inner ionic cord 

of the axon of n� ∼ 10 mM. Region of k, shadowed in the figure-right 
panel, corresponds to an optimal wave packet with velocity 100 m/s, 
the corresponding region of frequency is shadowed in the left panel. 
Any shift in frequency causes lowering of the group velocity



353European Biophysics Journal (2020) 49:343–360	

1 3

contributions to the dipole interaction are pushed to the 
borders of the k domain and thus are unimportant for the 
considered ionic system. Hence, the quenching of the radi-
ative losses (i.e., the perfect balance the Lorentz friction 
in each segment by the radiation income from the other 
segments in the chain) for the plasmon-polariton modes 
in the axon model occurs practically throughout the entire 
kd ∈ [0, 2�) region. Additionally, the aforementioned sin-
gularities (Jacak 2014) are characteristic of infinite chains 
and therefore cannot fully develop because the nerve 
model electrolyte chains are of a finite length, whereas 
other effects, such as quenching of irradiation losses, occur 
for finite chains due to very fast convergence of sums in 
Eq. (7) with denominators m2 and m3 (practically, a chain 
consisting of only 10 segments exhibits almost the same 
properties as an infinite chain).

Although the ionic system chain model for a myelinated 
axon appears to be a crude approximation of the real axon 
structure, it can serve for the comparison of the energy and 
time scales of plasmon-polariton propagation implied by the 
model with the observed kinetic parameters of nerve sig-
nals. In the model, the propagation of a plasmon-polariton 
through the axon chain, excited by an initial AP on the first 
Ranvier node (after the synapse or, for the reverse signal 
direction, in the neuron cell hillock), sequentially ignites the 
consecutive Ranvier node blocks of Na+ and K + ion gates. 
The resulting firing of the neuron traverses the axon with a 
velocity of approximately 100 m/s, consistent with the veloc-
ity actually observed in myelinated axons [and not possible 
for ionic diffusive current with the cable model (Debanne 
et al. 2011; Brzychczy and Poznański 2011)]. The plasmon-
polariton ignition of consecutive Ranvier nodes releases the 
creation of the same AP pattern aided by the external energy 
supply at each Ranvier node block by ATPase. Because of 
the nonlinearity of the HH ion-channel block mechanism, 
the signal growth saturates at a constant level, and the 
overall timing of each AP spike has the stable shape of a 
local polarization/depolarization scheme. The permanent 
supply of energy associated with creation of the AP spikes 
at sequentially firing nodes of Ranvier contributes to the 
plasmon-polariton assuring that its amplitude is beyond the 
activation threshold. The external energy supply (through 
the conventional ATP/ADP cell mechanism) assisting HH 
cycle at each node of Ranvier residually compensates all 
Ohmic losses of the plasmon-polariton mode propagating 
along the axon and ensures the undamped propagation over 
an unlimited range. Although the entire signal cycle of the 
AP on a single Ranvier node block requires several millisec-
onds (or even longer when one includes the time required 
to restore steady-state conditions, which, on the other hand, 
conveniently blocks the reversing of the signal), subsequent 
nodes are ignited more rapidly, corresponding to the velocity 
of the plasmon-polariton wave-packet triggering the ignition 

of consecutive Ranvier nodes (in a period of one millisecond 
ca. 1000 nodes of Ranvier are ignited). Thus, we deal with 
the firing of the axon, which propagates with the velocity 
of the ionic plasmon-polariton wave-packet of ca 100 m/s 
(Fig. 5). The direction of the velocity of the plasmon-polar-
iton wave-packet is adjusted to the semi-infinite geometry of 
the chain (in fact the chain is finite and is excited at one of its 
ends). The firing of the AP triggered by the plasmon-polar-
iton traverses along the axon in only one direction, because 
the nodes that have already fired have had their Na+ , K + 
gates discharged and require a relatively long time to restore 
their original status (they require a time of the order of even 
one second and sufficient energy supply to bring the ion 
concentrations to their steady values via cross-membrane 
active ion pumps against the concentration gradient).

