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ABSTRACT

Most biological processes are mediated by interac-
tions between proteins and their interacting part-
ners including proteins, nucleic acids and small
molecules. This work establishes a method called
PINUP for binding site prediction of monomeric pro-
teins. With only two weight parameters to optimize,
PINUP produces not only 42.2% coverage of actual
interfaces (percentage of correctly predicted inter-
face residues in actual interface residues) but also
44.5% accuracy in predicted interfaces (percentage
of correctly predicted interface residues in the
predicted interface residues) in a cross validation
using a 57-protein dataset. By comparison, the
expected accuracy via random prediction (percen-
tage of actual interface residues in surface residues)
is only 15%. The binding sites of the 57-protein
set are found to be easier to predict than that
of an independent test set of 68 proteins. The
average coverage and accuracy for this independent
test set are 30.5 and 29.4%, respectively. The signi-
ficant gain of PINUP over expected random predic-
tion is attributed to (i) effective residue-energy score
and accessible-surface-area-dependent interface-
propensity, (ii) isolation of functional constraints
contained in the conservation score from the
structural constraints through the combination of
residue-energy score (for structural constraints) and
conservation score and (iii) a consensus region built
on top-ranked initial patches.

INTRODUCTION

Biological cells function through a network of interacting
proteins and other molecules. It has been estimated that the
average number of interacting partners per protein is three
to ten (1). In order for a protein to interact dynamically
with multiple partners, the complexes of interacting proteins
are often not obligatory but necessary transient with relatively

weak binding affinity. Such a weak binding affinity, however,
makes it difficult to solve the structures of transient com-
plexes experimentally. As a result, there is a growing gap
between the number of known interactions and the number
of their 3-dimensional structures that are available. However,
the 3D structures of protein complexes are pivotal for a full
understanding of the mechanism of interactions because
they provide specific interaction details at the atomic level.
Such details are important for rational design of drug mole-
cules to modulate protein interactions.

One way to solve this problem is molecular docking (2,3).
In molecular docking, transient complex structures are
predicted by docking one monomeric structure (typically
the smaller one) onto the other. It consists of two steps: con-
formational sampling that generates multiple candidate com-
plex structures and scoring that recognizes the near-native
complex structures from the candidate complex structures.
Here, we define a complex structure as transient if there
exist corresponding monomeric structures. The accuracy of
protein–protein docking (4–8) can be improved significantly
if their binding region is known. This is because identification
of binding regions dramatically reduces the conformational
space of docking. Several recent studies attempted to predict
possible protein–protein binding sites (interface residues)
from known unbound monomer structures (9,10).

To predict interface residues, one needs to know what
distinguishes an interface region from the rest of the protein
surface. It was discovered that the interfaces of obligate com-
plexes are outstandingly hydrophobic (11). The interfaces of
some transient complexes were also found to be with clusters
of hydrophobic residues (12). Moreover, they are rich in
aromatic residues and arginine but depleted in other charged
residues (13). However, hydrophobicity at the interfaces of
transient complexes is not as distinguishable from the remain-
der of the surface as hydrophobicity at the interfaces of the
obligate complexes (13,14). As a result, it is difficult to
make an accurate prediction of the interfaces of transient
complexes using a single parameter of residue interface pro-
pensity. Moreover, different interface properties of obligate
and transient complexes make it necessary to treat them
separately in prediction.

Evolution conservation of residues is another widely-used
property to identify protein–protein interfaces (15–19).
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Interface residues, especially those hot spot residues (20)
were found to be more conserved than other surface residues.
However, residue conservation is rarely sufficient for a com-
plete and accurate prediction of protein interface (21–23).
Moreover, transient interfaces evolve faster than obligate
ones (24). A more sensitive evolutionary tracing (ET)
method, which delineates invariant residues responsible for
subgroup accuracy, has been developed to uncover function-
ally important residues in proteins (6,25,26).

Several authors studied residue-energy distributions on the
protein surface to identify functional sites. Hertzberg and
Moult found that steric strains in the polypeptide backbone
are located overwhelmingly in regions concerned with
function (27). Elcock (28) predicted functionally important
residues based on the assumption that they have a high elec-
trostatic energy, as calculated with continuum methods. Ota
et al. (29) combined stability profile and sequence conserva-
tion to predict catalytic residues in enzymes. Chelliah et al.
(30) predicted binding sites by distinguishing restraints that
arise from the structure of the protein and those from inter-
molecular interactions. Cheng et al. (31) used all-atom com-
putational protein design methodology to compute the free
energy difference between the naturally occurring amino
acids and the lowest free-energy amino acids. Functional
sites were found to have residues with sub-optimal free
energies.

Other interface-distinguishing features have also been
exploited. For example, Jones and Thornton (32) found that
protein interfaces are among the most planar and most acces-
sible patches. In structural terms, a binding site has a prefer-
ence for b-sheets and relatively long non-structured chains,
but not for a-helices (10). It was also shown that the binding
site of an unbound monomer is surrounded by more bound
water molecules and has a lower temperature B-factor than
the rest of the surface (10). This result is consistent with
the finding that an interfacial surface region is less flexible
than the rest of the protein surface (33). More rigid interface
region in unbound structures suggests that interface residues
are ‘prepared’ for the loss of side-chain conformational
entropy upon binding. In another study, Fernandez and
Scheraga (34) found that most backbone hydrogen bonds in
the majority of soluble proteins are thoroughly wrapped intra-
molecularly by non-polar groups except for a few that are
likely around a binding site.

