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Abstract: Cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine
monophosphate (cGMP) are important second messengers that regulate cardiovascular function
and disease by acting in discrete subcellular microdomains. Signaling compartmentation at these
locations is often regulated by phosphodiesterases (PDEs). Some PDEs are also involved in the
cross-talk between the two second messengers. The purpose of this review is to summarize and
highlight recent findings about the role of PDE2 and PDE3 in cardiomyocyte cyclic nucleotide
compartmentation and visualization of this process using live cell imaging techniques.
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1. Introduction

Cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine
monophosphate (cGMP) are ubiquitous intracellular second messengers that regulate multiple
physiological functions as well as pathological conditions. In cardiomyocytes, there are at least three
pathways that normally trigger their production after initial first messenger stimuli: (i) the β-adrenergic
pathway for cAMP production, (ii) the nitric oxide, and (iii) the natriuretic peptide (NP) receptor
pathways for cGMP synthesis.

1.1. The cAMP and β-Adrenergic Pathway

In healthy cardiomyocytes, sympathetic activation mainly via β-adrenergic receptor (β-AR)
signaling leads to the production of cAMP and thereby to increased contractile force (inotropy),
heart rate (chronotropy), and cell relaxation (lusitropy) [1]. When a ligand binds to a G protein-coupled
receptor (GPCR) located on the plasma membrane, a conformational change occurring in the receptor
leads to G-protein activation. Activated G-proteins can in turn, activate or inhibit cAMP-forming
enzymes adenylyl cyclases (ACs) which generate cAMP from ATP. Subsequently, cAMP acts in cells
via one or more of the following effector proteins:

(a) cAMP-dependent protein kinase (PKA), which is responsible for phosphorylation of several
calcium handling proteins involved in cardiac excitation-contraction coupling (ECC) including
L-type Ca2+ channel (LTCC) at the plasmalemma, phospholamban, and ryanodine receptors at the
sarcoplasmic reticulum (SR), myosin-binding protein C, and troponin I at the myofilaments [1,2].
PKA is the main effector protein in the cAMP cascade, while Ca2+-inhibited AC5 and AC6 are
the predominant cAMP generating adenylyl cyclases in adult (AC5 and AC6) and fetal (AC6)
ventricular cardiac tissue [3];
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(b) exchange proteins directly activated by cAMP (Epac1 and Epac2) [4], which are implicated in
pathological cardiomyocyte growth [5,6];

(c) cyclic nucleotide gated ion channels (CNGCs) including HCN channels located in the sinus
node, which regulate the capacity of cardiac cells to initiate spontaneous action potentials
(automaticity) [7–9];

(d) the recently introduced Popeye-domain-containing proteins which affect cardiac pacemaking [10,11].

1.2. NO/sGC/cGMP Pathway

Biosynthesis of cGMP is catalyzed by two discrete guanylyl cyclase (GC) families, one being
activated in the presence of nitric oxide (NO) and called soluble guanylyl cyclase (sGC) and the
other acting as membrane receptors for natriuretic peptides (NPs), also called particulate guanylyl
cyclase (pGC).

NO, alternatively known as “endothelial-derived relaxant factor” (EDRF) [12,13], is produced for
example by endothelial cells after acetylcholine administration. It increases cGMP levels, activates
cGMP-dependent protein kinase (PKG), and behaves in a way similar to nitrovasodilators [14,15].
Seminal work on the field [16–18] has firmly established that NO is produced by a family of NO
biosynthetic enzymes called nitric oxide synthases (NOS). It includes neuronal (NOS-1 or nNOS),
inducible (NOS-2 or iNOS), and endothelial nitric oxide synthases (NOS-3 or eNOS) [19], all of
which having been detected in heart and vessels [20–24]. iNOS is an inducible biosynthetic enzyme,
while eNOS and nNOS are both constitutive and inducible enzymes [25]. NO activates sGC by
binding to both heme and non-heme sites [26–28], which leads to the production of cGMP [29] and its
subsequent downstream effects [25,30,31].

1.3. NP/pGC/cGMP Pathway

Natriuretic peptides (NPs) constitute important cardiovascular regulators of inotropy and blood
pressure [32] with atrial (ANP), brain (BNP), and C-type natriuretic peptides (CNP) being the most
well-known ligands. In response to neurohumoral (catecholamines or angiotensin II) or mechanical
(e.g., increased myocardial stretch or blood pressure) stimuli [33,34], ANP and BNP are produced and
released by the atria and the ventricles of the heart, while CNP is produced mainly by endothelial cells
of the vasculature [34].