The plasmon-polariton scheme described above for the 
ignition of AP spike formation in the ordered chain of Ran-
vier nodes along an axon is thus consistent with the saltatory 
conduction observed in myelinated axons. The observations 
that firing of the AP can simultaneously move in two oppo-
site directions if a certain central node of Ranvier of a pas-
sive axon is ignited, as well as the observation of the mainte-
nance of the firing traverse despite small breaks in the axon 
cord or a few damaged Ranvier nodes also agree with the 
collective wave-type plasmon-polariton model of saltatory 
conduction in contrast to the lack of satisfactory explana-
tions in models based on the cable theory. The maintenance 
of the plasmon-polariton kinetics despite discontinuities in 
the axon cord agrees well with the discrete chain model.

In Fig. 6, the group velocity of the plasmon-polariton 
traversing a firing myelinated axon is plotted for various 
diameters of the axon internal cord, with a length of 100 μ m 
for each myelinated segment wrapped by Schwann cells 
and Ranvier intervals of 0.5, 5, and 10 μ m. The dependence 
of the group velocity on the length of the Ranvier interval 
is weak (i.e., negligible at the scale considered, which is 
consistent with the equivalence of the discrete model for 
the continuous system if one considers wave type plasmon-
polariton propagation), but the increase in the velocity with 
increasing internal cord thickness is significant, similarly 
to linear increase in real axons with increasing diameters.

To comment on the appropriateness of the chain model 
for axons, let us note that even though the thin core of the 
axon is a continuous ion conducting fiber, the surface elec-
tromagnetic field can be closely pinned to the linear conduc-
tor similarly as to the Goubau line (well-known from micro-
wave technology) (Goubau 1950; Sommerfeld 1899) and if 
periodically wrapped by dielectric shells, plasmon-polari-
tons propagate similarly as in a chain. For plasmon-polariton 
kinetics, the continuity or discontinuity of the conducting 
fiber is unimportant because we deal here with traversing 
wave packet of the synchronized plasma oscillations and not 
of a net current, similarly to Goubau microwave lines, which 
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also have discontinuous segments impossible to be crossed 
by any current. The Goubau lines maintain their transmit-
tance via discrete disconnected elements. Instead of a chain 
of spheres one can consider prolate spheroid or elongated 
cylindrical rod chains. This modification resolves itself to 
the substitution of the isotropic �1 frequency in Eq. (2) with 
frequencies that are different for each polarization, ��1 , i.e., �
�2

�t2
+

2

��0

�

�t
+ �2

�1

�
D�(ld, t) = A

∑m=∞

m=−∞, m≠l
E�

�
md, t −

�l−m�d
v

�
+AEL�(ld, t) +AE�(ld, t) , 

where A = V
nq2

m
 is a shape independent factor proportional 

to the number of ions at concentration n in the volume of the 
spheroid with semiaxes a, b, c, V =

4�

3
abc =

4�

3
a3 (the latter 

for a sphere). Taking into account that the plasmon fre-
quency in a bulk electrolyte with ion concentration n equals 
to, �p =

√
nq24�

m
 , one can rewrite A as follows, 

A =
abc�2

p

3
= �a3�2

1
 (the latter for a sphere, for which 

�1 =
�p√
3�

 ). The Ohmic losses can be included via the aniso-
tropic term, 1

��0
=

�

2�B
+

C�

2a�
, where a� is the dimension (sem-

iaxis) of the spheroid in the direction � (equal to a, b, c for 

a spheroid). The first isotropic term in the expression for 1

��0
 

approximates ion scattering losses such as those occurring 
in the bulk electrolyte (thus is isotropic), whereas the second 
term describes the losses due to scattering of ions on the 
anisotropic boundary of the spheroid. This term can be 
neglected for longitudinal polarization because the neuron 

cord is continuous along the z direction. The dipole coupling 
is independent of the shape of the chain elements. The 
mutual independence of dipole oscillations with distinct 
polarization described above follows from the linearity of 
the dynamics equation (versus the dipole) regardless of the 
metal or electrolyte conducting elements.

