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Effects of human mobility 
and behavior on disease 
transmission in a COVID‑19 
mathematical model
Juan Pablo Gutiérrez‑Jara1,3,6, Katia Vogt‑Geisse2,6*, Maritza Cabrera1,3,6, 
Fernando Córdova‑Lepe4,6 & María Teresa Muñoz‑Quezada5,6

Human interactions and perceptions about health risk are essential to understand the evolution over 
the course of a pandemic. We present a Susceptible-Exposed-Asymptomatic-Infectious-Recovered-
Susceptible mathematical model with quarantine and social-distance-dependent transmission rates, 
to study COVID-19 dynamics. Human activities are split across different location settings: home, 
work, school, and elsewhere. Individuals move from home to the other locations at rates dependent 
on their epidemiological conditions and maintain a social distancing behavior, which varies with their 
location. We perform simulations and analyze how distinct social behaviors and restrictive measures 
affect the dynamic of the disease within a population. The model proposed in this study revealed 
that the main focus on the transmission of COVID-19 is attributed to the “home” location setting, 
which is understood as family gatherings including relatives and close friends. Limiting encounters at 
work, school and other locations will only be effective if COVID-19 restrictions occur simultaneously 
at all those locations and/or contact tracing or social distancing measures are effectively and strictly 
implemented, especially at the home setting.

Severe acute respiratory syndrome coronavirus (SARS CoV-2) is a highly transmissible coronavirus that emerged 
in December 2019 in Wuhan, China causing a devastating disease worldwide named coronavirus disease 
(COVID-19)1–3. It has spread overwhelmingly beyond its predecessors SARS and MERS, in terms of infected 
figures worldwide and geographical coverage1. SARS CoV-2 is transmitted through respiratory droplets emitted 
by coughing, sneezing or talking, allowing the virus to enter the respiratory system of the susceptible agent4. 
Moreover, the virus can cause infection through contaminated hands that make contact with mucous membranes 
of the eyes, mouth, and nose.

As of July 27, 2021, globally, the number of confirmed cases exceeds 194 million and more than 4 million 
people have died from COVID-19. On the other hand, as of July 26, 2021, a total of 3,696,135,440 vaccine doses 
have been administered in the population5. The highest number of cases confirmed is found in the Americas 
(76,182,529), followed by Europe (59,312,787), South East Asia (37,755,175), Eastern Mediterranean (12,255,849), 
Africa (4,813,735) and Western Pacific (4,287,201). The 12 countries with the highest number of confirmed cases 
of COVID-19 to this date are: United States of America (34,256,255); India (31,440,951); Brazil (19,688, 663), 
Russian Federation (6,172,812); France (5,876,269); United Kingdom (5,722,302); Turkey (5,618,417); Argentina 
(4,846,615); Colombia (4,727,846); Spain (4,342,054); Italy (4,320,530) and Germany (3,758,401).

In early 2020, the development of vaccines against SARS-CoV-2 began. Several were authorized for emergency 
use in different countries by the end of 2020 and the beginning of 20216, such as the Pfizer-BioNTech BNT162b2 
vaccine7, the Oxford-AstraZeneca vaccine8, the Moderna vaccine9 or the SinoVac-CoronaVac vaccine10–12. Even 
with vaccination campaigns in roll-out, non-pharmaceutical interventions such as keeping social distance, wear-
ing face-masks, and avoiding large gatherings remain mostly recommended and are essential to control the bur-
den of the pandemic13, especially considering the thread of potentially immune-escaping variants14. Additional 
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to social distancing measures, a way to prevent local outbreaks in workplaces, schools, and other locations is 
implementing effective testing, contact tracing, and quarantine procedures15–17.

During the current pandemic, it has become more evident that the spread of COVID-19 primarily depends 
on factors that strongly relate to human behavior, individual lifestyles, and ways in which people socialize18,19. 
Considering the relaxation of self-care rules plays an important role when modeling and forecasting the spread 
of COVID-1920. Hence, while the world is experiencing a global pandemic, the dynamics of social behavior and 
human contacts have reached a new level of importance. Close contacts are responsible for the transmission 
of a wide range of diseases18, as well as differences in contacting others become crucial to understand disease 
dynamics. In fact, social activities and cultural networks play a fundamental role when analyzing contact behav-
ior and contact dynamics that are sensitive to people’s daily activities21. For instance, individuals’ type of social 
encounters differ when going shopping or spending time at work. In particular, a European large-scale cross-
sectional pre-pandemic survey revealed detailed contact patterns22, showing that the number of close contacts 
per person per day significantly vary depending on the location, including home, work, school, etc., and also 
differ per country, showing for instance, that the contact rate of a person from Italy almost triples the rate from a 
German. Additionally, a study conducted in the United States that aimed to determine the prevalence and treat-
ment of latent Tuberculosis, revealed the importance of accounting for the number of contacts made at different 
workplaces daily23. This study showed that a good percentage of workplaces involved around 20 or more contacts 
per day; the largest number of reported contacts was 124 within a bank. A further relevant issue is a difference 
between countries regarding teachers/pupils ratios that affect the contact dynamics in educational facilities. The 
average U.S. pupil/teacher ratio in public schools is approximately 15.324. Nevertheless, the pupil/teacher ratio of 
primary and secondary education in developing countries such as the Middle East/North Africa, Sub-Saharan, 
Latin America, and others Caribbean in conjunction with East and South Asian countries range from 21 to 35 
on average25. According to UNESCO, the pupil-teacher ratio (PTR), computed as the total number of pupils in a 
particular school divided by the total number of teachers, was calculated for public primary schools in Nigeria, 
revealing a worse scenario with PTRs greater than 5026. Those contact differences between individuals is a crucial 
element for understanding how diseases are transmitted18.

Intervention measures that reduce social distancing can reduce effective contacts for disease transmission at 
any location27. In fact, it has been observed that the probability of infection between susceptible and infectious 
decreases with distance28. In every population, in the absence of disease, there is a natural social distance that is 
culture and location-dependent (home, work, school, etc.). Theories on human behaviors state that environmen-
tal factors, psycho-social aspects, and cultural backgrounds influence those distances that individuals maintain 
to each other in their daily lives29–33. However, social distances between individuals change from their natural 
ones in the presence of a pandemic situation34. Under such circumstances, individuals change their awareness 
by controlling their social distancing and contacting behavior, either spontaneously for protecting themselves 
or complying to government-mandatory interventions34–36.