These NPs can bind and activate several pGCs, two of which are expressed in the heart and exert
the majority of their physiological effects. NPR1 (also called NPR-A or GC-A) is the receptor that
binds both ANP and BNP with relatively high affinity (ANP > BNP) [35–37]. After ligand binding at
its extracellular domain, pGCs undergo a conformational change upon which its intracellular domain
generates cGMP [25]. As a widely distributed receptor in the cardiovascular system (heart, vessels,
and kidneys), NPR1 regulates blood pressure, exerts antihypertrophic action, and preserves body
homeostasis [35–37]. NPR2 (also called NPR-B or GC-B) is the CNP-specific receptor responsible
for vascular regeneration and endochondral ossification. It is mainly localized in fibroblasts [38],
the sympathetic nervous system [39], and the vascular endothelium and smooth muscle [40] and exerts
antihypertrophic effects in cardiomyocytes [41,42].

Both NO/sGC and NP/pGC pathways stimulate cGMP synthesis and participate in the homeostasis
of the cardiovascular system via (i) PKG-mediated protein phosphorylation [29–31], (ii) the activation
of CNGCs, and (iii) the regulation of PDEs [25]. Physiologically, cGMP binds to specific sites in
the regulatory domains of PKG, CNGC, or PDE in order to induce conformational changes and
downstream effects. Disruption of downstream cascade at any level can initiate pathophysiological
effects and may lead to hypertension, atherosclerosis, pulmonary hypertension, hypertrophy, ventricular
remodeling, myocardial ischemia, dystrophy-related cardiomyopathies, mitochondrial metabolism,
or heart failure [25].

Apart from the classical cyclic nucleotides, cyclic cytidine (cCMP) and cyclic uridine monophosphates
(cUMP) have been recently introduced as non-canonical second messengers generated by ACs and
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GCs [43,44]. However, available published data provides limited information regarding their effector
proteins and physiological significance, so further studies are required to fully elucidate their role in
the cardiovascular system.

2. Compartmentation of cAMP and cGMP Signaling

The fact that multiple receptor stimuli can trigger diverse intracellular effects generated via the
production of just a few second messengers such as cAMP and cGMP led to a currently accepted
theory of cyclic nucleotide compartmentation. Compartmentation refers to the mechanisms by which
multiple spatially segregated cAMP/PKA and cGMP/PKG signaling pathways exert different or even
opposing functional effects in distinct subcellular microdomains of the same cell [9,45]. It appears
to be of critical importance for cardiovascular system, since local cyclic nucleotide actions and the
interplay of the cAMP and cGMP signaling pathways have been implicated in physiological functions
or pathological conditions.

Several proteins [46–50] contribute to cyclic nucleotide compartmentation, which spatially,
temporally, and functionally controls the downstream effects of cyclic nucleotides (extensively
studied for cAMP) in the cardiovascular system [25,51–53]. They include (a) GPCRs located in
lipid rafts [54,55], at transverse tubules [56] and in non-caveolar membrane domains [57]; (b) ACs
and GCs [58,59]; (c) Scaffold proteins [60–62]) such as A-kinase anchoring proteins (AKAPs) [52,63,64]
and Calveolin-3 [54,65–67]; (d) physical barriers—e.g., mitochondria, cAMP buffering by PKA,
cAMP export [68,69] are some of the mechanisms that create locally confined intracellular domains
regulating signaling; and (e), the most prominent and extensively studied of all, the PDE-mediated
hydrolysis of cyclic nucleotides, which is of high pharmacological and clinical interest [64,70,71].

PDEs can control cAMP and cGMP compartmentation by providing their local hydrolytic
degradation and creating spatial second messenger gradients [72]. Although much fewer scientific
data are available on cGMP compartmentation, the role of PDEs in local confinement of cGMP pools
has recently been elucidated, especially that of PDE2, PDE5, and PDE9 [25,73]. Furthermore, spatial
organization of PKG and GCs in distinct subcellular complexes appears to be another important aspect
of cGMP microdomain regulation [74]. It still remains to be established whether, for example, myosin,
NPR1, and troponin T could act as PKG scaffolding proteins [75].

Among the relevant experimental evidence, studies on knockout mice do also highlight the
importance of the crucial role PDEs play in the cAMP/cGMP signaling pathways and their respective
crosstalk [76]. The interplay among the β-adrenergic and NO/cGMP/PKG pathways can be interpreted
as a network phenomenon arising from the molecular selectivity of PDEs to cAMP and cGMP [77].