Because the dynamics equation is not affected by the 
anisotropy, the solutions of the equation for each polariza-
tion have the same form as that for the spherical case with 
the exception of the modification of the related frequency 
of the dipole oscillations in each direction and the small 

Fig. 5   Schematic presentation of the firing of 10 cm long myeli-
nated axon. The wave-packet of plasmon-polariton oscillations trav-
els along the axon with the velocity of 100 m/s and in time of 1 ms 
ignites 1000 Ranvier nodes (as the myelinated segments have a length 

of 100 μ m each). The Hodgkin–Huxley (HH) cycle of the AP spike 
creation takes ca. 1 ms, thus consecutive Ranvier nodes are in various 
phases of HH cycle, as indicated by red points. Hence, the whole 10 
cm long axon is in firing within the time period of 1 ms
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correction of the orientation dependent contribution of the 
scattering ratio (this part is related to the boundary scatter-
ing of carriers and is not important for longitudinal polari-
zation when the axon cord is continuous). Thus, we can 
independently renormalize the equation for dipole oscilla-
tions for each polarization direction, introducing the oscil-
lation self-frequency for each direction ��1 in a phenomeno-
logical manner (these frequencies can be estimated 
numerically, whereas for a sphere, �1 =

�p√
3�

 ; in general, the 
longer semiaxis, the lower the related dipole oscillation fre-
quency is).

The periodic structure of a myelinated axon does not form 
a chain of electrolyte spheres but rather is a thin electro-
lyte cord with periodically distributed myelinated sectors 
separated by very short unmyelinated intervals of Ranvier 
nodes. The periodic corrugated structure of the dielectric 
isolation allows, however, for collective plasmon wave-type 
oscillations, ∼ eiqz , with q governed by the periodicity. The 
wave-type propagation has the form of synchronic dipole 
oscillations of myelinated sectors. These dipole oscillations 
are equivalent to periodic polarization of Ranvier nodes. 
The model allows for quantitative estimation of the rele-
vant propagation characteristics and verification of whether 
plasmon-polariton dynamics fits the observed features of the 
saltatory conduction in myelinated axons.

The polarization of Ranvier nodes induced by plasmon-
polaritons initiates opening of Na+ across-membrane ion 
channels at nodes of Ranvier, which results in a charac-
teristically large AP signal formation due to the transfer 
of ions through the open gates caused by the difference 
in ion concentrations on opposite sides of the membrane. 
The entire HH cycle at a single node of Ranvier requires 
several milliseconds, but the initial increase in polarization 
needed for the rapid opening of the Na+ channel occurs on 
the microsecond timescale and must be synchronized with 
the plasmon-polariton frequency.

Plasmon-polaritons do not interact with external electro-
magnetic waves or, equivalently, with photons (even at 
adjusted frequency), which is a consequence of the large 
difference between the group velocity of plasmon-polaritons 
and the velocity of photons ( c∕

√
� ). The resulting large dis-

crepancy between the wavelengths (and momentum) of pho-
tons and plasmon-polaritons of the same energy prohibits 
mutual transformation of these two types of excitations 
because of momentum-energy conservation constraints. 
Therefore, plasmon-polariton signaling by means of collec-
tive wave-type dipole plasmon oscillations along a chain, 
i.e., plasmon-polaritons, can be neither detected nor per-
turbed by external electromagnetic radiation. This also fits 
well with neuron signaling properties in the PNS and in the 
white myelinated matter in the CNS. The temperature influ-
ences the mean velocity of ions, � =

√
3kT

m
 , thereby enhanc-

ing the Ohmic losses with increasing temperature (cf. Eq. 
(3)), which in turn strengthens plasmon-polariton damping. 
Hence, at higher temperatures, higher external energy sup-
plementation is required to maintain the same long-range 
propagation of plasmon-polaritons with a constant ampli-
tude. This property is also consistent with experimental 
observations.

