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The biologically active components of cannabis have therapeutic potential in 
neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids 
influence immune function in both the peripheral and the central nervous system (CNS), 
and the components of the cannabinoid system, the cannabinoid receptors and their 
endogenous ligands (endocannabinoids), have been detected on immune cells as well as 
in brain glia. Neuroinflammation is the complex innate immune response of neural tissue 
to control infection and eliminate pathogens, and Toll-like receptors (TLRs), a major 
family of pattern recognition receptors (PRRs) that mediate innate immunity, have 
emerged as players in the neuroinflammatory processes underpinning various CNS 
diseases. This review will highlight evidence that cannabinoids interact with the immune 
system by impacting TLR-mediated signaling events, which may provide cues for 
devising novel therapeutic approaches for cannabinoid ligands. 
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NEUROINFLAMMATION  

Inflammation in the central nervous system (CNS) (neuroinflammation) incorporates a spectrum of 

cellular processes that include the activation of glial cells, modulation of cytokine and chemokine 

balance, neuronal dysfunction, and neurodegeneration[1]. Indeed, neuroinflammatory events are integral 

to disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), and 

stroke[2]. Immune surveillance occurs in the CNS, dispelling previous dogma that the CNS is an 

immune-privileged site, and such immune control directs the neuroinflammatory response in neurological 

disorders[3]. The classical paradigm associates neuroinflammation with strong infiltration of the CNS 

with proinflammatory blood leukocytes due to blood brain barrier (BBB) alterations[4]. Leukocyte arrival 

in the CNS is followed by production of reactive oxygen species, proinflammatory cytokines, and 

cytolytic enzymes, leading to detrimental effects on neuronal functioning. However, long-standing 

investigations have also identified glial cells, particularly microglia, as key players in both acute and 

chronic neurological conditions[5]. Upon CNS injury, microglia transform to an “activated” form, 

whereby they display a phagocytic and ramified phenotype, participating in disease pathogenesis via the 

production of oxygen radicals, cytokines, glutamate, and proteases[6]. The activity of microglia is 
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controlled by multiple factors, including interferon (IFN)-γ, a T-cell cytokine, and -amyloid (A), in 

addition to their complex interaction with neurons, astrocytes, and T cells[7].  

Toll-like receptors (TLRs) are type-I transmembrane glycoproteins involved in the recognition of 

conserved microbial motifs[8]. They continue to emerge as key players in infectious and noninfectious 

CNS diseases, in addition to their defined role in innate immunity (see below). TLR-mediated responses 

can be beneficial or detrimental, depending on the strength and timing of the activating signal. With 

respect to neuroinflammatory conditions, specific roles of TLRs have been shown in animal disease 

models[9,10], while the expression of TLRs, and their related signaling proteins, has been characterized 

in CNS glia and neurons[11]. Hence, while current treatments for neurological conditions are based on 

regulating inflammation and neurotransmission, in addition to immunomodulation and repair of damage, 

modulating the innate immune response by targeting TLRs and their signaling cascades in the CNS may 

represent a strong therapeutic avenue for neuroinflammatory conditions. 

INNATE IMMUNE SIGNALING IN THE CNS 

The innate immune system represents the earliest defense against pathogens, providing protection against 

infections and self-antigens. This system is orchestrated by a number of cells, including mast cells, 

dendritic cells (DCs), neutrophils, natural killer (NK) cells, γ δ T cells, and macrophages. These cells act 

as crucial initiators/effectors of innate immune responses, and play diverse roles in the pathogenesis of 

neuroinflammatory conditions via the secretion of cytokines, activation and differentiation of naïve T 

cells, and production of superoxide and other reactive oxygen species[12]. Furthermore, in the last 15 

years, it has become clear that glial cells play an active role in the CNS[7] and this role in innate immune 

responses in the CNS is central to this review.  