3. Phosphodiesterases (PDEs)

PDEs are the hydrolyzing enzymes that terminate intracellular effects of cyclic nucleotides by
their hydrolysis to fine-tune the signaling and to prevent continuous activation of the downstream
effector proteins. These cyclic nucleotide-degrading enzymes constitute one of the most important
mechanisms, by which cyclic nucleotides are spatially, temporally, and functionally compartmentalized
in cardiomyocytes and other cells. Of the 12 PDE families [78,79], there are seven, namely PDE1 [80],
PDE2 [81], PDE3 [76], PDE4 [82], PDE5 [83], PDE8 [84], and PDE9 [73] that have been reported to
be expressed and active in mammalian cardiomyocytes (Figure 1). They are an integral part of the
multimolecular signaling/regulatory complexes, i.e., signalosomes [52,64,76,84]. This review will
particularly explore the so-called cGMP-regulated PDEs, especially PDE2 and PDE3, which critically
regulate cGMP-to-cAMP cross-talk and cyclic nucleotide actions in cardiomyocyte microdomains.
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Figure 1. PDE activity, specificity, and cyclic nucleotide effector proteins. PDE4, PDE7, and PDE8 
selectively degrade cAMP. PDE5, PDE6, and PDE9 selectively degrade cGMP. PDE1, PDE2, PDE3, 
PDE10, and PDE11 are dual-specificity phosphodiesterases that hydrolyze both cAMP and cGMP. 
Downstream effectors include PKA, PKG, Epacs, PDEs, CNG channels and Popeye 
domain-containing proteins. Adapted from Ahmad et al., 2015 [76]. 

3.1. Phosphodiesterase 2 

PDE2 is a dual-substrate enzyme, which hydrolyzes both cAMP and cGMP with similar 
maximal rates in bovine adrenal and heart tissues [85]. Only one gene (Pde2a) gives rise to three 
known PDE2A isoforms, which are differentially located in the cytosol, mitochondria, and cellular 
membranes [58]. It is characteristic of this PDE family that the cGMP-mediated control of cAMP 
hydrolysis arises, when cGMP binds allosterically to the GAF-B domain of PDE2A, so that cAMP 
hydrolysis occurs with a 10-fold higher rate [86–88]. In this manner, cGMP via PDE2A is able to 
negatively regulate cAMP levels [51] and therefore to initiate a negative cGMP-to-cAMP cross-talk 
[89] (Figure 2). Initially cloned from rat brain [90] and purified from bovine or calf tissues (heart, 
liver adrenal gland, and platelets) [85,91], the PDE2A protein is also found in endothelial cells, 
macrophages, and brain [92,93]. Platelet aggregation [94], aldosterone secretion [95], and regulation 
of calcium channels [96] require PDE2A-mediated hydrolysis of cAMP. Recently, a PDE2A isoform 
regulating the mitochondrial respiratory chain has been detected, discovering a possible new 
pathway for the drug-induced control of mitochondrial function [97]. Of particular importance are 
those studies referring to PDE2A expression in isolated cardiomyocytes and myocardium. In 
cardiomyocytes, PDE2A together with PDE5 is also involved in the degradation of sGC-synthesized 
cGMP, whereas pGC-synthesized cGMP is preferentially hydrolyzed by PDE2A [72,98,99]. 

Figure 1. PDE activity, specificity, and cyclic nucleotide effector proteins. PDE4, PDE7, and PDE8
selectively degrade cAMP. PDE5, PDE6, and PDE9 selectively degrade cGMP. PDE1, PDE2, PDE3,
PDE10, and PDE11 are dual-specificity phosphodiesterases that hydrolyze both cAMP and cGMP.
Downstream effectors include PKA, PKG, Epacs, PDEs, CNG channels and Popeye domain-containing
proteins. Adapted from Ahmad et al., 2015 [76].