The role of the thickness of the myelin 
sheath

It is known that the thickness of the myelin layer is an essen-
tial factor deciding on the proper functioning of myelinated 
axons. This thickness is greater than that needed for simple 
isolation because the role of myelin is more specific and 
not related with electrical isolation. In the case of a plas-
mon dipole oscillating in the myelinated segment, as part 
of the plasmon-polariton, the ion oscillations in the axon 
cord excite the oppositely directed also oscillating dipole 
of ions in the outer electrolyte, in the cave surrounding the 
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Fig. 6   Comparison of the group velocities, in units of m/s, of the 
longitudinal plasmon-polariton mode with respect to the wave vector 
k ∈ [0, 2�∕d) within the axon model for a Schwann cell myelinated 

sectors with a length of 100 μ m, Ranvier separations of 0.5, 5, and 
10 μ m (represented by d∕a = 2.01 , 2.1, and 2.2 in the figure, respec-
tively) and for the axon cord radii of r = 20 , 50, and 100 nm
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myelinated segment, cf. Fig. 7. Coupling of both dipoles 
across the myelin sheath of thickness, � , is of the near-
field coupling form. By d1(t) let us denote the longitudinal 
dipole in the axon rod in this myelinated segment, and by 
d2 the dipole in the outer cytosol cave adjacent to the myeli-
nated segment and induced by the d1 dipole. The oppositely 
directed d2 dipole is activated by d1 and vice versa. The equa-
tion for the dynamics of this sub-system is as follows,

where, 1
�i

 is the damping rate of the surface plasmon i-th 
dipole, �i its self-frequency, �i is the longitudinal polariza-
bility of the rod for i = 1 and of the cave in surrounding 
cytosol for i = 2 (the polarizability for a sphere equals to 
a34�nq2

3M
 , a—the sphere radius, n—concentration of ions, M—

ion mass, q—ion charge). The electrical fields induced by 
dipoles in the near-field zone are, E1(2)(t) = −

1

��3
d2(1)(t −

�

v
) , 

where � is the thickness of the myelin sheath, v = c√
�
 , and 

these fields describe mutual interaction of dipoles d1 and d2 , 
i.e., the electrical induction caused by opposite dipoles in 
the near-field coupling approximation. Simplifying (for illus-
tration) by the assumption, �1 = �2 = � , �1 = �2 = �0 , and 
neglecting here the damping and retardation, Eq. (8) attains 
the shape,

(8)
d
2d1

dt2
+

2

�1

dd1

dt
+ �2

1
d1 = �1E1,

d
2d2

dt2
+

2

�2

dd2

dt
+ �2

2
d2 = �1E2,

(9)
d
2d1

dt2
+ �2

0
d1 = −

�

��3
d2,

d
2d2

dt2
+ �2

0
d2 = −

�

��3
d1.

This is the equation for two coupled harmonic oscilla-
tors. It has the self-frequencies, for assumed solution, 
d1(t) = AeiΩt+� and d2(t) = BeiΩt+� , given by,

i.e., Ω2

1
= �2

0
+

�

��3
 , Ω2

2
= �2

0
−

�

��3
.

For the initial condition suitable for excitation of the con-
sidered segment of the axon, i.e., d1(0) = D , d2(0) = 0 , 
dd1(2)

dt
(0) = 0 , one gets the beating with low frequency, 

Ω1 − Ω2 ≃
�

��3�0

 . For sufficiently large � we get thus slow 
oscillations required for the time scale of opening of the Na+ 
ion channels at nodes of Ranvier to trigger the HH cycle. 
The period of the igniting signal (with an amplitude beyond 
the threshold for Na+ ion channel opening) cannot be lower 
than the characteristic time of the activation of these ion 
channels.

The frequency for a longitudinal plasmon is reduced in 
a strongly elongated axon rod segment with the aspect ratio 
∼ 10−3 and additionally reduced by an appropriate increase 
of � due to the beating effect and finally achieves the value 
of ∼ 106 1/s, resulting in the saltatory conduction velocity 
∼ 100 m/s. Thus we see, that the myelin layer thickness con-
trols the velocity of the saltatory conduction and simultane-
ously accommodates the frequency of the igniting signal 
oscillation (of plasmon-polariton wave packet) to the time 
scale of triggering of the ion channels at nodes of Ranvier 
(being of the order of a microsecond). Only this frequency 
is selected and the corresponding plasmon-polariton wave 
packet is strengthened by synchronized HH cycles in con-
trary to other non-synchronized frequency modes of the 
plasmon-polariton. Non-synchronized modes are quickly 
damped due to Ohmic losses.