Because none of the above-mentioned properties are able
to make an unambiguous identification of interface regions
or patches (32), a combination of some of them [via either
a linear combination (9,10) or machine learning (35–37)]
was found to be effective for improving the accuracy of
binding-site prediction. However, the overall accuracy
remains low compared to expected random values.

This study is spurred by the finding that residues at
the interfaces of protein–protein complexes have higher
side-chain energies (i.e. less stable) than the other surface
residues (38) based on a score function originally developed
for protein design (39). The high energies of the observed
interfaces are independent of the amino acid composition
in the interface regions. Moreover, residues with high-energy
scores are unstable and likely evolve fast. This suggests that
the energy score, a suitable indicator of interface residues,
is ‘orthogonal’ to properties describing interface propensity

and residue conservation. In other words, combination of
the three terms might improve the accuracy of interface
prediction.

In this paper, we test this hypothesis by developing a
method, called Protein Interface residUe Prediction
(PINUP). PINUP predicts interface residues using an empiri-
cal score function made of a linear combination of the energy
score, interface propensity and residue conservation score. To
our knowledge, none of the previously published work has
combined these terms together to predict protein binding
sites. We show that PINUP provides a significant improve-
ment in the accuracy of binding site prediction over any sin-
gle or pairwise combinations of the three terms. The PINUP
server is freely available on http://theory.med.buffalo.edu/
PINUP.

MATERIALS AND METHODS

The scoring function for interface-residue identification

The scoring function for a surface residue i, E(i), is made of
three terms: side-chain energy score, Esidechain(i), residue-
conservation score, Econsv(i) and residue interface propensity
Epropensity(i). That is,

EðiÞ ¼ EsidechainðiÞ þ wcEconsvðiÞ þ wpEpropensityðiÞ‚ 1

where wc and wp are to-be-determined weight factors for
the conservation and propensity scores, respectively.

1. Side chain energy score. We use a scoring function that
was originally developed for protein design (39) to calculate
the energy of a rotamer (40), the representative conformation
of the amino acid, placed on its backbone position. The score
for a given rotamer R of a residue i, Esidechain(Ri), is a linear
combination of multiple energetic terms:

EsidechainðRiÞ ¼� 0:143Scontact þ 0:724Voverlap

þ 1:72Ehbond þ 28:6Eelec � 0:0467DSpho

þ 0:0042DSphi þ 1:14DðFphiÞ30 þ 7:95Vexclusion

� 0:919ln ðf 1f 2Þ � 4:3Nssbond � DGref ‚

2

where Scontact, Voverlap, Ehbond, Eelec, DSpho and DSphi are atom-
contact surface area, overlap volume, hydrogen bonding
energy, electrostatic interaction energy, buried hydrophobic
solvent accessible surface and buried hydrophilic solvent
accessible surface between the rotamer of residue i and the
rest of the protein, respectively; Fphi is the fraction of the
buried surface of non-hydrogen-bonded hydrophilic atoms;
D(Fphi)

30 is the difference between the rotamer positioned
in the protein environment and the isolated form; Vexclusion

is the normalized solvent exclusion volume around charged
atoms; f1 is the observed frequency of the rotamer and f2 is
the observed frequency of the amino acid residues in a
given backbone conformation; Nssbond is the flag of disulfide
bridge(1 or 0); DGref is the difference between the free energy
of the rotamer in solvent and denatured protein. The weights
of these energy items together with the reference values were
optimized so that the native residue was predicted energeti-
cally favorable at each position of the training proteins (39).
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The energy score of a particular amino acid i is
calculated as:

EsidechainðiÞ ¼ � f ln
nX

R

exp ½� EsidechainðRiÞ�
o

‚ 3

where the summation is over all the rotamers available for a
given residue type and the constant prefactor f is 1/2.41. This
constant factor is from the slope of the regression line
between the calculated and experimentally-measured unfold-
ing DDG of a set of point mutation data (39). Thus, the energy
unit is kcal·mol�1, the same as the experimental data.

2. Residue conservation score. Residue conservation is
measured by the self-substitution score from the sequence
profile. Sequence profiles are obtained by three iterations of
PSI-BLAST searches against non-redundant (NR) database
posted on Dec 5, 2005 (ftp://ftp.ncbi.nih.gov/blast/db/
FASTA/nr/gz) with the BLOSUM62 (41) substitution matrix.
The conservation score at the position i is defined as

EconsvðiÞ ¼
Mir � Brr‚ if Mir � Brr > 0‚

0‚if Mir � Brr < 0‚

�
4

where Mir is the self-substitution score in the position-specific
substitution matrix generated from PSI-BLAST for the
residue type r at sequence position i and Brr is the diagonal
element of BLOSUM62 for residue type r. A slightly differ-
ent criterion based on positive substitution scores has been
used in Ref. (15). Here, we use the difference in self-
substitution scores for simplicity.

3. Residue interface propensity. We define a residue-interface
propensity, Epropensity(i), that depends on its accessible surface
area.

EpropensityðiÞ ¼ ln
Pinterface

r

Psurface
r

� �
·

Sr

Save
r

‚ 5

where Pinterface
r and Psurface

r are the contribution of residue type
r to the interface area and to the protein surface area, respec-
tively, and Sr and Save

r are the relative accessible surface area
of residue r at the sequence position i and the average relative
accessible surface area of surface residues of type r, respec-
tively. The Ca atom of Gly is considered as a side chain atom
for convenience. Pinterface

r and Psurface
r are obtained from

statistical analysis of 75 protein–protein complexes (13).
Save

r for 20 amino acid residues are obtained from statistical
analysis of eight unbound monomers of four protein–
protein complexes belonging to different families: barnase-
barstar, hen egg white lysozyme-antibody Fab D44.1,
acetylcholinesterase-fasciculin and chymotrypsin-OMTKY3.
We found that eight unbound monomers yield enough statis-
tics for calculation of Save

r . Details can be found in the Results
section. The values of ð ln Pinterface

r /Psurface
r Þ/Save

r are listed in
Table 1.