3.1. Phosphodiesterase 2

PDE2 is a dual-substrate enzyme, which hydrolyzes both cAMP and cGMP with similar maximal
rates in bovine adrenal and heart tissues [85]. Only one gene (Pde2a) gives rise to three known PDE2A
isoforms, which are differentially located in the cytosol, mitochondria, and cellular membranes [58].
It is characteristic of this PDE family that the cGMP-mediated control of cAMP hydrolysis arises,
when cGMP binds allosterically to the GAF-B domain of PDE2A, so that cAMP hydrolysis occurs
with a 10-fold higher rate [86–88]. In this manner, cGMP via PDE2A is able to negatively regulate
cAMP levels [51] and therefore to initiate a negative cGMP-to-cAMP cross-talk [89] (Figure 2).
Initially cloned from rat brain [90] and purified from bovine or calf tissues (heart, liver adrenal
gland, and platelets) [85,91], the PDE2A protein is also found in endothelial cells, macrophages,
and brain [92,93]. Platelet aggregation [94], aldosterone secretion [95], and regulation of calcium
channels [96] require PDE2A-mediated hydrolysis of cAMP. Recently, a PDE2A isoform regulating
the mitochondrial respiratory chain has been detected, discovering a possible new pathway for the
drug-induced control of mitochondrial function [97]. Of particular importance are those studies
referring to PDE2A expression in isolated cardiomyocytes and myocardium. In cardiomyocytes,
PDE2A together with PDE5 is also involved in the degradation of sGC-synthesized cGMP, whereas
pGC-synthesized cGMP is preferentially hydrolyzed by PDE2A [72,98,99].
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Figure 2. PDE2- and PDE3-mediated cyclic nucleotide crosstalk. cGMP synthesis occurs by pGCs 
such as GC-A, which serves as a membrane receptor for ANP and BNP, or by NO-activated sGC, e.g., 
downstream of eNOS and β3-adrenoreceptor (β3-AR). Binding of cGMP to PDE2 can allosterically 
increase its hydrolytic activity, lowering cAMP levels in subcellular microdomains. PDE3 is a 
“cGMP-inhibited” phosphodiesterase that upon cGMP binding and degradation in the catalytic 
domain shows reduced rates of cAMP hydrolysis, generating a positive cGMP-to-cAMP cross-talk. 

3.2. Phosphodiesterase 3 

Another important cGMP-regulated PDE is PDE3. This enzyme hydrolyzes both cAMP and 
cGMP. Often referred to as cGMP-inhibited PDE, PDE3 shows higher catalytic rates for cAMP but 
relatively high affinity for cGMP, which acts as a competitive inhibitor of cAMP hydrolysis 
[100,101]. This creates the so-called positive cGMP-to-cAMP cross-talk (Figure 2). PDE3A and 
PDE3B are the two PDE3 subfamilies, with the former being abundant in cardiomyocytes, oocytes, 
vascular smooth muscle and platelets and the latter being expressed in the pancreas, liver, and 
adipose tissue [100]. PDE3A controls myocardial contractility by interacting with the 
sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a) [102]. By utilizing their direct 
positive inotropic effects, PDE3 inhibitors are used for acute treatment of end-stage heart failure 
(HF) [103], albeit presenting increased mortality as well as incidence of arrhythmias and sudden 
death after chronic use [104,105]. In contrast, PDE3B seems to be more actively engaged in energy 
metabolism [106,107], but it can also protect the heart from ischemia/reperfusion injury [108]. 
Knockout models have revealed that PDE3A, but not PDE3B, exerts inotropic and chronotropic 
effects after treatment with PDE3 inhibitors [109] because PDE3A regulates SERCA2a activity and 
subsequent SR Ca2+ uptake [102]. By chronically suppressing its expression or action, myocyte 
apoptosis in vitro [110] or deterioration of ischemia/reperfusion-induced apoptosis and cardiac 
injury in vivo [111] have been observed. Similarly, disruption of PDE3B interaction with 
phosphoinositide 3-kinase γ, which can serve as an AKAP, has deleterious effects [112–114] such as 
arrhythmias [114], necrotic cardiac tissue damage, and fibrosis [112]. 

PDE3 along with other PDEs constitutes an integral part of cAMP degradation. Evidence 
suggests that it may also controls cGMP levels [108,115], atrial dynamics, and myocyte ANP release, 
depending on the involved induction mechanism [72,116]. In terms of cGMP and cAMP pathway 
interactions, cGMP binding to PDE2 enhances the hydrolytic activity of the enzyme and enables the 
negative cGMP-to-cAMP cross-talk [75]. Conversely, cGMP binding to the catalytic domains of 
PDE3 reduced the rate of cAMP degradation, thereby mediating the positive cGMP-to-cAMP 
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Figure 2. PDE2- and PDE3-mediated cyclic nucleotide crosstalk. cGMP synthesis occurs by pGCs
such as GC-A, which serves as a membrane receptor for ANP and BNP, or by NO-activated
sGC, e.g., downstream of eNOS and β3-adrenoreceptor (β3-AR). Binding of cGMP to PDE2 can
allosterically increase its hydrolytic activity, lowering cAMP levels in subcellular microdomains. PDE3 is
a “cGMP-inhibited” phosphodiesterase that upon cGMP binding and degradation in the catalytic
domain shows reduced rates of cAMP hydrolysis, generating a positive cGMP-to-cAMP cross-talk.