Innate immunity is tightly regulated by a complex mechanism involving pattern recognition receptors 

(PRRs) that recognize molecular signatures of microbes known as pathogen-associated molecular patterns 

(PAMPs). Intracellular signaling triggered by PRRs leads to transcriptional expression of inflammatory 

mediators that coordinate the elimination of pathogens and infected cells[13]. PRRs are expressed on 

innate immune cells and are involved in microbe recognition/internalization by phagocytes (endocytic 

receptors), cell activation in response to diverse microbial moieties (signaling receptors), and apoptotic 

cell recognition (bridging molecules and endocytic receptors)[14]. TLRs belong to the family of signaling 

PRRs, along with retinoic acid–inducible gene I (RIG-I)–like receptors (RLRs) and nucleotide-binding 

oligomerization domain (NOD)–like receptors (NLRs)[14]. If left unchecked, or not tightly regulated, 

dysregulation of this system can lead to conditions such as sepsis, asthma, and autoimmunity[15]. NLRs 

respond to pathogens to activate pro- and anti-inflammatory pathways, with mutations or polymorphisms 

in both human or mouse NLRs linking these receptors with inflammatory disorders, such as Crohn’s 

disease[16]. Similarly, some evidence, although limited, demonstrates that RLRs can activate 

inflammatory cascades that may have consequences for the progression of neuroinflammatory 

responses[17].  

TLR activation is a major inducer of neuroinflammation, with a large body of evidence demonstrating 

that TLR ligands induce CNS inflammation via production of cytokines, nitric oxide, and 

chemokines[15,18]. The extracellular domains of TLRs contain leucine-rich repeat motifs for recognition 

of their respective pathogens and a conserved intracellular Toll-interleukin-1 receptor (TIR) domain to 

initiate downstream signaling[8]. TLRs are involved in the recognition of bacterial/viral products by the 

activation of transcription factors, such as nuclear factor (NF)-B, and the subsequent induction of genes 

encoding IFNs and proinflammatory cytokines[8]. To date, 13 mammalian TLRs have been identified 

and, with the exception of TLR3, all TLRs recruit the adaptor myeloid differentiation factor 88 

(MyD88)[19] (Fig. 1). TLR3 induces MyD88-independent signaling to regulate NF-B via the TIR-

domain–containing adaptor-inducing IFN- (TRIF) adaptor protein. Such TRIF-mediated signaling 

constitutes the MyD88-independent pathway and, in addition to stimulating NF-B, this pathway promotes 
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FIGURE 1. Mechanism of R(+)WIN55,212-2-induced regulation of TLR3 and TLR4 signaling[68]. 

R(+)WIN55,212-2 inhibits the proinflammatory signaling axis triggered by TLR3 and TLR4, while 

selectively augmenting TLR3-induced expression of IFN-. Innate immune recognition by TLRs 

culminates in the induction of an array of immune response genes, including proinflammatory 

cytokines and chemokines, in addition to type-I IFNs. TLRs induce signaling via recruitment of the 

adaptor MyD88, with the exception of TLR3, which induces Myd88-independent signaling via TRIF 

protein. TRIF-mediated signaling promotes the phosphorylation and nuclear localization of 

transcription factor IRF3 and subsequent induction of type-I IFNs. TLR4 uses Myd88-dependent and 

-independent pathways to activate NF-B via the downstream adaptor tumor necrosis factor (TNF) 

receptor-associated factor 6 (TRAF-6), resulting in the translocation of an active heterodimer protein 

to the nucleus and induction of proinflammatory genes. 

the phosphorylation of another family of transcription factors, the IFN regulatory factors (IRFs)[20]. The 

phosphorylation of IRFs promotes their nuclear translocation and induction of type-I IFNs[8]. TLR4 can 

initiate both MyD88- and TRIF-dependent signaling pathways, but can only recruit these adaptors by first 

employing the bridging adaptors, MyD88 adaptor-like (Mal) and TRIF-regulated adaptor molecule 

(TRAM)[8] (Fig. 1). Hence, overstimulation of TLR pathways can lead to increased levels of type-I IFNs 

and proinflammatory cytokines that exacerbate inflammation in the CNS. 