PINUP algorithm for predicting the interface residues

The PINUP algorithm is as follows:

(i) Identification of surface residues. As in a previous study
(38), surface residues are defined as those side chains
with a relative accessibility of>6% (probe radius¼ 1.2s).

(ii) Identification of candidate binding surface patches. A
surface patch is defined as a central surface residue and
19 nearest neighbors as in a previous study (38). The
score of a patch is given by the average value of the
scores for all 20 residues by using the above-described
scoring function. All of the surface residues are sampled.
Solvent vector constraints (32) are applied in order to
avoid patches sampling at different sides of a protein
surface. Top 5% scored patches are selected. If the
number of surface residues for a protein is less than 100,
five top-scored patches are selected, instead.

(iii) Locating candidate interface residues. Typically, the
above selected patches overlap with each other. That is,
one residue can appear in multiple patches. We rank
residues based on the number of top-scored patches to
which they belong (the appearance rate in top-scored
patches). Top-ranked 15 residues are designated as
candidate interface residues. For large proteins with
more than 150 surface residues, we retain up to 10% of
total surface residues. If the last candidate residue (e.g.
the 15th residue for proteins with less than 150 residues)
has the same appearance rate in the top-scored patches
as several other non-candidate residues, all of them are
included in the candidate interface residues.

(iv) Prediction of a continuous binding interface. The final
predicted interface is defined as the largest continuous
patch made of the ‘interacting’ candidate interface
residues. Two residues are considered interacting if the
distance between any two respective side chain atoms is
<1 s plus the sum of the van der Waals radius of the two
atoms. If a surface residue is surrounded by the predicted
interface residues and it does not interact with other
surface residues, the residue will be included as interface
residues. The van der Waals radii for all atom types are
from the CHARMM21 parameter set (42).

There are several parameters, such as the definition of
surface residues [Step (1)] and the size of surface patches
[Step (2)] in this PINUP algorithm. Effects from varying
these parameters are discussed in the Results section.

Protein datasets

We use a set of 57 non-homologous proteins collected by
Neuvirth et al. (10) for training and cross validation. In this

Table 1. The values of ðInPinterface
r /Psurface

r Þ/Save
r for 20 amino acid residues

Amino acid ðInPinterface
r /Psurface

r Þ/Save
r Amino acid ðInPinterface

r /Psurface
r Þ/Save

r

Ala �0.925 Leu 1.07
Arg 0.291 Lys �0.991
Asn �0.248 Met 2.22
Asp �0.571 Phe 3.00
Cys 2.78 Pro �0.553
Gln �0.685 Trp 4.39
Glu �0.881 Val 0.278
Gly 0.042 Ser �0.749
His 1.56 Thr �0.730
Ile 2.46 Tyr 3.76
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set, antibodies and antigens are not included since their
specific binding mode is optimized through rapid somatic
cell mutations instead of evolution over many years. Our
algorithm relies on conservation information and, thus, is
not suitable for predicting antigen–antibody interfaces. The
structures of the unbound monomers and complexes are
obtained from PDB (43). The program REDUCE (44) is
used to add hydrogen atoms to all proteins. Non-polar hydro-
gen atoms and all water molecules are deleted. The binding
sites are predicted with unbound structures. The complex
structures are used to define the experimental interface resi-
dues for the unbound monomers. A surface residue is consid-
ered as interface residues if its accessible surface area is
decreased by more than 1 s

2 upon complexation.
To further test PINUP, we use the protein–protein docking

benchmark 2.0 established by Chen et al. (45). This bench-
mark contains 62 protein complexes (excluding antigen–
antibody), in which 68 unbound proteins can be considered
as an independent test set because they share <35% sequence
identity with any protein in the 57-protein dataset described
above. This 68-protein set contains 42, 18 and 8 proteins
with minor, medium and large-scale conformational change
upon complexation, respectively.

There is a significant homologous relation between the
75 proteins used for deriving interface propensity and
the 57 proteins used for cross validation. We test the depen-
dence of prediction accuracy on the dataset used for deriving
interface propensity and find that the dependence is
essentially negligible. Details can be found in the Results
section.

Assessment of prediction accuracy

Prediction accuracy is assessed by the coverage of the actual
interface by the predicted interface, which is the fraction of
correctly predicted interface residues in the total number of
observed interface residues, and the accuracy of the predicted
interface, which is the fraction of correctly predicted interface
residues in the total number of predicted interface residues.
The expected accuracy from random prediction is the fraction
of observed interface residues in the total number of surface
residues.

Optimizing the weights

We use a simple grid method to optimize the weights of wc

and wp. An initial scanning suggests the optimal values
located at 0 < wc < 2 and 1 < wp < 10. The final weights
are obtained by a simple grid search within 0 < wc < 2 with
a step of 0.2 and 1 < wp < 10 with a step of 1. The parameters
are optimized for the highest accuracy.

RESULTS

Training and cross validation

Side chain energy scores, residue conservation scores and
interface propensity are utilized to predict protein–protein
interface for the unbound protein structure. The weights of
the three items are balanced to achieve the highest accuracy
rate by a grid-based search method. Leave-one-out cross vali-
dation is performed on the 57 proteins. Briefly, one protein is

removed from the training set. The weights, optimized with
the other 56 proteins, are used to predict the binding site of
the removed protein. This procedure is repeated 57 times
until all the proteins have been left out. In 55 out of the 57
cases, the optimized weights are 1, 1.6 and 6 for energy
score, conservation score and interface propensity, respec-
tively. Compared with training on the whole dataset, the aver-
age prediction accuracy is only decreased by 0.7% in the
leave-one-out procedure. This indicates that the weights
obtained are robust for other proteins.