Social science support in the field of human behavior is needed to align with epidemiological recommenda-
tions and to better understand the evolution of COVID-19. In this respect, different perspectives have been 
presented by the authors in37 for identifying insights regarding social and behavioral approaches during the 
current pandemic. Such findings show that a strong fear might change the behavior of the people, only if they 
feel a sense of efficacy in the measure taken. This study revealed a bias optimism among certain people: some of 
them belief that bad things are unlikely to happen to them which on one hand could avoid negative thoughts, 
but on the other hand could underestimate the impact of the disease. Consequently, depending of their percep-
tion about health risk, people might return to “normal life” by relaxing their protective measures from increased 
social distancing to their natural distancing and contacting behavior, providing favorable conditions for disease 
transmission38. Furthermore, scientific studies regarding dispositional resistance to change have been studied 
in different parts of the world39,40 revealing cultural differences amongst groups of people in terms of strong or 
weak resistance to change.

Another important issue that needs to be clarified is how people across the world spend their time and 
where they gather. Evidences suggest that time spent at each location (e.g. work, school, leisure activities, etc.) 
also depend on cultural practices41,42. A multicultural study conducted by the University of Oxford, revealed 
information referred to paid work and study hours distributed per week and weekends42 using a big data set 
that included information from: Belgium, Finland, Germany, Italy, Norway, Spain, Sweden, Bulgaria, Estonia, 
Latvia, Lithuania, Poland, Slovenia, Japan, Brazil and United States. In addition the American Time Use Survey 
(ATUS)41 determined the amount of time individuals in the United States spend on various activities, such as: 
home-activities, work, educational and leisure activities. From those studies, it can be concluded that individuals 
from Asian countries, Baltic states and the United States are the ones who spend greater time at work compared 
to other countries. Also, a report made by Data Quality Experian43 detailed the scheduled time Americans spend 
throughout the day (24 h) via an infographic picture. Based on this information, it can be said, for instance, 
that the largest number of people in the United States go to sleep at 3:00 a.m.; between 6:00 to 8:00 a.m., there 
is a sharp rise of people working or performing educational activities. Another digital source of the database is 
Statista44, reporting that a US citizen’s average daily time shopping is around 29 min. Finally, a recent platform 
for local mobility provides information about people’s mobility, clustered by types of activities for different com-
munities around the world during COVID-19 times45. This mobility information shows a percentual reduction/
increment of mobility for each activity type compared to a baseline pre-pandemic mobility index.

Current literature evidences many mathematical models that explain, characterize, and project the evolution 
of different infectious diseases that affect human beings46–50. In particular, plenty of mathematical models for 
COVID-19 dynamics have been developed recently51–54. Many of the constructed models are extensions of the 
classical Kermack-McKendrick Susceptible-Infectious-Recovered (SIR) epidemic model55, considering addition-
ally asymptomatic cases53,56, hospitalized individuals, quarantine strategy56–58 and/or disease induced deaths53.
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The complexity in capturing infectious diseases spread has lead us to incorporate human interactions and 
reactions within epidemic models18. Most classical models have assumed that all parameters related to human 
behavior such as contact rates are static, omitting that individuals are likely to change their behavior once they are 
exposed to the risk of acquiring a potentially deadly or dangerous disease38. In particular, it has been previously 
suggested to incorporate social-behavioral factors within mathematical disease models to understand better how 
personal interactions in a society affect disease transmissions, such as physical contact, social distancing behavior, 
and social mapping of activities38. As a result, a wide range of models that extend the classical approach include 
dynamic transmission rates, which often depend on the evolution of infectious individuals and human behav-
ioral variables59–68. In particular, recent scientific evidence has acknowledged the use of incorporating changing 
human behavior within the mechanisms of transmission of the novel SARS-CoV-251,53,54,57. Some other models 
account for human behavior by dividing the population into different risk groups to consider disease awareness, 
risk, or fear levels, among others69–78. For instance, in77, the authors show a deterministic mathematical model 
of differential equations and an agent-based model that incorporates the dynamics of “fear” to acquire a disease, 
showing that when fear subsides, it can produce multiple new waves of infection. In78, the authors include behav-
ioral change by studying disease dynamics, including active and less active groups of people, showing that disease 
dynamics are sensitive to the transfer rate between both groups. Another study79 incorporates social behavior in 
a compartmental form by presenting the competing dynamics between a resident pathogenic strain and a mutant 
strain with higher virulence using imitation dynamics80. In addition, a mathematical model, which quantifies the 
epidemiological impact of the size of groups of individuals, who do or do not follow responsible behavior, can 
be found in75. Moreover, in the context of COVID-19, an agent-based model was presented by the authors in81, 
which study non-pharmaceutical intervention scenarios by reducing contact rates in specific settings/locations, 
but without considering adaptive behavior due to disease presence. In82, the authors describe the importance of 
non-pharmaceutical interventions, particularly the use of face-masks, based on a model of ordinary differential 
equations, modeling face-mask use as a proportion that lowers the probability of transmission of the entire 
population. Finally, a modeling study in17 combined a model of individual-level transmission stratified by set-
ting, strategies of self-isolation, testing, contact tracing, and also physical distancing to ensure the effectiveness 
of interventions against SARS-CoV-2 . The aforementioned study showed that only self-isolation of symptomatic 
cases reduced the transmission rate up to 29%, whilst adding household quarantine increased the transmission 
reduction to 37%. This leads us to think that a stratified mathematical modeling approach aggregated by different 
settings such as household, work, school, and others, might provide a more accurate scenario for disease control.

We complement the existing literature by extending a compartmental model of ordinary differential equations 
by considering three main locations where individuals make contacts: home (h), work (w), school (c), and other 
locations (o), for instance, those destined to leisure activities. At each location, we propose a disease progres-
sion according to a Susceptible-Exposed-Infectious-Recovered (SEIR) model, where infectious individuals are 
divided into symptomatic and asymptomatic, and those infectious individuals in conjunction with individuals 
that are encountered by them, become quarantined for a certain period of time. Additionally, we incorporate 
social distancing at each location as a dependent variable described by a differential equation. The focus of this 
dynamic might depend on two opposite drives: the fear that people perceive due to the point prevalence of the 
disease as opposed to the resistance individuals experience to change social distancing behavior. All under the 
premise of a population that is culturally accustomed to behave following a certain natural distance. In addition, 
the transmission rate of a disease depends on the proximity of contacts between one susceptible and one infec-
tious individual18. Hence, in the proposed model, a transmission rate function will depend on the dynamics of 
the social distancing variable described before. The behavioral parameters in the present formulation will reflect 
how people behave daily, considering: (1) where individuals choose to go each day; (2) average time spent at 
the chosen location; and (3) behavioral aspects of fear and resistance to change, which affect social distancing 
dynamics at each location and consequently affect disease transmission.