While early reports on TLR expression patterns focused mainly on immune cells (DCs, T cells, 

macrophages)[21] and their role in orchestrating a comprehensive program to remove invading 

pathogens, it has become increasingly clear that TLRs have a distinct role in immune surveillance and 
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inflammatory responses in the CNS. Indeed, more recent studies have characterized TLR expression 

profiles on resident CNS cells, including microglia (TLRs 1–9)[22], astrocytes (TLRs 1–5, 9, 

13)[23,24,25], and neurons (TLRs 2–5, 8, 9, 11–13)[24,26,27]. TLR expression has been determined on 

glial cells in human CNS tissue derived from patients suffering from MS and other diseases, and 

interestingly, changes in the TLR expression profile have been determined in the neuroinflammed 

brain[28]. Knockout studies have elucidated the complex role of TLRs and TLR signaling proteins in 

neuroinflammatory conditions. Indeed, TLR2[18], TLR9[29], and MyD88[29] deficiency is protective in 

models of neuroinflammation, while TLR4[30], TLR2[31], and TRIF (receptor proximal adaptor for 

TLR3 and TLR4)[32] deficiency has been shown to exacerbate disease in neuroinflammatory models, 

indicating the complex interplay of these pathways in inflammatory conditions.  

CANNABINOID CHARACTERISTICS 

Cannabinoids incorporate the components of the cannabis plant (Cannabis sativa L.), the endogenous 

cannabinoids (endocannabinoids), and the synthetic cannabinoid ligands[33]. The cannabinoid system is 

linked with all aspects of human physiology and the biological effects of cannabis intake include the 

impairment of short-term memory, acute panic reactions, and motor incoordination[34]. Cannabinoids 

elicit diverse central and peripheral effects by activating G protein–coupled cannabinoid receptors CB1 

and CB2, the expression of which has been localized on glia[35], immune cells[36], and neurons[37]. 

Indeed, much experimental evidence indicates that cannabinoid receptors are key players in mediating 

neuroinflammatory events[38,39]. CB1 receptors are expressed at high levels throughout the brain[40], 

while CB2 receptor expression is predominantly restricted to glia, with neuronal CB2 expression restricted 

to a population of neurons in the brainstem[41]. Importantly in microglia, changes in CB1 and CB2 

expression have been determined depending on their activation profile, with CB2 expression up-regulated 

on activated microglia in CNS tissue in response to neuroinflammatory events[42], although the 

implications of this are not clear. Studies in CB1, CB2, or double-knockout mice have revealed non–

CB1/CB2 receptor-mediated cannabinoid effects[43] with potential candidates identified as the orphan G 

protein–coupled receptor GPR55[44], transient receptor potential vanilloid type-1 (TRPV1) channel[45], 

or the nuclear receptor superfamily of peroxisome proliferator-activated receptors (PPARs)[46]. 

Following cannabinoid receptor interaction, cannabinoids couple to multiple signal transduction 

pathways, including mitogen-activated protein (MAP) kinases, adenylyl cyclase, and ion channels, with 

the cellular outcome depending on both the cell type and the cell context[47].  

Several therapeutic effects have been ascribed to cannabis use, including the alleviation of intraocular 

pressure[48] and emesis[49]. To date, three cannabis-based medicines are in the clinic, including 

Cesamet
 
(nabilone; a synthetic derivative of the plant-derived cannabinoid tetrahydrocannabinol; THC), 

Marinol (dronabinol; synthetic THC), and Sativex
 
(a combination of two plant-derived cannabinoids, 

THC and cannabidiol [CBD]). Cesamet and Marinol are used as antiemetics following chemotherapy, 

while Sativex has demonstrated efficacy in MS patients with central pain and spasticity[50]. Furthermore, 

the neuroprotective[51], anti-inflammatory (see below)[52], and antitumoral[53] propensity of 

cannabinoids make them promising therapeutic targets. 