At the Ranvier node, the inner and outer cytosol are sepa-
rated by the thin bare cell membrane, thus dipole coupling 
across the thinner barrier is stronger and the corresponding 
beating quicker. The quick component of this beating is also 
quenched as not synchronized with the time scale of electri-
cally gated Na+ channels, in contrast to the slow component 
of the trans-myelin beating. Via synchronization with HH 
cycle ignition time scale, this selected mode of plasmon-
polariton is continuously supplemented in energy by HH 
cycles and simultaneously is able to ignite the HH cycle on 
consecutive Ranvier nodes along the chain of myelinated 
segments on arbitrary large distances. This explains why 
only the myelinated segments oscillate and the frequency 
of the related plasmon-polariton wave packet is precisely 
tuned by the myelin thickness, � . The oscillation of the lon-
gitudinal surface plasmon on the myelinated segment of 
the axon rod is equivalent to the opposite dipole oscillation 

(10)det

[
−Ω2 + �2

1
,

�

��3
�

��3
, −Ω2 + �2

1

]
= 0,

Fig. 7   Cartoon of a single myelinated segment—polarization of lon-
gitudinal dipole type of the inner cytoplasm inside the axon cell (red 
arrow) induces local opposite polarization of the outer cytoplasm 
(blue arrows). Both dipoles oscillate as the pair of coupled oscilla-
tors across the insulating myelin layer. The coupling is weak for a suf-
ficiently thick myelin sheath and causes slow beats due to oscillator 
coupling. At the nodes of Ranvier the coupling across much thinner 
cell membrane is strong and causes quick beating out of a resonance 
with ion gate timing, thus damped. Slow beating oscillations of cou-
pled dipoles are ranged only to the myelinated sector



357European Biophysics Journal (2020) 49:343–360	

1 3

(polarization) of the node of Ranvier (but it is not its own 
self-oscillation). This is schematically shown in Fig. 3d.

The described mechanism of selection of the low self-fre-
quency of plasmon oscillations of the myelinated fragment 
allows for accommodation of the frequency of plasmon-
polariton (via the equation defining dynamics of plasmon-
polariton in the chain of myelinated segments, i.e., Eq. (6)). 
Not all frequency modes of plasmon-polariton are persis-
tent. Ohmic damping causes their attenuation on a short 
distance unless the energy is supplied by AP formation at 
consecutive nodes of Ranvier. This requires, however, a per-
fect coincidence of the plasmon-polariton mode frequency 
with timing of opening of Na+ ion channels across the axon 
membrane at nodes of Ranvier. Too quick oscillations are 
not able to trigger the opening of the gates which elimi-
nates corresponding modes of plasmon-polariton. Too low 
oscillations reduce velocity of corresponding nodes and 
are retarded with respect to the optimal ones. This simple 
mechanism selects the optimal and persistent wave packet of 
plasmon-polariton with the velocity observed in the saltatory 
conduction. This wave packet is supplied with energy by AP 
formation at consecutive nodes of Ranvier. One can state 
that the thickness of the myelin sheath is a control factor for 
synchronization of plasmon polariton with the AP formation 
mechanism needed for overcoming of the Ohmic attenua-
tion of the plasmon-polariton ignition signal over arbitrary 
large distances. Reducing of the myelin sheath thickness 
increases frequency of the plasmon-polariton which causes, 
however, de-synchronization with opening time of Na+ chan-
nels, which perturbs plasmon-polariton kinetics, just like in 
Multiple Sclerosis (Figs. 8, 9).