3.2. Phosphodiesterase 3

Another important cGMP-regulated PDE is PDE3. This enzyme hydrolyzes both cAMP and
cGMP. Often referred to as cGMP-inhibited PDE, PDE3 shows higher catalytic rates for cAMP but
relatively high affinity for cGMP, which acts as a competitive inhibitor of cAMP hydrolysis [100,101].
This creates the so-called positive cGMP-to-cAMP cross-talk (Figure 2). PDE3A and PDE3B are the
two PDE3 subfamilies, with the former being abundant in cardiomyocytes, oocytes, vascular smooth
muscle and platelets and the latter being expressed in the pancreas, liver, and adipose tissue [100].
PDE3A controls myocardial contractility by interacting with the sarcoplasmic/endoplasmic reticulum
calcium ATPase (SERCA2a) [102]. By utilizing their direct positive inotropic effects, PDE3 inhibitors
are used for acute treatment of end-stage heart failure (HF) [103], albeit presenting increased mortality
as well as incidence of arrhythmias and sudden death after chronic use [104,105]. In contrast, PDE3B
seems to be more actively engaged in energy metabolism [106,107], but it can also protect the heart
from ischemia/reperfusion injury [108]. Knockout models have revealed that PDE3A, but not PDE3B,
exerts inotropic and chronotropic effects after treatment with PDE3 inhibitors [109] because PDE3A
regulates SERCA2a activity and subsequent SR Ca2+ uptake [102]. By chronically suppressing its
expression or action, myocyte apoptosis in vitro [110] or deterioration of ischemia/reperfusion-induced
apoptosis and cardiac injury in vivo [111] have been observed. Similarly, disruption of PDE3B
interaction with phosphoinositide 3-kinase γ, which can serve as an AKAP, has deleterious
effects [112–114] such as arrhythmias [114], necrotic cardiac tissue damage, and fibrosis [112].

PDE3 along with other PDEs constitutes an integral part of cAMP degradation. Evidence
suggests that it may also controls cGMP levels [108,115], atrial dynamics, and myocyte ANP release,
depending on the involved induction mechanism [72,116]. In terms of cGMP and cAMP pathway
interactions, cGMP binding to PDE2 enhances the hydrolytic activity of the enzyme and enables the
negative cGMP-to-cAMP cross-talk [75]. Conversely, cGMP binding to the catalytic domains of PDE3
reduced the rate of cAMP degradation, thereby mediating the positive cGMP-to-cAMP cross-talk.
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The previously reported experimental data regarding the affinity, specificity, and enzymatic activity of
PDE2 and PDE3 can largely explain their crucial role in cGMP/cAMP crosstalk [75].

4. Visualization of Compartmentalized cAMP and cGMP

Initially, the idea of compartmentalized action of cyclic nucleotides was conceived [117] and
revealed by several research groups [118–122] with Buxton and Brunton (1983) [122] using classical
biochemical methods to show that prostaglandin induces different PKA activity rates in particulate
and soluble fractions of cardiac myocytes after cAMP generation. Later on, Juvericius and Fischmeister
(1996) [123], by utilizing a combination of two-barrel microperfusion and whole patch clamp techniques,
further confirmed the compartmentation theory in frog ventricular cells, where local application of
a β-adrenergic agonist preferentially stimulated the LTCCs close to activated receptors.

To detect cAMP compartmentation in health and disease, multiple techniques have been
employed that were only able to detect global concentrations of cyclic nucleotides and required
plenty of tissue material [124]. However, biochemical (radio- and enzyme-linked immunoassays)
or even electrophysiological approaches (patch-clamp technique), though sensitive and specific,
are limited in their capability to record and analyze cyclic nucleotide gradients directly in subcellular
microdomains under physiological conditions [124]. Therefore, novel live cell imaging techniques have
been developed for the visualization of cyclic nucleotide signaling and its compartmentation in real
time with high temporal and spatial resolution [9,124]. Such techniques are mostly based on Förster
Resonance Energy Transfer (FRET) biosensors.