To the best of our knowledge, no studies have been conducted using epidemiological modeling, structured 
by location and location-dependent social distancing dynamics, which is governed by disease perception and 
awareness. This study intends, first, to understand how different location-targeted restrictive measures applied 
overall or at different daily time-blocks affect disease dynamics; second, how a change in location-dependent 
social distancing affects disease dynamics; and third, how a policy measure of quarantining a person upon a close 
contact with an infected person might affect disease propagation at different locations.

Methodology
Model in the absence of disease.  In this subsection we present the model in the absence of disease. 
Without considering demographic factors, we assume a population of constant size N. We stratify the popula-
tion according to different settings: home (h), work (w), school (c) and other (o), such that Nh , Nw , Nc and No are 
respectively the number of individuals at each setting, i.e. N = Nh +

∑

x∈X Nx =
∑

y∈Y Ny is the total popula-
tion size, where X = {w, c, o} and Y = {h,w, c, o}.

We assume that individuals that are at home leave home at a rate δ in order to visit places in X, distributed 
such that a proportion αx ≥ 0 goes from home to location x ∈ {w, c, o} and 

∑

αx = 1 . Once an individual visits 
location x ∈ {w, c, o} , the average time spent at that location is σx , and hence, the exit rate from location x back 
to home is 1/σx . It is important to notice that the base location is home, i.e. there are no transitions between 
locations x ∈ {w, c, o} . The mobility dynamic can be represented by the following system of differential equations:

(1)

{

Ṅh = − δ(
∑

αx)Nh +
∑

1
σx
Nx ,

Ṅx = + δαxNh −
1
σx
Nx , x ∈ X,

∑

αx = 1.
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Considering that the time-unit is days, it is reasonable to assume that the rate δ and the proportions of how the 
location settings are distributed, αx , x ∈ {w, c, o} , differ according to the day of the week (e.g. weekday or weekend) 
and also according to dynamics that occur during a day (e.g. daytime or night). In that sense, we divide each 
day in six consecutive time-blocks of equal duration H = {1st, 2nd, 3rd, 4th, 5th, 6th} and the week in 7 days 
a week W = {Mon, Tue, Wed,Thu, Fri, Sat, Sun} , such that the notation

determines the value of each parameter in each time block according to i, and each day of the week according to j.
Figure 1 shows the mobility dynamics of the population in the absence of disease, at the locations home (blue), 

work (red), school (c) and other locations (purple) with time. Figure 1a shows the mobility for five consecutive 
weeks, starting on a Monday, with everybody at the home setting. We can observe a weekly periodic pattern, 
where the home location is the most visited. We see during the weekend an increase in home visits and a decrease 
in school and work locations, as expected. The zick-zack pattern represents the six time blocks per day, at which 
mobility dynamics change. Figure 1b depicts the dynamics between a Friday and the coming Monday, for each 
of the six daily time-blocks at each setting. The figure shows clearly, for instance, the decrease in work and school 
activities starting Saturday and lasting till Monday morning, while leisure and home activities increase during 
that time. Table 1 shows the parameter values at each time-block and day of the week used for Fig. 1.

Model in the presence of disease.  Here we extend the simple mobility model from the previous subsec-
tion by including disease dynamics. In particular, we present a model for COVID-19 dynamics with quaran-
tine, mobility and distancing behavior that differs according to location. The model splits the population into 
six epidemiological classes: Susceptible (S), Latent (E), Asymptomatic (A), Infectious (I), Quarantined (Q) and 
Recovered (R). We assume that latent individuals cannot transmit the disease, that asymptomatic do not show 
symptoms and that infectious individuals are symptomatic, and that asymptomatic individuals and infectious 
individuals are capable of transmitting the disease.

δ(i, j) αx(i, j) and σx(i, j), with (i, j) ∈ H ×W ,

Figure 1.   Daily distribution of the population in the spatial compartments of h-home, w-work, c-educational 
facilities, and o-other activities. In (a) the dynamics for five consecutive weeks. In (b) the dynamics during 4 
days from Friday to Monday to differentiate workday and weekend, depicting within each day six time-blocks. 
The parameters involved are detailed in Table 1 with a total population size N = 100,000.

Table 1.   Parameter values used in Fig. 1 and obtained from the references listed in Table 4, found at the end of 
the “Numerical results” section.

104δ 
102(αw ,αc ,αo)
(σw , σc , σo)

1st
9 p.m.–1 a.m.

2nd
1 a.m.–5 a.m.

3rd
5 a.m.–9 a.m.

4th
9 a.m.–1 p.m.

5th
1 p.m. – 5 p.m.

6th
5 p.m.– 9 p.m.

Mon → Fri

220 645 3585 7095 72,235 6060

(50,30,20) (50,   0, 50) (45,45,10) (40,40,20) (40,40,20) (10,30,60)

(3, 4, 2)/4 (3, 4, 2)/4 (3, 4, 2)/4 (3, 4, 2)/4 (3, 4, 2)/4 (3, 4, 2)/4

Sat → Sun

3000 100 1000 1000 3000 2000

(20, 0,80) (10, 0, 0) (100, 0, 0) (30,30,40) (10, 0,90) (20, 0,80)

(3, 2, 3) (3, 2, 3) (3, 2, 3) (3, 2, 3) (3, 2, 3) (3, 2, 3)
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We assume for the classes S, E, A and I, that individuals spend their time at home (h), work (w), educa-
tional facilities (c) and doing other leisure activities (o). We assume that susceptible, latent and asymptomatic 
individuals that are at home leave their home at a rate δ , such that a proportion αx goes from home to location 
x ∈ {w, c, o} . This proportion does not change according to if the person is susceptible, latent or asymptomatic, 
since at those stages individuals may not even realize that they are infected and hence wouldn’t change their 
behavior. Infectious individuals that are at home leave their home at a rate δi < δ , where a proportion αi

x visits 
location x ∈ {w, c, o} . Once an individual—of any of the epidemiological classes—visits location x, the time spent 
at that location is σx , and hence, the exit rate from location x is 1/σx . Figure 2 describes the behavioral flow of 
individuals, between home and location x.