Micro‑saltatory conduction in C fibers

Recently, it has been discovered that in the thin (ca. 0.1 μ m 
for diameter) unmyelinated axons in the PNS intermembrane 
Na+ channels cluster in a lipid rafts periodically distributed 
along axons. This localized concentration of Na+ channels 

resembles in structure the ion channel organization at the 
nodes of Ranvier in thicker myelinated axons, yet it is cur-
rently unknown whether this translates into an equivalent 
phenomenon of saltatory conduction or related-functional 
benefits and efficiencies. However, observations indicate 
that AP signal transduction velocity in these, so-called C 
fibres, at least 10 times exceeds the theoretical cable model 
estimations (Neishabouri and Faisal 2014). C fibers are very 
thin and long unmyelinated peripheral axons responsible for 
transmitting nociceptive pain sensations (cf. references in 
Neishabouri and Faisal 2014). The clustering of Na+ chan-
nels on lipid rafts resembles the structure of nodes of Ran-
vier in myelinated fibers are typically of length 0.1–0.3 μ m 
and span 5–10 μ m. They are suggested to permit micro-
saltatory conduction in those thin axons despite they are 
unmyelinated (Neishabouri and Faisal 2014). This empha-
sizes that the central role for the saltatory conduction plays 
the periodicity of some structure imposed on a net axon. The 
periodicity allows the wave type propagation of a triggering 
signal in the form of ion plasmon-polariton which ignites the 
consecutive blocks of Na+ channels where the formation of 
AP takes place according to HH mechanism (K+ channels 
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are still randomly distributed). The synchronized ion oscil-
lations in periodic internodal segments (between lipid rafts 
along the C fiber) can be organized as well without any 
myelin sheath. The myelin plays only the regulatory role 
as described above to precisely accommodate the plasmon-
polariton mode to Na+ gates. In both cases, of myelinated 
and unmyelinated periodic structures, the plasmon-polariton 
signal is ca. 1–2 orders of magnitude quicker than the ordi-
nary diffusion current of ions along an axon (Neishabouri 
and Faisal 2014).

The AP formation at lipid rafts (similarly as at nodes 
of Ranvier) is of major importance for the selection of an 
appropriate mode of plasmon-polariton—that one which is 
synchronized with HH cycles at consecutive nodes. Only 
such a mode will be persistent due to energy supplemen-
tation at HH cycles. Other, non-synchronized modes are 
quickly quenched due to strong damping of plasmon-polar-
itons on short distances. The plasmon-polariton is not a local 
effect in contrast to the diffusion current described by cable 
theory. The plasmon-polariton is disjoint with the HH mech-
anism at nodes but triggers the HH cycles via depolarization 
of Na+ gates beyond the required threshold. For this trigger-
ing the frequency of plasmon-polariton cannot be larger than 
the inverse time of the activation of ion gates. This condition 
is satisfied by MHz frequency, thus higher frequency modes 
cannot be synchronized with HH cycles and without energy 
supplementation are eliminated abolishing effective com-
munication. Lower frequencies are also to be synchronized 
with ion gates but for them the group velocity of plasmon 
polarization mode is smaller, so are retarded in comparison 
to the quickest one and also do not ignite HH cycles at con-
secutive nodes, because these cycles are already ignited by 
the quickest synchronized mode.

This scenario explains the micro-saltatory conduction in 
C fibers. The absence of the myelin sheath causes the fre-
quency of the plasmon-polariton in C fibers to be larger than 
in myelinated axons and mitigated only by the strong damp-
ing of surface plasmon oscillations in periodic segments. 
This damping is caused by the large Ohmic losses in the 
inner neuron cytosol and by a strong coupling to outer elec-
trolyte across the membrane. The latter is especially large in 
the absence of myelin as in C fibers. Thus for these fibers we 
get the self-frequency for plasmons at a single segment, 
��
1
= �1

√
1 −

1

�2�2

1

 (where 2
�
 represent the damping rate), 

strongly reduced but still larger than required for the syn-
chronization with ion gate triggering time. Hence, the mode 
of plasmon-polariton will be selected with as much as pos-
sible a lowered frequency of plasmon polariton related to �′