The prediction accuracy for the 57 proteins from the leave-
one-out testing is shown in Table 2. The average values of
coverage and accuracy are 42 and 45%, respectively. The
average size of predicted interfaces is 21 residues, similar
to the average size of observed interfaces (22 residues). It
is of interest to note that both coverage and accuracy for
interface prediction of inhibitors are significantly higher
than those of either enzymes or other proteins.

There are six proteins predicted with more than one
interface region. PINUP only accepts the largest region.
Nonetheless, both the largest and the second largest regions
are overlapped with the observed interface in three of the
six proteins. If both regions were considered as the predicted
interface, the coverage would be higher.

There are six proteins for which none of the interface resi-
dues are correctly predicted. Among them, the unbound crys-
tal structure of nitric oxide synthase oxygenase domain
(1nos) has only one interface residue with coordinates. It is
the second-ranked interface in PINUP having an overlap
with the single interface residue. All other interface residues
identified in the bound structure have no structure (invisible
in crystal structure) in the unbound structure. That is, these
interface residues are not possible to be predicted because
they are not part of surface residues in the unbound structure.
For the horse plasma gelsolin (1d0n), small number of actual
interface residues in a large surface may have led to the fail-
ure of PINUP to locate its interface residues. This protein
with 589 surface residues has a relatively small interface of
24 residues. The failure is also likely due to the difficulty
to generate the surface patches with same shape and size as
the observed interface for a given unbound structure. A closer
examination indicates that the observed interface of 1d0n
ranks at the top 1 in all generated surface patches of the
same size. Another cause for completely failed predictions
is the existence of other possible binding sites. The predicted
protein binding site of aspartate transcarbamoylase (1ekx) is
overlapped with N-phosphonacetyl-L-aspartic acid (PAL)
ligand binding site, rather than the observed protein–protein
interface. The three remaining proteins with failed interface
predictions are domains rather than the whole protein. The
interface for domain–domain interactions may have pre-
vented correct predictions. For example, a domain–domain
interaction site of Enteropathogenic Escherichia coli intimin
C-terminal domain (1f00), is predicted as the protein–protein
binding interface.

One interesting question is what happens if bound struc-
tures are used for interface prediction. We find that when
the bound structure of 1nos is used, the prediction coverage
and accuracy are 91 and 50%, respectively. However, in gen-
eral, the prediction accuracy and coverage by using bound
structures is slightly lower than by using the unbound

Nucleic Acids Research, 2006, Vol. 34, No. 13 3701



structures. One contributing factor is that the crystal struc-
tures of transient complexes (i.e. bound structures) have a
lower resolution than the unbound monomers. Moreover,
the coordinates of some surface residues (other than the

interface residues) are often missing. This leads to misidenti-
fication of the exposed core region as surface residues and
thus, reduction of the overall accuracy of interface prediction
by including the exposed core region in the prediction.

Table 2. Leave-one-out cross validation for 57 unbound protein structures

Unbound proteina PDB code Complex code interface residues Surface residues Coverage (%) Accuracy (%)

