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There has been much success recently in theoretically simulating
parts of complex biological systems on the molecular level, with
the goal of first-principles modeling of whole cells. However, there
is the question of whether such simulations can be performed
because of the enormous complexity of cells. We establish approx-
imate equations to estimate computation times required to simu-
late highly simplified models of cells by either molecular dynamics
calculations or by solving molecular kinetic equations. Our equa-
tions place limits on the complexity of cells that can be theoreti-
cally understood with these two methods and provide a first step
in developing what can be considered biological uncertainty rela-
tions for molecular models of cells. While a molecular kinetics de-
scription of the genetically simplest bacterial cell may indeed soon
be possible, neither theoretical description for a multicellular sys-
tem, such as the human brain, will be possible for many decades
and may never be possible even with quantum computing.

biological uncertainty principle | biological complexity |
computational limits

In 1966 Crick asserted: “The ultimate aim of the modern move-
ment in biology is to explain all biology in terms of physics and

chemistry (1).” Our interpretation of Crick’s comment is that ex-
planation at a deep level will come from physics and chemistry
theory. With the advent of computers and their use as a major
tool in scientific research, theorists have come to rely more and
more on simulations to understand physical, chemical, and bio-
logical systems, rather than on analytical models. Simulations are
no longer just used to check the range of validity of theoretical
equations, but to understand experimental results for systems
that are too complex to be amenable to treatment by analytical
models. The challenge, of course, for biologically oriented the-
orists is not to simply run simulations, such as molecular dynamics,
but to gain an improved understanding of how a particular bio-
logical system works from an insightful analysis of the trajectories.
By concentrating on a set of global variables that are assumed

or known to be important for the functioning of a cell, such as
mean concentrations of metabolites, RNA, and proteins, coarse-
grained cell dynamic descriptions are currently becoming avail-
able from developments in the field of system biology and com-
pare very favorably with experimental data (2). The computational
burden of such coarse-grained simulations is straightforwardly
manageable by modern computers, but the selection of the global
variable, which is crucial, and the neglect of spatial concentration
variations may influence the results obtained. In contrast, sim-
ulations that resolve molecular and spatial detail do not rely on
choosing relevant coarse-grained degrees of freedom beforehand,
but pose fundamental problems in terms of the computational ef-
fort. Motivated in part by the recent success of simulating subcel-
lular biological organelles and the goal of simulating whole cells
with molecular resolution (3, 4), the question arises of how complex
can a system be before it is no longer possible to be simulated on a
computer. To make a quantitative assessment of the level of com-
plexity that can be simulated at the molecular level, we consider here
the two main molecular methods currently being employed (3, 4),
namely the physics and chemistry methods of molecular dynamics

simulations and the probabilistic methods of solving molecular
kinetics equations. We consider the simplest cell capable of
reproducing itself, the bacteriumMycoplasma genitalium, and the
most important and most interesting multicellular system, the
human brain.

Results
A force-field–based molecular dynamics simulation consists of
solving Newton’s equations of motion for every atom of every
molecule using simplified, empirical interatomic energy func-
tions to determine the position and velocity of every atom in the
system as a function of time. These molecular mechanics energy
functions do not consider the electronic degrees of freedom, which
are essential for describing the making and breaking of covalent
bonds or electron transfer, as occur for the many chemical reactions
in a biological cell. Chemical reactions require the use of quantum
mechanics, which is much more time-consuming because the
interatomic forces must be obtained by solving Schrödinger’s
equation rather than from empirical functions. Fortunately, the
quantum-mechanical calculations are only necessary for the
atoms of the active sites of the enzymes and their bound sub-
strates. The remainder of the protein, the unbound substrates,
and the aqueous solvent, can be simulated with acceptable ac-
curacy using force fields. This combination of quantum me-
chanics and molecular mechanics (QM/MM) for proteins
originated with the work of Warshel and Levitt (5) and is now
extensively used (6).
The approximate computational time (TCPU) for a QM/MM

simulation of a system of N atoms, which contains a total of p
regions with n atoms each that are treated quantum mechan-
ically, can be written as

Significance

This work addresses a new and important question concerning
biological complexity. What is the level of biological complex-
ity that can be theoretically described in molecular detail?
Simple algebraic equations are presented that determine the
computational time required to simulate simplified molecular
models for a single cell, the genetically simplest bacterium, and
the most important and interesting multicellular system, the
human brain. The results place limits on when, if ever, such
theoretical descriptions will be possible.