1
 

as in Fig. 4 (left panel, left low corner). This does not give 
an extreme velocity to the saltatory conduction according to 
Fig. 4 (right panel), though highly exceeding the diffusion 
of ions. Only the inclusion of the myelin reduces 

transmembrane energy losses and, on the other hand, gives 
the mechanism of lowering of plasmon-polariton frequency 
precisely controlled by the myelin thickness. In the latter 
case the maximal velocity mode (the maximal in Fig. 4 
(right panel)) can be synchronized with ion gates and HH 
cycles. Therefore in the case of C fibers the saltatory con-
duction does not reach as high speed as in the myelinated 
axons but still at least 10 times larger than the diffusion cur-
rent. The diffusion current coupled locally with HH cycles 
(as in the conventional models, cf. Neishabouri and Faisal 
2014) is simply too slow and highly retarded, thus even 
when excited does not play any communication role here in 
the already fired axon.

It is thus evident that the cable theory (coupled with 
HH cycle of AP formation) is helpful only in small short 
dendrites and unmyelinated axons without any periodic 
structure of ion gate clusters. Periodicity (by the myelina-
tion separated by nodes of Ranvier or by periodic rafts with 
Na+ gate clusters) always causes plasmon-polariton kinet-
ics which if synchronized with HH cycles is much more 
efficient and energy efficient, persistent and quick over long 
distances. We see then no problem in the high velocity of a 
plasmon-polariton signal which can be very large for high 
frequency modes. The problem is that such high frequency 
modes are outside the synchronization with ion gates and 
are quickly eliminated as strongly damped and thus useless. 
Only synchronized with Na+ gates can the plasmon-polariton 
mode propagate on long distances despite strong damping 
because of the energy supplementation at each node with 
an HH cycle.

Conclusion

The utilization of the radiatively undamped plasmon-
polariton propagation in a chain of electrolyte subsystems 
may explain efficient and long range saltatory conduction 
in myelinated axons in the peripheral neural system and in 
the white matter of the brain and spinal cord. The effective 
plasmon-polariton model of the triggering of AP firing along 
an axon myelinated by Schwann cells separated by nodes of 
Ranvier fits well with the high conduction velocity observed 
at the saltatory conduction in agreement with the tempera-
ture and size dependence (with respect to the diameter of the 
axon) of the conduction velocity. This coincidence together 
with the immunity of plasmon-polaritons to external e-m 
perturbations or detection support the reliability of the new 
model proposed for the saltatory conduction in myelinated 
axons, which is very efficient, quick and energy efficient 
despite the poor ordinary conductivity of axons.

Plasmon-polariton kinetics of the triggering signal along 
the myelinated axons has the observed velocity and exceeds 
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by 1–2 orders any estimations based on the conventional 
cable theory. The role of myelin thickness is elucidated as 
the regulatory factor in a different manner than for diffusion 
of ions. The plasmon-polariton is a nonlocal effect decou-
pled from HH cycles at Ranvier nodes, though the latter 
select the appropriate mode of plasmon polariton via syn-
chronization with triggering of Na+ channels.

A plasmon-polariton model of the saltatory conduction 
explains also the recently observed micro-saltatory conduc-
tion in unmyelinated ultra thin C fibers in the PNS which 
possess the periodic structure of rafts with clusters of Na+ 
gates along the net axon. In these long axons important for 
pain sensation the velocity of signal triggering the axon fir-
ing is lower than in myelinated axons but still by at least 
one order of magnitude exceeds the diffusion velocity in 
this case.

It is worth noting some quantum aspects of plasmon-
polaritons, which are synchronized in a wave form simul-
taneous for plasmon oscillations in all segments of a chain. 
The plasmon oscillations in a particular segment are, how-
ever, of quantum nature (regardless of whether electrons 
or ions), though seem to be quite ordinary oscillations of 
charge fluctuations. Plasmons are coherent oscillations of all 
charges in the subsystem and this coherence can be under-
stood exclusively in quantum terms (e.g., of random phase 
approximation by Pines, Bohm Pines 1999).
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