Barstar 1a19A 1brsA 17 70 82.4 73.7
Barnase 1a2pA 1brsD 18 91 72.2 61.9
Tumor suppressor p16ink4a 1a5e- 1bi7B 31 125 22.6 38.9
Acetylcholinesterase 1acl- 1fssA 25 355 56.0 35.9
Plastocyanin 1ag6- 2pcfA 23 78 39.1 60.0
cdc42hs 1aje- 1am4D 18 160 33.3 60.0
Rhogdi 1ajw- 1cc0E 13 127 69.2 69.2
Fkbp-rapamycin-binding domain 1aueA 1fapB 8 78 37.5 15.8
Trypsin inhibitor 1avu- 1avwB 15 138 93.3 66.7
Human procarboxypeptidase a2 1aye- 1dtdA 24 304 54.2 44.8
Hydrolase angiogenin 1b1eA 1a4yB 34 101 47.1 88.9
Bifunctional trypsin/alpha-amylase inhibitor (rbi) 1bip- 1tmqB 27 119 37.0 58.8
Cytochrome f 1ctm- 2pcfB 25 201 36.0 36.0
Granulocyte colony stimulating factor 1cto- 1cd9B 6 103 100.0 35.3
Receptor chey mutant 1cye- 1eayA 13 97 7.7 6.7
Calcium-free equine plasma gelsolin 1d0nA 1c0fS 24 589 0.0 0.0
Hydrolase inhibitor 1d2bA 1ueaB 22 109 59.1 81.2
Transferase 1ekxA 1d09A 21 232 0.0 0.0
Bovine chymotrypsinogen a 1ex3A 1cgiE 28 188 46.4 68.4
Neuronal t-snare syntaxin-1a 1ez3A 1dn1B 18 116 44.4 47.1
N-terminal domain of enzyme I from E.coli 1eza- 3ezaA 24 249 0.0 0.0
rgs4 1eztA 1agrE 21 115 19.0 23.5
Enteropathogenic E.coli intimin C-terminal domain 1f00I 1f02I 16 215 0.0 0.0
Coxsackie virus and adenovirus receptor 1f5wA 1kacB 18 98 22.2 23.5
Fk506 binding protein 1fkl- 1b6cA 20 88 45.0 69.2
Uracil-DNA glycosylase 1flzA 1euiA 26 172 69.2 78.3
Neuronal sec1 1fvhA 1dn1 41 423 39.0 55.2
Hydrolase 1g4kA 1ueaA 31 133 22.6 41.2
Radixin ferm domain 1gc7A 1ef1A 59 248 11.9 31.8
Granulocyte colony stimulating factor (rhg-csf) 1gnc- 1cd9A 18 174 16.7 17.6
N-terminal region of p67phox 1hh8A 1e96B 14 150 78.6 44.0
Lipase (EC 3.1.1.3) 1hplA 1ethA 21 325 9.5 8.0
p53 core DNA-binding domain 1hu8A 1ycsA 16 155 68.8 29.7
Interleukin-1 beta 1iob- 1itbA 42 133 19.0 47.1
Actin 1j6zA 1c0fA 30 281 30.0 33.3
a-Amylase 1jae- 1tmqA 33 316 45.5 78.9
(EC 3.5.1.28) mutant 1lba- 1aroL 16 112 37.5 40.0
Knob domain from adenovirus serotype 12 1nobA 1kacA 18 139 0.0 0.0
Nitric oxide synthase oxygenase domain 1nos- 1nocA 1 251 0.0 0.0
Porcine pancreatic procolipase b 1pco- 1ethB 18 85 22.2 18.2
Profilin 1pne- 1hluP 25 107 60.0 93.8
Phosphotransferase (hpr) 1poh- 1ggrB 16 69 75.0 66.7
Papain (EC 4.3.22.2) 1ppp- 1stfE 28 160 32.1 50.0
Streptokinase domain b 1qqrA 1bmlC 10 118 70.0 38.9
Rhogap 1rgp- 1am4A 17 155 41.2 35.0
Selenosubtilisin 1selA 1cseE 23 177 47.8 61.1
Cyclin a 1vin- 1finB 29 194 51.7 50.0
P120gap 1wer- 1wq1G 34 251 35.3 66.7
a-Lactamase tem1 1·pb- 1jtgA 33 186 54.5 90.0
Ribonuclease inhibitor 2bnh- 1a4yA 39 370 35.9 36.8
Cyclophilin a 2cpl- 1ak4A 19 120 63.2 75.0
Glucose-specific phosphocarrier 2f3gA 1ggrA 20 104 60.0 63.2
Negative factor (fprotein) 2nef- 1avzB 14 128 42.9 33.3
RalGEF-rbd streptomyces 2rgf- 1lfdA 15 79 33.3 26.3
Subtilisin inhibitor 3ssi- 2sicI 13 92 100.0 68.4
Cytochrome c peroxidase (EC 1.11.1.5) mutant 6ccp- 2pcbA 13 226 69.2 29.0
BLIP Bound 1jtgB 30 136 40.0 63.2
Mean 22 174 42.2 44.5
Enzyme (25) 21 174 43 47.3
Inhibitor (7) 21 149 68.6 65.6
Others (25) 23 181 34.1 35.8

aThe same dataset has been used by Neuvirth et al. (10) except BLIP. The unbound structure of BLIP was not available in PDB and we used the bound structure
instead.
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Dissection of interface properties

To understand the relative contribution of each scoring term
in binding site prediction, the prediction accuracies of indivi-
dual scoring terms and their pairwise combinations are shown
in Table 3. Residue interface propensity is the most effective
factor in predicting protein–protein interfaces with 37% cov-
erage and 35% accuracy, respectively. Accuracy increases by
4% when interface propensity is combined with either energy
score or conservation score and by another 6% when com-
bined with both scores. All values are much higher than the
average expected accuracy (15%). Figure 1 illustrates the
interfaces predicted by the single and combined scoring
terms for profilin (1pne). Different single terms give different
levels of false positives (in red), true positives (in yellow) and
false nagatives (in green) in interface prediction. The com-
bined score gives the best prediction.

One can also compare the average score of interfaces
with that of surfaces. We find that only 31 out of the 57
proteins (54%) have more conserved interfaces. This weak-
conservation result is consistent with findings of other groups
(21,22). By comparison, the interface residues possess higher
energy scores in 48 out of the 57 proteins. We also find that
interface residues of 41 proteins (out of the 57 proteins) are
more solvent accessible than other surface residues. We do
not use surface accessibility as a term for binding prediction
because a highly solvent-accessible residue usually has a
higher energy score (38).

Another way to analyze the importance of individual terms
is to test their abilities to rank observed interface in generated
interfaces of the same size. As shown in Table 3, the energy
score is the best in three terms for ranking observed inter-
faces. This happens despite that it has the lowest accuracy
in interface prediction. The poorer performance of the energy
score in prediction than in ranking is because high-energy
interface residues are often surrounded by low-energy surface
residues. As Table 4 shows, while the scores of interface resi-
dues are distinctively high, the scores of their surrounding
residues are lower than those regular surface residues. Inclu-
sion of non-interface surrounding residues leads to the low
average rank (4.1) of the generated 20-residue initial patches
that have maximum overlap (13 residues in average) with the
observed binding interface, compared to 2.7 of the native
interface.