We assume that individuals change their interaction distance with others depending on where they are 
located. We denote that interaction distance by Dy(t) , where y ∈ {h,w, c, o} represents home, work, school and 
others, respectively, whose dynamics is described by the equation

where �1 represents the rate of resistance to change with respect to the natural distance D∗
y that people keep from 

each other in the absence of disease; �y2 represents the per capita rate of change of the distance as a reaction to 
the number of infectious individuals; and N the total population size.

The diagram in Fig. 3 shows the flow between the epidemiological classes. This disease dynamics holds for 
any location y ∈ {h,w, c, o}.

Susceptible individuals can become latent when contacting an infectious or asymptomatic from the same 
location, according to the following force of infection

where βy
a (Dy ,�y) and βy

i (Dy ,�y) represent, respectively, the transmission rates upon a contact of a susceptible 
with an asymptomatic (subscript a) and with an infectious (subscript i) individual. In particular, the transmis-
sion rate at home ( y = h ) is defined as:

where D∗
h is the natural distance held at home and �h a parameter that considers the reduction in transmission at 

home due to home-exit restrictions. More specifically, observe that the transmission rate decreases when Dh(t) 
increases from the natural distance D∗

h . When Dh(t) is equal to D∗
h , the disease gets transmitted at a base line 

transmission rate βh
z  , times the parameter �h . The latter represents the reduction in the home-transmission rate 

when reducing by Redx the proportions α∗
x , x ∈ {w, c, o} , which are the proportions by which people leave the 

home (h) location under normal conditions. This way, �h is defined as

Equivalently, the transmission rates at work ( y = w ), school ( y = c ), and other locations ( y = o ) are defined as

(2)Ḋy = −�1(Dy − D∗
y )+ �

y
2

∑

y

(Iy + dQi)/N ,

(3)�y(t) := β
y
a (Dy ,�y)

Ay(t)

Ny(t)
+ β

y
i (Dy ,�y)

Iy(t)

Ny(t)
, y ∈ {h,w, c, o},

(4)βh
z (Dh,�h) := βh

z

D∗
h

Dh(t)
�h, z ∈ {a, i},

(5)�h := (1− Redw)α
∗
w + (1− Redc)α

∗
c + (1− Redo)α

∗
o .

Figure 2.   Schematics showing the flow between Susceptible (S), Latent (E), Infectious (I), Asymptomatic (A) 
individuals, between the home location represented by the subscript h, and other locations represented by the 
subscript x, where x ∈ {w, c, o} , such that w represents work, c educational facilities, and o other locations for 
example for leisure activities. The black dotted arrows represent transition rates that are due to disease dynamics 
and are described in Fig. 3. See Table 2 for the description of the parameters of this diagram.
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where the respective reductions in the transmission rates at those locations, due to home-exit restrictions, are

From the definitions of the parameters �y , y ∈ {h,w, c, o} , observe that we assume that the home-transmission-
rate gets reduced whenever people choose not to go to any of the other locations; while the transmission-rate 
at work, school, or other locations, get reduced only when people choose not to go to that specific location, i.e. 
work, school, other locations, respectively.

Individuals exit the latent class at a rate φy , of which a proportion ρy becomes asymptomatic and a propor-
tion 1− ρy becomes infectious (symptomatic). Infectious individuals become quarantined at a rate ψ i

y , entering 
the Qi class, and then die from the disease at a rate d or recover at a rate γ . Asymptomatic individuals become 
infectious at a rate µy . Asymptomatic and latent individuals become quarantined upon a close contact with 
an infectious person, entering the Qe,a class, both at a rate ψyIy/Ny , and then recover at a rate γ . Susceptible 
individuals become quarantined also at a rate ψyIy/Ny upon a close contact with an infectious person, entering 
the class Qs , and then return home at a rate ν . Recovered individuals may loose immunity and return home as 
susceptible individuals at a rate ǫ.

Using the schematics in Figs. 2 and 3 and the above description, we obtain the following system of ordinary 
differential equations governing the dynamics of the disease:

(6)β
y
z (Dy ,�y) := β

y
z

D∗
y

Dy(t)
�y , z ∈ {a, i}, y ∈ {w, c, o},

(7)�w =(1− Redw)α
∗
w + α∗

c + α∗
o

(8)�c =α∗
w + (1− Redc)α

∗
c + α∗

o

(9)�o =α∗
w + α∗

c + (1− Redo)α
∗
o .

Figure 3.   Schematics showing the flow between Susceptible ( Sy ), Latent ( Ey ), Infectious ( Iy ), Asymptomatic 
( Ay ), Recovered (R) and Quarantined ( Qi , Qe,a , Qs ) individuals, for each location y ∈ {h,w, c, o} , such that h 
represents home, w work, c educational facilities, and o other locations for example for leisure activities. The 
read arrows represent rates that depend upon a contact with infectious individuals Iy . The dashed-dotted purple 
arrow just holds when y = h . See Table 3 for the description of the parameters.
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Table 2.   Description of parameters and parameter values related to behavior. d: = day, m: = meters. a Average 
numerical value, the breakdown by blocks is listed in Table 4, found at the end of the “Numerical results” 
section.

Parameters Description Units Baselinea Ref.

δ Home exit rate for all, except for infectious individuals d−1 24/13.34 41

δi Home exit rate for infectious individuals d−1 0.5 ∗ δ Author chosen

αw ( αi
w) Proportion of non-infectious (infectious) individuals going from home to work Unitless 3.57/10.66 41

αc ( αi
c)

Proportion of non-infectious (infectious) individuals going from home to 
educational facility Unitless 0.46/10.66 41

αo ( αi
o)

Proportion of non-infectious (infectious) individuals going from home to per-
form other (e.g. leisure) activities Unitless 6.63/10.66 41

σw Average time spent at work d 3.57/24 41

σc Average time spent at educational facilities d 0.46/24 41

σo Average time spent at other (leisure) locations d 6.63/24 41

�1 Rate of resistance to behavioral change d−1 [0, 1] 39

�
y
2

Per capita rate of change of distancing behavior when at location y md−1 [0, 1] Author chosen

D∗
y Scaling distance relative to location y m [0.5, 2] 33

Table 3.   Description of epidemiological parameters and parameter values. a Average numerical value, 
the breakdown by blocks is listed in Table 4, found at the end of the “Numerical results” section. d: = day, 
1/φy + 1/µy + 1/ψ i

y ≤ 14 with y ∈ {h,w, c, o} , x ∈ {w, c, o}.