CANNABINOID ROLE IN NEUROINFLAMMATION 

Cannabinoids are currently under investigation for the treatment or management of inflammatory 

conditions, including MS, rheumatoid arthritis, AD, and glaucoma[52]. In particular, it is accepted that 

some MS patients self-medicate with cannabis, which is suggested by anecdotal evidence to be beneficial 

in controlling symptoms such as pain, spasticity, and tremor, and is supported by clinical trials of medical 

cannabis extracts[54]. Such studies paved the way for clinical studies on Sativex, an oromucosal pump 

spray containing a combined cannabinoid medicine constituted by the two plant-derived cannabinoids 
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THC and CBD in a 1:1 ratio[55]. Sativex was developed by GW Pharmaceuticals and is currently 

prescribed for the neuropathic pain and spasticity associated with MS, in addition to cancer pain[50]. It is 

noteworthy that beneficial effects of cannabinoid agonists have been demonstrated in PD patients[56], 

with further trials revealing beneficial effects of cannabinoids in AD patients[57]. Further studies will 

elucidate the clinical potential of cannabinoid compounds in these conditions.  

Research evidence demonstrating the anti-inflammatory properties of cannabinoids in animal models 

of neuroinflammation indicates that cannabinoid administration attenuates the clinical development of 

experimental autoimmune encephalomyelitis (EAE), an animal model of MS[58], in addition to exerting 

anti-inflammatory properties in rodent models of AD-related neuroinflammation[59], PD[60], head 

injury[61], aging[62], and ischemia[63]. Much in vitro data support these findings. Indeed, protective 

effects of cannabinoids have been demonstrated against IL-1–[64], IFN-γ–[65], A-[66], hypoxia-

ischemia–[67], and TLR4- (see below)[68] induced inflammation in cultured CNS cells. In addition, 

evidence from knockout studies indicates cannabinoid receptor involvement in the neurodegenerative and 

neuroinflammatory pathology associated with EAE[39], closed head injury[69], and cerebral 

ischemia[70]. In support of this, it has been demonstrated that endogenous cannabinoid concentration is 

altered in the cerebrospinal fluid and peripheral lymphocytes of relapsing MS patients, and in the brain of 

EAE mice[71]. Furthermore, such findings are not restricted to MS. Hence, increased endocannabinoid 

content has been detected in the basal ganglia of rats in a model of PD[72], in peripheral blood from 

stroke patients[73], in ischemic brain regions in murine stroke models[74], and in a murine closed head 

injury model[75]. The endocannabinoid system has emerged as a key player in pathophysiological 

mechanisms, and the plasticity of this system in neuroinflammatory and neurodegenerative disorders, 

such as the time- and brain region–specific changes in cannabinoid receptors and the enzymes that 

synthesize and hydrolyze endocannabinoids, offers both therapeutic avenues for manipulation and 

insights into the immunomodulatory role of this system in disorders such as AD, MS, and PD[76].  

CANNABINOID EFFECTS ON INNATE IMMUNE CELLS 

TLRs are central in the innate immune and neuroimmune response, and evidence indicates that TLR 

activation is a major inducer of neuroinflammation[15]. Cannabinoid receptors have been localized on the 

major glial cells[35] and a large body of evidence demonstrates that cannabinoids can negatively regulate 

TLR4-induced inflammation in these cells. Indeed, in microglia, THC[77], CBD[78], endocannabinoids 

(anandamide and 2-arachidonoylglycerol; 2-AG)[79], and the synthetic cannabinoid receptor agonists 

R(+)WIN55,212-2, methanandamide, and CP55,940[79,80,81,82], ablate proinflammatory mediator 

production induced by the TLR4 agonist lipopolysaccharide (LPS), a component of the outer membrane 

of Gram-negative bacteria. In parallel, findings elsewhere demonstrate that anandamide[83], 

CP55,940[83], and R(+)WIN55,212-2[64,68] attenuate TLR4-induced neuroinflammatory changes in 

astrocytes. Furthermore, in mixed glial cultures, synthetic cannabinoids HU210 and CP55,940 enhance 

TLR4-induction of the anti-inflammatory cytokine IL-1 receptor antagonist[84], while R(+)WIN55,212-2 

and the plant-derived cannabinoid cannabinol (CBN) inhibit TLR4-induced nitric oxide production in 

glioma cells[85]. These data are supported by in vivo evidence showing that HU210 prevents the 

accumulation of proinflammatory cytokines in the rat brain following intraperitoneal administration of 

LPS[86], while R(+)WIN55,212-2 exerts a similar effect following central administration of LPS to the 

CNS[87]. TLRs and cannabinoid receptors share some common signaling components (e.g., MAP 

kinases). However, while evidence indicates cannabinoid receptor dependency[83] and independency[68] 

for cannabinoid effects on TLR-induced signaling events, no direct cross-talk between these cascades has 

been determined to date. 