Dependence on empirical parameters

There are many empirical parameters in the PINUP algo-
rithm. For example, surface residues are defined as those

Table 3. Effect of individual and combined scores

No. Energy scorea Conservation scorea Interface propensitya Coverage (%) Accuracy (%) Interface rankb Differencec

1 1 19.2 18.7 2.7 0.46 (kcal·mol�1)
2 1 22.6 24.7 4.6 0.12
3 1 37.1 35.2 2.8 0.20
4 1 1.2 25.9 27.0 2.3 0.61
5 1 7 38.7 39.6 2.0 1.88
6 1 3 37.7 39.5 2.8 0.73
7 1 1.6 6 43.1 45.2 2.0 1.87

aThe weights of the combined scores are optimized to achieve the highest prediction accuracy on the training set of 57 proteins.
bThe rank of the observed interface against the generated surface patches, which have the same size as the interface, is divided into 10 equally sized categories for
each protein and the ranks of the 57 proteins are averaged.
cThe difference between the interface and the rest of the surface residues as calculated by individual or combined scores.

Table 4. The average side chain energies of interface, surrounding and other

surface residuesa

Interface Surrounding Other surface

Mean energies(kcal·mol�1) �0.79 �1.29 �1.18
SD 1.80 1.80 1.91
No. of residues 1271 1065 7579

aThe surrounding residues have a lower energy than interface residues
and other surface residues. The P-values are 5.9 · 10�12 and 0.038, res-
pectively, as calculated by student’s t-test. The surrounding residues are
defined as those surface residues with side chain atoms within 1 s plus sum
of van der Waals radii of the two interacting atoms from any side chain in the
interface.

Figure 1. Comparison of protein interfaces predicted by single and combined
scoring terms Red, predicted interface; green, observed interface; yellow,
overlapped regions between predicted and observed interfaces. The interfaces
were predicted by residue interface propensity (a), conservation score (b),
energy score (c) and combination of them (d), respectively. There are actually
two separate interfaces predicted by the conservation score. The small one is
overlapped with the observed interface.
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residues with >6% relative accessibility. We chose this small
cut-off value for surface residues so that it is relative easy for
the formation of a continuous path from the selected interface
resides. If this cut-off value is set to 25%, we have to relax
the definition of two connected residues in order to make pos-
sible the prediction of a continuous binding patch. Thus, we
further define that two residues are connected when the dis-
tance between any two respective side chain atoms is <2 s

(rather than 1 s) plus the sum of the van der Waals radii
of the two atoms. The PINUP algorithm with the new cut-
off values for surface residues and connected residues and
new optimized weight factors yields an average coverage of
45%, accuracy of 44% and expected accuracy of 16%,
respectively for the 57 proteins. Thus, the change of predic-
tion accuracy (from 43, 45 and 15% for coverage, accuracy
and expected accuracy, respectively) is small, compared to
the change of cut-off values. Another important parameter
is the size of the candidate surface patches. We set it to 20,
a number close to the average size of the observed interfaces
of the 57 proteins (22). If the patch size is set to 15 (25), the
average prediction coverage and accuracy for the same 57
proteins are 40% (43%) and 40% (42%), respectively.
Changes of other parameters are also tested. For example,
selecting 10% of top ranked patches (rather than 5%) leads
to 41% for coverage and 46% for accuracy. Selecting top
10 (or 20, default 15) residues as potential interface residues
for small proteins leads to 38% (48%) for coverage and 46%
(41%) for accuracy. All these calculations indicate that the
overall accuracy of interface prediction has a weak depen-
dence on empirical parameters. In general, if the coverage
is higher, the accuracy is lower and vice versa. We have cho-
sen the parameters so that coverage and accuracy are similar
in magnitude.

Independent testing

PINUP is tested on the protein–protein docking bechchmark
2.0. The results for the whole set and a subset of proteins non-
homologous (independent) to the training set are shown
(Table 5). The average coverage, accuracy for the indepen-
dent 68-protein set are 30.5 and 29.4%, respectively. They
are 12 or 15% lower than the corresponding cross-validation
value of the 57 training proteins.

The test set is further classified into rigid-body (easy),
medium difficult and difficult sets according to the magnitude

of conformational change after binding (45). Generally, the
coverage and accuracy are reduced as the magnitude of
binding-induced conformational changes increases (Table 5).
Each subset is divided into enzymes, inhibitors and others.
It is clear that most accurate predictions are made for inhibi-
tors, as in the Jacknife cross validation of the 57-protein set.
The average coverage and accuracy for 12 non-homologous
inhibitors are 52.4 and 51.5%, respectively. The correspond-
ing numbers are 26.5 and 26.6% for 7 enzymes, respectively
and 25.7 and 24.4% for 49 other proteins, respectively. The
excess accuracy over the expected accuracy is also the high-
est for inhibitors (27.2% for inhibitors versus 13.4% for
enzymes and 12.5% for others).

The significantly reduced accuracy for the test set is not
caused by over-training. The average coverage and accuracy
(31.8 and 32.3%, respectively) is improved only a little even
when the 68 proteins are used to train the two free para-
meters. The optimized weights for energy score, conservation
score and propensity score are 1, 1.4 and 5, respectively.
When the 57 proteins of Neuvirth et al. (10) are predicted
with the new parameters, the coverage and accuracy are 43
and 44%, respectively.

The significantly reduced accuracy for the test set is also
not caused by the significant homologous relation between
the 75 proteins used for deriving interface propensity and
the 57 proteins used for cross validation. We recalculate
interface propensity by using the 68 protein complexes of
the independent benchmark. The resulting propensity is
used to predict the interfaces of the same 68 protein com-
plexes. The prediction coverage and accuracy of the new
method after re-optimizing the weight factors (31 and 32%
for coverage and accuracy, respectively) are essentially
unchanged from the results from independent testing
(31 and 29%, respectively). This illustrates that interface pro-
pensity derived from the testing protein complexes did not
help to improve the accuracy of interface prediction for
those protein complexes.