Parameters Description Units Value Baseline Ref.

ψy
Rate of transition to quarantine upon a close contact at 
location y, of S, E or A with I d−1 [1.88 ∗ 0.35 , 3.08 ∗ 0.75] a 22

β
y
a

Transmission rate of asymptomatic individual at 
location x d−1 ψy ∗ 0.3 ψy ∗ 0.3 Author chosen

β
y
i

Transmission rate of infectious individual at location x d−1 β
y
a ∗ 0.5 β

y
a ∗ 0.5 Author chosen

ψy
i Rate of transition to quarantine of I individuals at 

location y d−1 [1/3, 1] 1/5 83

ν Quarantine recovery rate d−1 1/14 1/14 83

φy Exit rate from latent to asymptomatic and infectious d−1 [1/7, 1/3] 1/5 Author chosen

ρy Proportion of latent that transit to asymptomatic Unitless [0.2, 0.6] 0.3 83

µy Transition rate from asymptomatic to infectious d−1 {0} ∪ [1/11, 1] 1/7 Author chosen

d Disease induced death rate d−1 [0.01, 0.1] 0.01 83

γ Recovery rate d−1 1/14 1/14 83
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where x ∈ {w, c, o} , y ∈ {h,w, c, o} , Ny = Sy + Ey + Ay + Iy , and N =
∑

y

Ny .

Numerical results
We present in this section simulations that describe the effect on the number of active cases of different restrictive 
measures implemented at different locations and time-blocks. We also describe results on how increasing the 
natural distancing behavior in the home setting or improving close-contacts tracing at different locations affect 
disease dynamics. The code for these simulations is available in84.

Location‑targeted restrictive measures and its effect on the number of active cases.  Figures 4 
and 5 show the dynamics of the number of active cases (A(t)+ I(t)) (see subfigures (a.i), i = 1− 4 ) and the 
transmission rate (see subfigures (b.i), i = 1− 4 ) at each of the locations: home (h, blue), work (w, red), school 
(c, green), other (o, pink), and for all locations combined (T, black); and under different restrictive measures 
for attending specific locations. To restrict the attendance to a location (work, school, other), we reduced the 
proportion of individuals going from home to that location. In the model, that proportion is represented by αx 
for non-infectious individuals at home and αi

x for infectious individuals at home, x ∈ {w, c, o} . We study in this 
section the effect on the number of active cases of the following restrictive measures: (1) reducing the proportion 
of individuals going from home to work by 25% , capturing the percentage of jobs that can be performed from 
home that varies within the interval 20− 34% from country to country85, (2) reducing the proportion of indi-
viduals going from home to school by 73% , representing a scenario of closing school activities for children older 
than 4 years of age, who represent 73% of the child population in the United States86; (3) reducing the proportion 
of individuals going from home to other locations by 30% , motivated by data showing that a 15−30% growth in 
consumers in the United States has been observed, who purchase online for most categories post COVID-19 as 
compared to before87.

Figure 4a.1,b.1 show the base case scenario without any restrictive measures, while Fig. 4a.2–a.4 and b.2–b.4 
show the dynamics when restricting the attendance to work, school, and other locations respectively, one at 
a time. We observe that neither of the single restrictions pictured produce a significant reduction in the total 
number of active cases as compared to the base case (see black curve in Fig. 4a.1–a.4). We observe that the first 
peak of the active cases at home shifts slightly to the left when work and other locations attendance is restricted 
(Fig. 4a.2 and a.4), while it slightly flattens out when school attendance is restricted (Fig. 4a.3), being this restric-
tion the one reducing the number of active cases the most. Additionally, we can observe that the number of active 
cases at school decrease when school attendance is restricted and becomes the location with the least number of 
active cases (Fig. 4a.3), while otherwise it can be seen that school is the location (excluding the home location) 
with the largest number of active cases during weekdays (Fig. 4a.1,a.2,a.4). Also, the number of active cases at 
other locations become as well the least (compared to work and school) when attendance to other locations is 
restricted (Fig. 4a.4). On the other hand, when work attendance is restricted, during weekdays the number of 
active cases at work still remains above the number at other locations (Fig. 4a.2).
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Figure 4.   The figures (a.i), i = 1–4 depict the number of active cases ( A(t)+ I(t))—the infectious population—
at each location: home (h, blue), work (w, red), school (c, green) and other (o, pink); as well as the total number 
of active cases (T, black). The curves are pictured for a base case without restrictions and under one restrictions 
at a time to attend a specific location: (a.1) base case, (a.2) work, (a.3) school, (a.4) other. For each case, the 
figures (b.i), i = 1–4 show the respective transmission rates at each location, pictured for time blocks within each 
day, from day 7 to day 21. The restrictions are obtained by reducing the parameters αx and αi

x , x ∈ {w, c, o} , by: 
25% for work, 73% for school, 30% for other activities. The parameter values used are as in Table 4.
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Figure 5.   The figures (a.i), i = 1–4 depict the number of active cases ( A(t)+ I(t) )- the infectious population- at 
each location: home (h, blue), work (w, red), school (c, green) and other (o, pink); as well as the total number of 
active cases (T, black). The curves are pictured for a base case without restrictions, and under several restrictions 
to attend locations applied at once: (a.1) base case, (a.2) work and school, (a.3) school and other, (a.4) work, 
school and other. For each case, the figures (b.i), i=1− 4 show the respective transmission rates at each location, 
pictured for time blocks within each day, from day 7 to day 21. The restrictions are obtained by reducing the 
parameters αx and αi

x , x ∈ {w, c, o} , by: 25% for work, 73% for school, 30% for other activities. The parameter 
values used are as in Table 4.
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We can observe form Fig. 4b.1–b.4 how the transmission rate at home is impacted by the restrictions at dif-
ferent locations that affect the transmission rate at those locations as well. The figures picture the value of the 
transmission rate at each location for different time blocks within each day from day 7 to 21 (which is the time 
frame of the first peak). We identify the school attendance restriction (Fig. 4b.3) to be the measure that mostly 
reduces the transmission rate at home (blue), especially around midday during weekdays, but transmission 
at home remains mostly high during the weekend (day 13 and 14, 20 and 21). Additionally, we can see that 
restricting work attendance reduces the transmission rate at work overall (Fig. 4b.2), but does not produce much 
variation in transmission between time-blocks at work. Nevertheless, the measure reduces the transmission rate 
at home, especially during the day on workdays. Finally, reducing leisure activities (other) produce a similar 
effect (Fig. 4b.4), and especially generates a reduction in the transmission rate at home and at other locations at 
specific times during the weekend.