FRET biosensors report a non-radiative energy transfer from an excited fluorescent molecule
that acts as a donor to a neighboring (located at nm distance) molecule that acts as an acceptor
with subsequent fluorescence emission without the direct excitation of the acceptor [125]. Multiple
FRET-based biosensors for cGMP [115,126–130] and cAMP [81], and for the activity of the downstream
effector proteins such as PKA [131–136], Epac [137–141], or CNG channels [142–144], have been
developed and successfully used to visualize cGMP and cAMP gradients [124,145,146]. They can
be further combined with other techniques such as scanning ion conductance microscopy (SICM),
which can be used to deliver receptor ligands onto defined membrane structures to targeted distinct
cAMP or cGMP pools and to study receptor–microdomain interactions. SICM is a non-optical imaging
technique that uses a small glass nanopipette to obtain a highly resolved morphological profile of
a living cell membrane based on ion current measurement [147–150]. It can also be combined with FRET
for more accurate and specific detection of microdomain alterations in health and disease [149,151,152].

5. Imaging of cGMP-to-cAMP Crosstalk via PDE2 and PDE3

Employing FRET for live cell imaging, recent studies have revealed strongly remodeled
cAMP/cGMP microdomains and subcellular concentration profiles in various cardiac pathologies,
leading among other mechanisms to a putatively enhanced involvement of PDE2 in cAMP/cGMP
breakdown and crosstalk compared to the other cardiac PDEs.

As mentioned above, the hydrolytic activity of PDE2 can be allosterically stimulated by cGMP to
limit cAMP levels, referred to as a negative cGMP-to-cAMP crosstalk. In cardiomyocytes, cGMP can be
produced by either pGC after ANP, BNP, and CNP stimulation or by the NO-dependent sGC. Sources
for NO include both synthesis in other cell types (e.g., by endothelial cells) and inside cardiomyocytes,
e.g., by β3-adrenoreceptor (β3-AR) stimulated pathway, which via inhibitory G-proteins leads to NOS
activation (Figure 2). PDE2 hydrolyzes cAMP (e.g., produced in response to the β1/2-adrenergic
agonists such as noradrenaline), but its stimulation can be in turn limited by its cGMP hydrolyzing
activity, which increases in importance when cGMP concentration rises [51,89]. It has been suggested
that PDE2-dependent cAMP hydrolysis might have a more critical effect on cardiomyocyte function,
at least under adrenergic overdrive conditions [81,153,154].

The specific role of PDE2 in orchestrating the cyclic nucleotide compartmentation (i.e., cAMP)
was supported by experimental evidence coming from a study that demonstrated that, in neonatal
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rat ventricular myocytes, activation of PDE2 was ineffective in counteracting the forskolin-mediated
rise in intracellular cAMP levels [81]. It could also be inferred that, at least in part, stimulation of
PDE2-mediated cAMP hydrolysis occurs via a β3-AR/eNOS/sGC pathway (Figure 2). On the contrary,
evidence from other studies [155–158] showed that PDE2 was effective in blocking intracellular
increases of cAMP levels mediated by catecholaminergic activation of β-adrenergic receptors or
forskolin-mediated AC activation under hypertrophic conditions. By inhibiting the subsequent
inotropic effects, these groups were able to argue for a distinct subcellular localization and activity of
PDE2 within cardiomyocytes.

More recently, Mehel and colleagues [155] were able to show that myocardial PDE2 is unregulated
in human and experimental heart failure and blocks cAMP increase after acute β-AR stimulation.
PDE2 upregulation may act as a counterbalance, neutralizing neurohormonal (i.e., β-adrenergic)
hyperactivity typically seen in heart failure [155,159]. Furthermore, specific PDE2 inhibition has
restored β-AR-mediated signal in diseased cardiomyocytes, while PDE2 overexpression has completely
abolished catecholamine effects and hypertrophy without affecting basal contractility [155]. In addition,
cAMP hydrolysis via PDE2 mediated the reduction of aldosterone production in adrenal cells,
suggesting beneficial synergy between cardiovascular and renal systems [88]. However, for every
experimental study, the limitations dictated by the in vitro acquired results might not reflect the in vivo
PDE functions, and further experiments in large animal models are required to fully explore the PDE2
role in heart failure pathophysiology. Nevertheless, the overexpressed PDE2 activity may constitute
a potential approach to effectively control the deleterious effects of heart failure, e.g., by augmenting
its microdomain-specific actions.