Author contributions: R.R.N. and W.A.E. designed research, performed research, and
wrote the paper.

Reviewers: D.E.M., The University of Texas at Austin; and S.P.-A., D. E. Shaw Research.

The authors declare no competing interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).

See online for related content such as Commentaries.
1To whom correspondence may be addressed. Email: rnetz@physik.fu-berlin.de or eaton@
nih.gov.

Published January 25, 2021.

PNAS 2021 Vol. 118 No. 6 e2022753118 https://doi.org/10.1073/pnas.2022753118 | 1 of 3

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

https://orcid.org/0000-0003-0147-0162
https://orcid.org/0000-0002-9244-5407
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2022753118&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1073/pnas.2022753118
mailto:rnetz@physik.fu-berlin.de
mailto:eaton@nih.gov
mailto:eaton@nih.gov
https://doi.org/10.1073/pnas.2022753118
https://doi.org/10.1073/pnas.2022753118


TCPU ≈ TMM
CPU + TQM

CPU ≈ (αN lnN + βpn3)
Treal

Δν
, [1]

where Treal is the time over which the process is modeled, Δ is the
time discretization step, and ν is the computer speed in floating-
point operations per second (flops). The classical contribution
(first term) is dominated by calculating the electrostatic interac-
tions between the partial charges on all the atoms of the protein,
which scales as α N ln N, where the numerical prefactor that
counts the number of floating-point operations, α, is on the order
of 10 (7). The quantum-mechanical part (second term) is on the
density-functional level and is dominated by the effort required
to diagonalize the Hamiltonian, which scales as the cube of the
number of atoms n in the quantum regions of the molecules. The
numerical prefactor, β, is on the order of ∼104.* Importantly,
both terms in Eq. 1 essentially scale linearly in system size,
i.e., linearly in N or p.
AM. genitalium cell contains a total of ∼3 × 109 atoms [spherical

cell volume of radius of 0.2 μm (12) times the atom number
density of water of 1011 atoms per μm3]. Of the ∼77,000 protein
molecules in the cell (12), ∼26,000 (= p) (12) are enzymes with
active sites. Assuming n = 100 atoms, Δ = 10−15 s, and ν = 1017 flops
(the speed of the currently fastest supercomputer: the “Summit” at
Oak Ridge), TCPU for the 2-h doubling time (12) of the bacterium is
∼109 y, where >99% of the computation time is for the QM part.
Although such a QM/MM calculation cannot be performed now, will
it be possible in the future? Over the past 25 y, the speed of su-
percomputers has increased roughly 10-fold every 5 y, as predicted by
Moore’s law (13). However, it is not clear whether computer speed
will continue to increase exponentially at this rate for the next ∼50 y,
which would be needed to shrink the computational time down to
a month.
The most important and most interesting multicellular system

is, of course, the human brain, where an ultimate goal of science
is to understand thinking, memory, and behavior. Given a par-
ticular stimulus, for example, an accurate simulation may be able
to explain or predict a response. This multicellular system con-
tains ∼1011 neurons (14), ∼1011 proteins per neuron (15), and an
estimated ∼1026 atoms for the average human brain of 1,200 cm3

calculated as above (1.2 × 1015 μm3 × 1011 atoms per μm3), so the
situation is quite different. Using a conservative guess that the
active site complexes of only 109 of the 1011 proteins in the average

neuron must be treated quantum mechanically, the calculation of
the quantum-mechanical part for 1 h would take ∼1024 y and
∼1023 y for the Newtonian part. It seems unlikely that computer
speed will continue to increase at the same rate for the next 125 y
(after which a brain QM/MM simulation could be done in a
month). We are, therefore, forced to conclude that, while an
atomistic molecular dynamics simulation including quantum ef-
fects of a single bacterial cell may be possible in this century,
such simulations of a human brain for even 1 h will not be possible
until much later and may never be possible. Even if quantum
computing could be adapted for molecular dynamics calcula-
tions, an enormous speed-up would be needed in order for such
simulations to be performed in a reasonable time (16).
An alternative, albeit much more approximate, approach to