Figure 5a.1 and b.1 show the base case scenario without any restrictive measures, while Fig. 5a.2–a.4 and 
b.2–b.4 show the dynamics when restricting the attendance to more than one location at once. For all scenarios 
pictured we reduced school attendance since it was the single measure that in Fig. 4 showed the largest impact 
on reducing active cases. As expected, we verify that the more restrictions are implemented the more reduction 
in the number of active cases can be seen. We observe that when school and one more restriction—either to 
attend work or attend other activities—are in place (Fig. 5a.2 and a.3), the number of active cases at home at 
the first peak slightly flattens out and reduces significantly as compared to the base case. The peak of the home 
cases reduces even more and slightly shifts to the right when attendance to work, school and other activities 
are restricted (Fig. 5a.4). In all of the combined scenarios of restrictive measures (Fig. 5a.2–a.4), the number of 
active cases at school is the least as compared to the cases at home, work or other activities. On the other hand, 
in any restrictive case, including the single location restrictions from Fig. 4, the number of active cases during 
weekends at other locations exceeds the number of cases at work, while during weekdays it is the opposite, though 
the latter is least pronounced when work and school attendance is reduced (Fig. 5a.2). Our results reflect the 
natural behavior of individuals to attend more leisure activities during the weekend and hence it is at these other 
locations where the majority of active cases are located when leaving the home setting. On the other hand, during 
weekdays and outside the home setting, without any restrictions (Fig. 5a.1) or only when restricting either work 
or other locations (Fig. 4a.2 and a.4), it is the school location where most of the active cases are located, whereas 

Figure 6.   The figure depicts in each subplot the number of active cases ( A(t)+ I(t))—the infectious 
population—at each location: home (h, blue), work (w, red), school (c, green) and other (o, pink); as well as 
the total number of active cases (T, black). The subplots show the curves under: (a) the base-case without 
restrictions; (b) a strict night-quarantine, obtained by reducing the parameters αx and αi

x , x ∈ {w, c, o} to zero 
for the time-blocks between 9:00 p.m. and 5:00 p.m.; (c) a restrictive measure reducing the time spent at work 
and school (represented by the parameters σw and σc ) in the afternoon by half during the time-blocks from 1:00 
p.m. and 5:00 p.m. and from 5:00 p.m. to 9:00 p.m. The parameter values used are as in Table 4.



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10840  | https://doi.org/10.1038/s41598-022-14155-4

www.nature.com/scientificreports/

when applying combined restrictive measures (Fig. 5a.2–a.4) or just restricting school attendance (Fig. 4a.3) it 
is the work location where active cases prevail the most.

All measures pictured reduce the transmission rate at the restricted location and also have an effect on the 
transmission rate at home (Fig. 5b.1–b.4). The most dispersal of the transmission rate at home at different time-
blocks per day is observed when restricting work and school attendance (Fig. 5b.2), reducing the home transmis-
sion rate during weekdays significantly, but in general maintaining it high during weekends. The latter is also 
observed for certain weekend time-blocks, when restricting attendance to school and other locations (Fig. 5b.3) 
and when restricting attendance to all three: work, school and other (Fig. 5b.4).

Time‑blocks and location targeted restrictive measures and its effect on the number of active 
cases.  Figure 6 depicts the dynamics of the number of active cases (A(t)+ I(t)) at each of the locations: 
home (h, blue), work (w, red), school (c, green), other (o, pink), and for all locations combined (T, black) under 
restrictive measures that target specific time-blocks during the day. Figure 6a shows the base case without restric-
tions. Figure 6b shows a scenario of night quarantine, where the proportions of individuals leaving the home 
setting—represented by αx and αi

x , x ∈ {w, c, o}—are reduced to zero for the time-blocks between 9:00 p.m. and 
5:00 p.m. On the other hand, Fig. 6c represents the restrictive measure of reducing work and school hours in the 
afternoon, reducing by half the times spent at work and school (represented by the parameters σw and σc ) during 
the time-blocks from 1:00 p.m. and 5:00 p.m. and from 5:00 p.m. to 9:00 p.m.

We can observe from Fig. 6b that if night quarantine is fully met, that is, nobody leaves the home setting, 
the first peak of active cases decreases at all locations and slightly flattens out in the home setting. On the other 
hand, no decline in the total number of active cases is observed in Fig. 6c when reducing work and school hours 
in the afternoon by half. On the contrary, there is a slight increase in the size of the first peak of the total number 
of active cases as compared to the base case without restrictions (5894 cases vs 5852, respectively). Nevertheless, 
a reduction in infectious cases is observed at work and school, which are probably shifted to the home setting 
due to individuals staying in the home setting instead of going to work or school and due to the aforementioned 
observed increase of total active cases in the population.

Natural‑distancing in the home setting D∗

h

 and its effect on the number of active cases.  Fig-
ure 7 shows how different natural distance values D∗

h at home affect disease dynamics under the measure that 

Figure 7.   The sub-figures show the dynamics of active cases for different natural distances at home, under the 
measure where simultaneously going to work, school, and other locations is restricted. The parameter values 
used are as in Table 4.
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restricts mobility from home to work, school and other locations. When comparing Fig. 7a–d we observe that, 
the greater the natural distance D∗

h at home is, the later occurs the first peak of total cases and the smaller is 
its size, such that large D∗

h values eventually flatten out the infection curve of total cases (see Fig. 7d). Hence, 
increasing the natural distance at home may reduce the number of active cases significantly. In particular, Fig. 7 
shows that the average physical natural distance at home D∗

h represents a serious threat for disease transmis-
sion when kept low, and on the contrary, it positively impacts disease reduction when kept high (see Fig. 7a,b 
vs  7c,d). Finally, changing the natural distance at home does not affect the dynamics between locations, being 
work the location with most of the cases during weekdays and being other activities locations the ones with the 
highest infectious population during weekends. Nevertheless, reducing natural distancing in the home setting 
also reduces the number of infectious cases at each of the other locations. Therefore, the inclusion of a responsi-
ble behavior at home is essential to reduce the infection curve as a whole.