On the other hand, there are also studies in which PDE2 may not necessarily exert beneficial
effects, but rather contribute to hypertrophy. In cell-based experiments, another pool of cAMP/PDE2
was found to modulate hypertrophic growth of cardiac myocytes by regulating PKA-dependent
phosphorylation of nuclear factors of activated T cells (NFAT) [156]. In this study, Zoccarato
and colleagues [156] showed that PDE3 and PDE4 inhibition increase cAMP levels and result in
hypertrophy, whereas PDE2 inhibition is antihypertrophic despite an increase in cellular cAMP
content. Live cell imaging of intact cardiomyocytes revealed that PDE2 inhibition exerted its
antihypertrophic effects by generating a locally confined cAMP microdomain, in which PKA type II
plays a significant role by phosphorylating NFAT. These are clearly contradicting reports showing
remarkable discrepancies especially in the in vivo actions of cardiac PDE2. Further experimental work
is required to fully elucidate this question as well as the role of PDE2 in different subcellular cAMP
microdomains. It will be especially important to develop and study a tissue-specific knockout mouse
model for PDE2.

Another live cell imaging study has developed the first in vivo model expressing a cAMP
biosensor targeted to SERCA2a in transgenic mouse cardiomyocytes [157]. Using FRET imaging,
it was able to unveil impaired cAMP signal communication between β1-AR located at the membrane
and sarcoplasmic reticulum microdomains during early heart failure. By inhibiting PDE2, the authors
demonstrated its higher contribution to the regulation of local cAMP levels under pathological
conditions [157]. These data suggest that PDE2, when locally or globally upregulated, might potentially
contribute to cardioprotective effects in certain microdomains.

Moreover, an elegantly-designed study by Perera et al. [158] proved experimentally for the first
time that, in early compensated cardiac hypertrophy preceding heart failure, cGMP-sensitive PDE2
and PDE3 were already physically and functionally rearranged between β1- and β2-AR-associated
cAMP microdomains despite unchanged whole cell expression levels and activities. More specifically,
the switch of PDEs from PDE3 to PDE2 at the β2-AR, accompanied by a reduction of PDE2 at the β1-AR,
led to a turnaround of cAMP cross-talk in a way that, in this pathological setting, the ANP/cGMP
signaling pathway by this mechanism could enhance β-AR-mediated cardiac contractility inducing
positive inotropic and chronotropic effects following β-AR stimulation (Figure 3). The provided
evidence shed light on the poorly understood early microdomain remodeling mechanisms. It has
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been suggested that, in this way, the heart can compensate for the increased contractility demand
under pressure overload [158]. However, our knowledge about microdomain-related contractility
mechanisms in early disease is still in its infancy and has to be improved.
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microdomains. By this mechanism, elevated ANP can augment β-adrenoceptor-stimulated 
contractile function. NE: norepinephrine, the physiological β-AR agonist. Adapted from [158]. 
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Figure 3. PDE2 and PDE3 redistribution in early cardiac hypertrophy changes cGMP-to-cAMP
cross-talk. β2-AR microdomain is normally controlled by PDE3, while PDE2 is functionally associated
with β1-AR. In disease, redistribution of PDE2 from β1- to β2-AR-associated membrane microdomains
leads to a decrease of the local β2-AR-cAMP and to an increase of global β1-AR-cAMP pool under
elevated ANP and cGMP levels observed in hypertrophy. This relocation of cGMP-regulated PDEs leads
to a turnaround of cGMP-to-cAMP cross-talk between both β-AR microdomains. By this mechanism,
elevated ANP can augment β-adrenoceptor-stimulated contractile function. NE: norepinephrine,
the physiological β-AR agonist. Adapted from [158].

The ability of PDE2 to compartmentalize local pools of cAMP has been in part attributed to a much
higher speed of cAMP hydrolysis by this PDE as compared to its synthesis by ACs based on FRET
imaging in aldosterone producing cells [139]. The most recent finding in regard to cGMP-sensitive
cyclic nucleotide compartmentation via PDE2/3 is described in a study using a cardiomyocyte-specific
PDE2 transgenic mouse model [159]. In fact, it was shown that endogenous PDE2 contributes to heart
rate control under physiological conditions and that PDE2 overexpression protects against arrhythmias
and enhances inotropic performance after myocardial infarction [159], providing evidence in support
of PDE2 overexpression and highlighting its beneficial role in diseased heart. However, the conclusions
from such data obtained from a transgenic mouse model overexpressing this PDE several folds above
the endogenous level should be treated with caution since excessive amounts of PDE2 might vanish
the boundaries between at least some cAMP microdomains.