the problem is a description of cells by treating them at a prob-
abilistic rather than explicit particle level. In such description, only
the spatial coarse-grained probability distribution of each type of
molecule as a function of time is considered (3). Because mol-
ecules can diffuse from one part of a cell to another to chemi-
cally react or simply bind to another molecule, it is necessary to
solve a set of partial differential equations, called the reaction–
diffusion Master equation. The solution to this equation yields
the probabilities of finding the number of each molecular type—
protein, bound complex, lipid, nucleic acid, metabolite, ion, etc.—at
a given position in a cell as a function of time. A rough estimate
of the time (TCPU) required to solve the reaction–diffusion
Master equation by simulating it as molecules jumping between
subvolumes (voxels) on a lattice mesh and reacting within the
voxels reads

TCPU ≈ γTrealmMK(L=l)
3

Δν
, [2]

where again Treal is the time over which the process is modeled,
M is the number of different reactive molecular species in a cell
treated as a bag of molecules, m is the typical number of specific
and nonspecific possible reactions per molecular species, L is the
linear cell size, l is the spatial discretization size needed to accu-
rately describe the concentration profile of each different species,
K is the maximum copy number of each species per discretization
volume element (voxel) treated in the Master equation, Δ is the
time step in simulating the Master equation, and v is the com-
puter speed in flops. The numerical prefactor γ is on the order of
102 and accounts for the computational expense of one iteration
step.†

The number of different molecular species in a Mycobacterium
genitalia bacterial cell (M) is at least ∼500 (12), which is the
number of different proteins and does not include small mole-
cules, posttranslationally modified proteins, or complexes that
would have to be treated as separate species in the reaction–
diffusion Master equation. The mean number of reactions per
molecular species can be estimated as m = 10. To obtain the
concentration profile for this cell with L = 400 nm, a discretization
of l = 10 nm can be used with K = 1,000 copy numbers in each voxel
as a safe upper bound. To account for the fastest unimolecular and

*In current ab initio molecular dynamics simulation schemes that employ state-of-the-art
density-functional theory, the most time-consuming step is the orbital transformation,
which scales as RQ2 with the number of occupied orbitals Q and the number of basis
functions R (8), which themselves can be assumed to scale with the number of atoms as
Q = γn and R = «n, where the numerical coefficients are on order of γ ∼ 10 and « ∼ 10.
Assuming, furthermore, that the number of iteration steps in the self-consistent field
determination is on the order of 10, the numerical prefactor in Eq. 1 becomes β ∼ 10«γ2 ∼
104, which could be multiplied by a factor that accounts for the numerical effort in each
step. We note that approaches that utilize sparse matrix properties and scale linearly in
n are currently becoming available (8). Also, adaptive QM/MM methods are under de-
velopment and could be used to treat reactive regions quantum mechanically only dur-
ing the fraction of time that a chemical reaction is occurring, which depends on diffusion
times and on the lifetime of the bound substrate (9). From Eq. 1, it transpires that such
approaches are particularly needed to reduce the overall computation time if the QM
part dominates the total CPU time, which is true for βpn3 > αN ln N. Likewise, coarse-
graining approaches that lump a number of atoms into effective particles or molecules
and that replace water by a continuum medium, characterized by a dielectric constant
and a viscosity, reduce the time spent on the classical MM part and can cope with reac-
tions in a heuristic fashion (10), but also introduce approximations the reliability of
which is less clear. While the accuracy of current force fields is at a level where protein
folding and supermolecular aggregation processes can be faithfully modeled (11), it is
clear that systematic errors in the resulting free energies remain and will sensitively
perturb reaction kinetics. Likewise, density functionals that are currently employed in
ab initio simulations entail a number of approximations and neglect electron dynamics
and excited states but are subject to ongoing improvements. Lastly, in order to estimate
the dependence of simulation results on initial conditions, many independent simulation
runs would have to be performed, so that our formula would be multiplied by an ad-
ditional factor that accounts for the number of simulation runs. All these factors con-
stitute corrections but do not principally invalidate our formula.