Close‑contacts tracing and its effect on the number of active cases.  Figures 8 and 9 show point 
prevalence levels at each location, when quarantine measures of infectious individuals and of non-infectious 
due to close contacts with infected are more efficiently enforced. That efficiency is represented by an increase in 
the rates ψy and ψ i

y , y ∈ {h,w, c, o} , representing the transition rates to quarantine at each location: home (h), 
work (w), school (c), other (o), either due to a close contact with an infected at the given location or due to being 
infectious. Figure 8 depicts an increase of 20%, 40% and 60% in all transition rates to quarantine. As expected, we 
observe that the higher that increase is, the less is the point prevalence level of the disease overall (black curve) 
and also at each location, when compared to the base line case. Hence, measures that make quarantine measures 
more efficient, such as stricter tracing of close contacts and enforcement of quarantines, reduce the number of 
active cases (point prevalence) significantly.

On the other hand, Fig. 9 depicts the effect of stricter close contact tracing and quarantine enforcement in 
only one location, when increasing the transition rates ψy and ψ i

y to quarantine by 60% for (a) home, (b) work, 
(c) school and (d) other. As compared to the base line case depicted in Fig. 8, we observe that stricter quarantine 
enforcement in the home setting has the biggest effect on reducing the number of total active cases and espe-
cially cases at home, while reducing the active cases at other locations as well. On the other hand, we observe 
that stricter quarantine enforcement only at work, school or others decreases the number of active cases only 
slightly. These results enforce the importance of implementing strict quarantine measures in the home setting. 
We observe that strict close contact tracing in the home setting (friends and family) in order to implement 
quarantine measures is essential to control disease spread. Even if those strict measures are implemented at 

Figure 8.   Addition (in percentage) to the transition rate leading to quarantine upon a close contact at every 
location. The parameter values used are as in Table 4.
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other locations such as work, school and other, it may not be enough to lower the number of active cases if they 
are not implemented in the home setting.

Discussion and conclusions
Social science support in the field of human behavior is needed to align with epidemiological recommendations 
and to better understand the evolution of COVID-19. In this respect, different perspectives have been presented 
by the authors in37 for identifying insights regarding social and behavioral approaches during the current pan-
demic. Such findings show that a strong fear might change the behavior of the people if they feel a sense of efficacy 
in the measure taken, but nevertheless also a bias optimism among certain people can be observed.

Consequently, depending of their perception on health risk, individuals might return to normal life by relax-
ing their protective measures from increased social distancing to natural distancing and contacting behaviors, 
providing favorable conditions for disease transmission40. Some studies have even shown evidence of disposi-
tional resistance to change across different countries40–42, revealing cultural differences amongst groups of people 
in term of strong or weak resistance to change. To account for changes in distancing behavior, our model includes 
a dynamic resistance- and fear-dependent distancing behavior that affects disease transmission, and specifically, 
our results show the importance of distancing behavior in the home setting that is essential even under strict 
mobility restrictions (see Fig. 7). In particular, increasing the natural distance in the home setting may decrease 
significantly the number of active cases overall. In practice, reducing the number of visits from relatives and/
or friends, avoiding long time exposure with them and also preventing crowded gatherings, can serve as handy 
measures to prevent infection. These findings reveal the importance of promoting family awareness through 
social distancing as a way to mitigate COVID-19 transmission, even while mobility to work, school and other 
activities may be restricted and social distancing there may be mandatory.

Another critical issue that affects disease transmission is how people spend their time and where they gather. 
Evidence suggests that time spent at different locations (e.g., work, school, other leisure activities, etc.) also 
depends on cultural practices43,44. A multicultural study conducted by the University of Oxford revealed infor-
mation referred to paid work and study hours distributed per week and weekends44, using an extensive data set 
that included information from Belgium, Finland, Germany, Italy, Norway, Spain, Sweden, Bulgaria, Estonia, 
Latvia, Lithuania, Poland, Slovenia, Japan, Brazil, and United States. In addition, the American Time Use Survey 
(ATUS)43 determined how much time individuals in the United States spend on various activities, such as home 
activities, work, educational, and leisure activities. Also, a report made by Data Quality45, detailed the scheduled 
time Americans spend on different activities throughout the day (24 h), via an infographic picture. Finally, a 

Figure 9.   Addition (in percentage) to the transition rate leading to quarantine upon a close contact at a 
specific location. The parameter values used are as in Table 4.
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recent platform for local mobility was searched to complete a set of information required to better understand 
people’s mobility, clustered by the type of activities that different communities around the world established to 
combat COVID-1945. This information is obtained when comparing with baseline pre-pandemic mobility indices.

Based on information from the previously mentioned studies, we structured our model including home, 
school, work and other location settings; and considered mobility from home to these settings. Our results show 
that in general restricting mobility from home to only one location does not impact significantly the number of 
active cases overall, each measure does though reduce the cases at that specific location. In particular, we observe 
that restricting school attendance reduces the transmission rate at home the most, especially during weekdays, 
but not during weekends. We observe a similar but less pronounced effect when restricting work attendance. 
Restricting other leisure activities reduces home transmission specifically at certain time blocks during weekends. 
These results show again the importance of the transmission in the home setting (which is the highest among 
locations), and how measures restricting the mobility from home to only one individual location may not be 
enough to control the disease overall, since under such a restriction, transmission at home may remain high at 
certain times during the week (see Fig. 4). Hence, a combination of restrictive measures needs to be considered 
to really reduce disease transmission. Indeed, we present simulations considering several restrictive measures 
applied at once, which produce a larger impact on case reduction overall (see Fig. 5). Our results show that if 
simultaneously school and work attendance is reduced, the most reduction in home transmission during the 
day on weekdays can be observed, but still remaining high during weekends, unless mobility to other locations 
is restricted as well. This shows the importance of complementing with other type of protective measures, such 
as keeping social distance or mask use to reduce overall transmission. Social distancing shows to be particularly 
important during weekend activities with family and friends (home setting), which indeed has a large impact 
according to Fig. 7 as discussed before. Therefore, our results conclude that safety at work and school—either 
by implementing online activities (keeping people at home) or social distancing—may not be enough to reduce 
active cases to a desired level, if safety measures in the home setting are neglected.