Trying to further elucidate the NO/cGMP or NPs/cGMP and cAMP crosstalk, which was
also demonstrated in CMs, additional studies utilizing previously developed targeted FRET
biosensors [160] and live cell imaging techniques uncovered that the interconnection between
cGMP and cAMP in CMs is closely linked to the intracellular locus of regulation [161]. Depending
on the recruited cyclase (soluble or particulate) and the associated PDE, cGMP can either
augment or inhibit the cAMP levels after catecholamine stimulation and further affect downstream
phosphorylation of PKA and contractility. In fact, cGMP can inhibit PDE3 as a competitive
substrate for cAMP and allosterically stimulate PDE2A-mediated cAMP hydrolysis [72] locally
without largely affecting global cAMP levels in the cell [161]. Induction of cGMP by catecholamine
stimulation was found to differentially regulate intracellular cAMP pools that either activate
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PKA-RI/PDE3- or PKA-RII/PDE2-associated compartments and provoke opposing effects on local
cAMP signals [161]. Low basal cGMP levels (~10–50 nmol/L) which could be detected by FRET in
adult cardiomyocytes [115] can even facilitate cGMP hydrolyzing activity of PDE3, while higher
(between 200 and 500 nmol/L) cGMP levels can activate PDE2A and inhibit PDE3 towards cAMP
hydrolysis [162]. Similarly, NO donors via sGC affect both the PKA-RI and PKA-RII compartments,
whereas ANP via pGC limits cGMP action to the PKA-RII compartment only [161]. This evidence
supports that cGMP exerts local but not global cAMP control in the cardiomyocyte in neonatal
rat ventricular myocytes (NRVMs) when isoproterenol is administered in a microdomain-specific
manner [161]. For instance, cGMP diminishes cAMP gradients by PDE2 activity when sGC and
ANP/pGC mediate its production, while it augments cAMP gradients by inhibiting PDE3 when
sGC does so. It is evident that PDE2 exerts cardioprotective regulation against excessive adrenergic
stimulation by interconnecting β1/2-AR/cAMP and β3-AR/cGMP pathways [163] and paves the way
for further experimental exploration.

Recently, Li and colleagues (2015) [164] showed that PDE2A overexpression blunted BNP-mediated
effects by decreasing cGMP production and negatively affecting downstream effectors such as calcium
current, intracellular calcium transient, and neurotransmitter release. PDE2A inhibition was also
sufficient to reverse the abrogated BNP response. It was also observed that the stellate neurons of the
prohypertensive rats express higher PDE2A levels as compared to the normotensive control. These data
again underpin the importance of PDE2A upregulation in preventing the BNP-mediated inhibition of
sympathetic transmission with subsequent maladaptive changes. Nevertheless, further experimental
evidence is required to support whether the BNP-cGMP-PDE2A pathway is actually impaired in
hypertensive and heart failure models.

More recently, Meier and colleagues [165] demonstrated the beneficial effect of CNP on β1- and
β2-adrenoceptor signaling in rat hearts through cGMP-cAMP crosstalk, when PDE3 is inhibited by
cGMP. The CNP-mediated interplay of the signaling pathways was unaffected both in healthy and
failing hearts, while BNP was not able to regulate similar cAMP-mediated effects in any experimental
group. This study analyzed mechanisms of cyclic nucleotide crosstalk, trying to explain the lack of
long-term positive effects of natriuretic peptide in therapeutic schemes for heart failure.

In general, the use of family-selective PDE inhibitors and of genetic knock-down or
knock-out models is another way to assess the contribution of individual PDE families in the
compartmentalization of cAMP signaling pathways in cardiac myocytes [81,134,156,161,166,167].
It would be interesting to generate a tissue-specific PDE2 knock-out mouse line and explore the role of
this particular phosphodiesterase in cardiovascular disease. This goal has remained unattainable due
to perinatal lethality of global PDE2 knockout mice. The effect of PDE2 overexpression or upregulation
e.g., by inflammation, remains to be clarified as to whether it counterbalances or further deteriorates
cardiovascular disease in response to pathologic stimuli.

6. Conclusions

In conclusion, cAMP and cGMP signaling pathways as well as their crosstalk offer a high
level of intracellular organization and constitute an interesting pharmacological topic in health
and disease. The positive or negative cGMP-mediated regulation of cAMP response that occurs
in intracellularly confined loci controlled by distinct PDE isoenzymes could potentially pave the way
for novel pharmacological approaches in heart failure treatment. Despite the encouraging evidence,
there is still a long way to go before we can fully decipher and understand the exact mechanisms by
which these distinct molecular effectors maintain homeostasis and induce maladaptive changes in
the heart.
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