We also recalculate interface propensity by using the
57 non-homologous protein complexes of the training and
validation benchmark. For a given protein complex, it is
excluded from the calculation of interface propensity and
training of weight parameters. This jackknife cross validation
yielded 40 and 41% for the average coverage and accuracy,
respectively. (The average coverage and accuracy are 40
and 42%, respectively, when both interface propensity and

Table 5. Testing PINUP with the whole (in parentheses) and a subset of non-homologous proteins in the protein–protein docking benchmark 2.0a

Subsetb Category No. of non-homologous
proteins (all)c

Average (all)
Coverage (%) Accuracy (%) Expected accuracy (%)

Rigid body Enzyme 6 (21) 30.9 (42.1) 31.0 (50.5) 14.6 (14.3)
Inhibitor 11 (21) 49.5 (60.4) 50.6 (57.4) 24.7 (25.7)
Others 25 (44) 29.0 (31.7) 23.5 (29.5) 10.8 (13.1)

Medium difficult Enzyme 1 (2) 0.0 (32.5) 0.0 (26) 5.1 (8.1)
Inhibitor 1 (2) 84.6 (70.1) 61.1 (61.8) 20 (23.4)
Others 16 (20) 25.0 (24.7) 28.1 (30.3) 12.1 (13.1)

Difficult Others 8 (14) 16.9 (18.4) 20.0 (21.4) 14.7 (13.0)
All 68 (124) 30.5 (36.3) 29.4 (37.5) 14.2 (15.5)

aBenchmark 2.0 of Chen et al. (45) except antibody–antigen complexes.
bSubset is based on the magnitude of conformational change after binding (45).
cThe number of proteins that share sequence identity <35% with any protein in the 57-protein dataset compiled by Neuvirth et al. (10). The number in parentheses is
averaged for all proteins in the category.
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r are derived from the training and cross validation set).

This is only 3% (or 4%) lower than the average coverage
(or accuracy) predicted from the original interface propensity.
The result further confirms that the homologous proteins used
for calculation of interface propensity is not responsible for
the higher accuracy for the training and cross-validation
benchmark.

Lower prediction accuracy for the test benchmark means
that the binding sites of proteins in the training benchmark
are easier to predict than that in the testing benchmark.
This is because the binding interfaces for the proteins in the
testing benchmark are less distinguishable from the rest of
protein surfaces than in the training benchmark. Indeed, the
difference of the interface propensity between 20 amino
acid residues derived from the independent benchmark of
68 proteins is significantly smaller than that of the original
interface propensity. Moreover, interfaces regions are more
conserved than surface regions only in 26 of the 68 proteins
(38%), compared to 54% for the 57-protein training set. The
difficulty to predict interfaces of some proteins are also found
in other studies (36,37). The varying performance in different
benchmarks indicates the limitation of existing benchmarks.
This is the direct consequence of a limited number of NR
transient complex structures available in the protein data-
bank. Thus, it would be more representative to combine
two benchmarks into one. Because 56 proteins (or their
homologs) in the 57 protein training set are in the protein–
protein docking benchmark 2.0, the results for all 124 pro-
teins in this benchmark (36.3 coverage and 37.5% for accu-
racy, see Table 5) provide a more reasonable estimate of
the overall accuracy for PINUP.

Comparison with other methods

It is difficult to compare performance made by different
methods for binding site prediction. Some (10,35) optimize
their methods to make a few accurate predictions (high accu-
racy and low coverage) while others (36) emphasize on a
large coverage of actual binding site (high coverage). More
importantly, different definitions of surface/interface residues
also produce different expected values from random predic-
tion. For example, a relaxed definition of interface residues
will lead to an increase in expected accuracy. Thus, the com-
parison between different methods has to focus on the excess
from expected values. Here, we make an attempt to have a
comparison between PINUP and two recent studies.

Neuvirth et al. (10) developed a method called ProMate to
distinguish interface regions from the rest of protein surfaces
based on 13 properties. For the same 57 proteins for training
and cross validation, they reported a success rate of 36 pro-
teins with accuracy of 50% or higher. This rate is signifi-
cantly higher than a random success rate of 13 proteins. By
comparison, the corresponding success rate and expected suc-
cess rate for PINUP are 25 and 3 proteins, respectively. Thus,
the excess success rate from the expected value given by
PINUP (22) is similar to that given by ProMate (23). How-
ever, PINUP gives a significantly higher number of proteins
with coverage of 50% or higher than ProMate does. It is
20 for PINUP but 0 for ProMate. Here, we used the same ran-
dom model proposed by Neuvirth et al. to generate expected
values. In this model, the predicted scores are reshuffled over

the amino acid residues before extracting the patches. The
low rate of correct prediction in application of this random
model to the PINUP algorithm is mostly due to the relatively
large number of predicted interface residues in this study.
The larger the number of predicted residues, the smaller the
random probability that half of the predicted residues are
true interface residues. By comparison, ProMate focuses on
making a small number of predictions and thus intrinsically
has a high expected success rate. Thus, PINUP is as accur-
ate as ProMate in terms of the location of interface but has
a larger overlap with the actual interface.