Another important safety measure to prevent disease spread is quarantining individuals after being in close-
contact with an infectious person or isolating infectious individuals88. It is worth to highlight that, whether a 

Table 4.   Baseline numerical values occupied in the numerical simulations by blocks during the week and on 
weekends. Ac author chosen.

Parameters Baseline numerical values in each time block Ref.

Day I II III IV V VI

δ
Weekday 0.022 0.0645 0.3585 0.7095 0.7235 0.6060 41

Weekend 0.3 0.01 0.1 0.1 0.3 0.2

δi
Weekday 0.022/2 0.0645/2 0.3585/2 0.7095/2 0.7235/2 0.6060/2 Ac

Weekend 0.3/2 0.01/2 0.1/2 0.1/2 0.3/2 0.2/2

αw = αi
w

Weekday 0.5 0.5 0.45 0.4 0.4 0.1 41

Weekend 0.2 0.1 1 0.3 0.1 0.2

αc = αi
c

Weekday 0.3 0.0 0.45 0.4 0.4 0.3 41

Weekend 0.0 0.0 0.0 0.3 0.0 0.0

αo = αi
o

Weekday 0.2 0.5 0.1 0.2 0.2 0.6 41

Weekend 0.8 0.9 0.0 0.4 0.9 0.8

σw
Weekday 3/4 3/4 3/4 3/4 3/4 3/4 41

Weekend 3/4 3/4 3/4 3/4 3/4 3/4

σc
Weekday 4/4 4/4 4/4 4/4 4/4 4/4 41

Weekend 2/4 2/4 2/4 2/4 2/4 2/4

σo
Weekday 2/4 2/4 2/4 2/4 2/4 2/4 41

Weekend 3/4 3/4 3/4 3/4 3/4 3/4

�1 Weekly 0.7 0.7 0.7 0.7 0.7 0.7 39

�
h
2

Weekday and weekend 0.5 0.5 0.5 0.5 0.5 0.5 Ac

�
w
2 Weekday and weekend 0.4 0.4 0.4 0.4 0.4 0.4 Ac

�
c
2 Weekday and weekend 0.3 0.3 0.3 0.3 0.3 0.3 Ac

�
o
2 Weekday and weekend 0.2 0.2 0.2 0.2 0.2 0.2 Ac

D∗
h Weekday and weekend 0.53 0.53 0.53 0.53 0.53 0.53 33

D∗
w Weekday and weekend 1.25 1.25 1.25 1.25 1.25 1.25 33

D∗
c Weekday and weekend 0.83 0.83 0.83 0.83 0.83 0.83 33

D∗
o Weekday and weekend 1.65 1.65 1.65 1.65 1.65 1.65 33

ψh Weekday and weekend 3.08 ∗ 0.75 3.08 ∗ 0.75 3.08 ∗ 0.75 3.08 ∗ 0.75 3.08 ∗ 0.75 3.08 ∗ 0.75 22

ψw Weekday and weekend 2.81 ∗ 0.35 2.81 ∗ 0.35 2.81 ∗ 0.35 2.81 ∗ 0.35 2.81 ∗ 0.35 2.81 ∗ 0.35 22

ψc Weekday and weekend 1.88 ∗ 0.50 1.88 ∗ 0.50 1.88 ∗ 0.50 1.88 ∗ 0.50 1.88 ∗ 0.50 1.88 ∗ 0.50 22

ψo Weekday and weekend 5.63 ∗ 0.40 5.63 ∗ 0.40 5.63 ∗ 0.40 5.63 ∗ 0.40 5.63 ∗ 0.40 5.63 ∗ 0.40 22
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non-infected person must go into quarantine depends on the definition of close-contact and how well in prac-
tice this definition is implemented. We incorporated classes of quarantined individuals, which get there either 
through the infectious class (go into isolation) or due to having been in close contact with an infectious. Our 
results show that, when quarantines due to close-contact with an infectious are more efficiently enforced and 
strict contact tracing is implemented, a significant decrease in infectious cases can be observed. We can see this 
effect especially if this is done in the home setting, while stricter quarantine enforcement only at work or school 
just slightly reduces the number of cases overall. This highlights the importance of strictly following and eventu-
ally hardening the close-contact definition, especially at home, in order to control the disease.

The new complexity on the transmission of infectious diseases has lead us to incorporate human interactions 
and reactions to improve the modeling course of the epidemics18. Scientific evidence has highlighted changes in 
the mechanisms of transmission of this novel SARS-CoV-2, when individuals modify their behavior48,51. Likewise 
a similar approach has been implemented for modelling the spread of other infectious diseases48,75 targeted to 
propose more effective control measures to mitigate the spread of the disease. Also, it has been previously sug-
gested to incorporate social, behavioral factors within mathematical disease models to better understand how 
personal interactions in a society affect disease transmissions; in particular physical contact, social distancing 
behavior, and social mapping of activities38. We believe that our work contributes to the existing literature by 
including these aspects in a novel way, implementing the simple idea presented in54—that connects disease trans-
mission with social distancing—, while incorporating it into a location-dependent and time-block-dependent 
structure, essential for mobility of individuals.

In general, the strength of the present study is the integration of multiple mobility scenarios based on a 
mathematical approach of Susceptible-Exposed-Asymptomatic-Infectious-Recovered-Susceptible model, with 
quarantine and social distance dependent transmission rates to study COVID-19 dynamics. Nevertheless, our 
model shows the limitations intrinsic to extended SIR type models, and is not an exception when considering 
the difficulties that need to be overcome when analyzing model uncertainty. Before fitting the model to real data, 
much work needs to be done in conjunction with human behavior scientists, epidemiologists and statisticians, to 
better understand human behavioral factors used in our model and to obtain data regarding these. Future work 
entails an interdisciplinary study of this kind. Finally, our model allows to study a variety of potential scenarios 
using combination of parameters (such as, the ones related to mobility restrictions, average time spent at each 
location, distribution of activities, cultural factors, close contact definition, etc.), which provides a vast framework 
for future studies connecting human behavioral factors and disease transmission.
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