†Eq.2 is derived from the fact that in one time step of the iterative solution of the
reaction–diffusion Master equation, one updates the probability of each copy number
(contributing a factor K) of each molecular species (factor M ) in each voxel [factor (L/l)3]
by summing over all reactions of that species (factor m). By only tracking the local mean
concentrations, the reaction–diffusion Master equation becomes equivalent to the
chemical reaction–diffusion equation, which is characterized by K = 1. The largest short-
coming of reaction–diffusion Master equation approaches compared to particle-based
methods is that molecules are treated as noninteracting pointlike particles, except mean-
field interactions that are averaged over voxels or when particles react to form separate
species. This precludes treatment of extended molecules with conformational degrees of
freedom such as DNA or molecular aggregates such as lipid bilayers. Needless to say,
hybrid approaches that treat some molecules in a cell on a particle level and the rest on a
stochastic level are conceivable.
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bimolecular reactions, a time step of Δ = 1 μs may be sufficient.
With our highly oversimplified model that considers a bacterial
cell as a bag of ∼500 different molecular species, the time (TCPU)
required from Eq. 2 for the Oak Ridge computer to simulate a
single bacterial for its 2-h doubling time and the above param-
eters is roughly 1 mo. Therefore, the limiting factor is not the
computational time, but is determined by the time required to
experimentally or theoretically determine accurate forward and
reverse rate coefficients for all relevant chemical reactions and
intermolecular interactions in the cell.
Simulating a human brain with ∼1011 neurons (14) is again a

wholly different matter. Using the bacterial values for parame-
ters other than M = 4,000 (17) and L = 10 μm (15), the com-
putation time from Eq. 2 with current computing power is
increased by a factor of ∼10 for the larger number of different
proteins, a factor of 1011 for the number of neurons compared to
a single bacterial cell, and by an additional factor (25)3 ∼104 for
the difference in L to give TCPU ∼ 1015 y for a 1-h simulation.
Consequently, a 1-mo calculation for an enormously over-
simplified treatment of the brain for 1-h real time as a collection
of bags of molecules would not be practical for about 80 y (again
using Moore’s law, which will not necessarily hold for the next
80 y). So, as with the molecular dynamics calculations, we con-
clude that, with a realistic model, simulating the brain at the
molecular level with a reaction–diffusion Master equation may
not happen for a very long time and may never be possible be-
cause of both limits on computational capability and the deter-
mination of rates for all processes for a realistic model of the
brain.‡

Discussion
Our estimates of the computational time required to simulate
highly simplified models of cells indicate that the simplest bac-
terial cell may be theoretically described in the not too distant
future by solving molecular kinetics equations. Simulation of this
cell by molecular dynamics calculations will take much longer,
and would be feasible in ∼50 y if Moore’s law continues to hold.

However, our estimates suggest that simulation of a multicellular
system such as the human brain may never be possible, pre-
sumably even if quantum computing could be adapted for such
calculations. We must emphasize that simulating parts of bio-
logical cells has (3, 4) and will continue to yield extremely valuable
information. On the other hand, enormously important insights
can be obtained on how any cell or multicellular system func-
tions, including the human brain, by coarse graining or alterna-
tive descriptions that do not include molecular detail. In fact,
many researchers share the view that the most important ad-
vances in theoretical understanding of complex biological sys-
tems will not come from the detailed molecular simulations we
have discussed in this work, but from the discovery of collective
organizing principles that may be independent of such microscopic
details (18, 19). Moreover, new theoretical approaches arising from
the growing field of systems biology may also provide answers to
important questions that are unanswerable by the methods we have
discussed (20).
In physics, the Heisenberg uncertainty principle places limits

on the precision in determining pairs of values for a single par-
ticle, such as position and momentum. The notion of uncertainty
in biology is quite different (21) and there is, as yet, no biological
uncertainty principle, although the well-known inability to de-
termine the exact nucleotide sequence of a cell’s genome due to
experimental errors has been proposed as a biological one (22).
In biology, of much greater importance is understanding how cells
function, which immediately raises the question we have addressed
here of what level of complexity can possibly be simulated on a
computer. Eqs. 1 and 2 place limits on the complexity of cells
that can be understood with current theoretical molecular meth-
ods. They therefore represent a first step in developing equations
for realistic molecular models that could be considered biological
uncertainty relations. Hopefully, the work presented here will
stimulate thinking on the larger issue of formulating a compre-
hensive biological uncertainty principle.

Data Availability. All study data are included in the article text.
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