Chen and Zhou (37) developed a method called PPISP,
which trained a neural network with sequence profiles and
solvent accessibility of spatially neighboring surface residues
to predict interface residues. In their paper, they defined cov-
erage and accuracy as the fraction of correctly predicted
interface residues for all proteins in total observed interface
residues for all proteins and in total predicted interface resi-
dues for all proteins, respectively. Similarly, the expected
accuracy was defined as the fraction of total interface residues
in total surface residues for all proteins. To distinguish from
the coverage and accuracy defined in this work, we called
coverage and accuracy defined by Chen and Zhou as the over-
all coverage and overall accuracy, respectively. Their method
was tested on protein–protein docking benchmark 1.0 of
Chen et al. (45) The overall coverage and overall accuracy
is 50% and 50% for the enzyme-inhibitor category but only
28 and 31%, respectively, for other proteins in the rigid
body group. PINUP is tested on the more extensive bench-
mark 2.0. Results are shown in Table 5. PINUP yields 49%
of overall coverage and 52% of overall accuracy for the
enzyme-inhibitor category. The corresponding values are 29
and 27%, respectively, for others. Thus, the overall accuracy
is similar between PINUP and PPISP. However, the overall
expected accuracy (13% for enzymes, 20% for inhibitors
and 10% for others) of PINUP for this benchmark may be
lower than that of PPISP (26% for all heterodimers in the
training set).

DISCUSSION

In this paper, we present the method PINUP to locate binding
sites of unbound structures of proteins. This method is based
on a scoring function that is a linear combination of a side-
chain energy score, interface propensity and residue conser-
vation score. We find that the linear combination provides a
10% improvement in accuracy and 6% improvement in cov-
erage over the residue interface propensity—the best single-
term score function. Thus, combining independent parameters
is one reason for achieving high coverage and high accuracy
at the same time.

The combination of residue-energy and conservation scores
also serves the purpose of separation of functional constraints
and structural constraints for binding site predictions. A resi-
due with a low energy is likely conserved for structural con-
straints. Subtraction of the negative energy score (expected
conservation score for structural reasons) from the observed
conservation score likely produces a score to better identify
functionally important residues. In the work of Chelliah
et al. structural constraints are separated from functional

Nucleic Acids Research, 2006, Vol. 34, No. 13 3705



constraints by using surface accessibility (30). Here we use a
residue energy score because the energy score is more effec-
tive than solvent accessibility in distinguishing interface
regions from the rest of protein surface (38).

Another reason for the improved prediction of PINUP is to
define interface as the largest continuous patches composed
of residues having highest appearance in 5% top-scored
initial patches, rather than as the top-scored initial patch.
This consensus over top-scored initial patches permits the
prediction of a patch with varied shape and size whereas
the initial patch is round and fixed at 20 residues. More
importantly, the interfaces in large unbound monomers are
often made of relatively buried, low-energy residues sur-
rounded by high-energy residues (38). As a result, a single
top-scoring patch centered on a peripheral residue will con-
tain only a small number of the interface residues. Indeed,
if only one top-scored initial patch is selected, the coverage
and accuracy are only 38 and 39%, respectively, for the set
of 57 proteins.

The improvement in binding-site prediction is also in part
due to the use of native coordinates. Side-chain energy score,
originally developed for protein design is a weighted average
energy score over all possible rotamers. Unlike the early
work (38), the coordinates of the rotamer that is closest to
the native side chain conformation are replaced by the coor-
dinates of native side-chain to reduce the discrete error. With-
out this replacement, the combined score would produce 42%
of accuracy rather than 45% (Table 3).

Recently, Cheng et al. found that functional sites are more
likely (than non-functional sites) to have computed sequence
profiles that differ significantly from the naturally occurring
sequence profiles and to have residues with sub-optimal
free energies (31). We have tested a new energy score
ln(n + 1), where n is the number of other residue types having
lower energies than the replaced native residue. This single
residue-energy score yields a accuracy of 24% and its combi-
nation with conservation score yields a accuracy of 33%. This
performance is much better than the original energy score.
However, the combination of this new score with conserva-
tion and interface propensity leads to an accuracy of 43%.
It is still slightly lower than 45% by PINUP. One possible
reason is the stronger correlation between the new energy
score and interface propensity. Residues with a high-energy
score of the new energy term often are exposed hydrophobic
residues, which also have high interface propensity score. In
addition, the redefined energy score cannot be calculated with
the native side-chain conformation. The new energy scores of
all residue types were calculated with rotamers because there
is no native conformation for mutants and this discretization
error may also affect the prediction accuracy.

We also test a method that defines interface residues based
on the scores of individual residues. The levels of accuracy
for predicted interfaces are 22, 21 and 24% for the top 15%
surface residues by using energy score, conservation score
and interface propensity, respectively. Compared to the corre-
sponding values in Table 3, the use of patch is useful for a
more accurate prediction of binding sites for conservation
score and interface propensity but not for the energy score.
This further highlights the negative effect of high-energy
interface residues surrounded by low-energy surface residues
on the ability of the energy score to rank initial patches.

One perhaps notes that some false positives predicted by
PINUP are actually the binding site of other molecules
instead of the expected partner protein. This is because pro-
teins often have multiple interacting partners. Some bind to
ligands and others interact with other proteins or nucleic
acids. The predicted protein binding site of aspartate transcar-
bamoylase (1ekx) is overlapped with the PAL ligand binding
site, rather than the observed protein–protein interface.
A domain–domain interaction site of Enteropathogenic
E.coli intimin C-terminal domain (1f00), is predicted as the
protein–protein binding interface. Thus, in future, we plan
to develop a significance score for predicted interface
regions. Those with a high significance score (rather than
only one interface) will be treated as predicted interfaces.
This will allow the possibility of predicting multiple interface
regions for a given protein.

One interesting observation is that PINUP provides a much
more accurate prediction for interfaces of inhibitors. This is
true for both training and testing sets. Similar results were
observed in the previous study, where interface residues
were predicted by merely energy score (38). One possible
reason is that inhibitors have a higher expected accuracy.
That is, it has a larger interface in a relatively small surface,
compared to other proteins.
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