We have demonstrated recently that R(+)WIN55,212-2, in addition to acting as a novel regulator of 

TLR3 signaling, can also impact TLR4-induced proinflammatory signaling cascades[68]. Specifically, 

our findings indicate that R(+)WIN55,212-2 impacts TLR signaling by inhibiting the proinflammatory 

signaling axis triggered by TLR3 and TLR4, while selectively augmenting TLR3-induced expression of 
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IFN-[68], a type-I IFN currently used as a first-line treatment of MS[88] (Fig. 1). The mechanism(s) of 

action of IFN- is complex with demonstrated effects on antigen presentation, costimulatory molecule 

expression, T-cell proliferation, and leukocyte migration[89]. Elsewhere, Kozela and colleagues[90] 

demonstrate that THC and CBD inhibit TLR4-induced proinflammatory signaling and production of IFN-

 expression in microglia, but failed to address the specific impact of these cannabinoids on TLR3-

induced cascades triggered by selective TLR3 agonists. Additional data are required to further elucidate 

the regulatory role of cannabinoids on other TLR cascades. 

Cells of the innate immune system are pivotal players in neuroinflammatory conditions, and 

immunotherapeutic intervention by targeting these cells offers an attractive treatment strategy. In addition 

to CNS cells, cannabinoid receptors have been localized on virtually all immune cells associated with 

neuroinflammation, including NK cells, DCs, neutrophils, and macrophages[36]. In macrophages, which 

play an important role in innate and adaptive immunity, R(+)WIN55,212-2[91], CP55,940[92], THC[93], 

and anandamide[94] inhibit TLR4-induced inflammation in a manner similar to that observed by 

cannabinoids in glia. In addition, THC induces apoptosis in macrophages[95], while THC and CP55,940 

can inhibit macrophage migration[96]. Elsewhere, data indicate that R(+)WIN55,212-2[97], 

anandamide[98], and CBD[99] inhibit neutrophil migration, a key event in brain injury[100]. 

Furthermore, THC[101] and CP55,940[102] negatively regulate NK cell activity, an event possibly 

associated with cannabinoid-induced immunosuppression. It is well recognized that cannabinoids further 

target DC function. Indeed, THC induces cell death in DCs[103], while anandamide has been shown to 

reduce DC capacity to stimulate T cells[104], in addition to inducing an increment in DC activation[105]. 

Interestingly, JWH 133, a selective CB2 agonist, suppresses LPS-induced TLR4 and MyD88 up-

regulation in DCs[106], which may contribute to the anti-inflammatory effect of this cannabinoid in 

autoimmune disease.  

Given the immunoregulatory properties of cannabinoids, it is important to note that cannabis users 

may display impaired immunological functions. Indeed, cannabis use has been associated with a 

predisposition to development of opportunistic infections, bacterial pneumonia[107], and more rapid 

progression of HIV in AIDs patients[108]. This is supported by animal data demonstrating cannabinoid-

induced suppression of cytokine production[109] and enhanced progression of HIV infection[110]. 

Consideration of cannabinoid therapies as anti-inflammatory agents should be weighed in light of their 

potential effects in all aspects of the immune system, with further in-depth research on cannabinoid 

impact on innate and adaptive arms of the immune system delineating the clinical promise of 

cannabinoids as anti-inflammatory agents. 

CONCLUDING REMARKS 

Innate immune responses in the CNS are pivotal in the elimination of pathogens and promotion of cell 

survival. However, dysregulation of this system is associated with neuroinflammation and degeneration. 

TLRs, in addition to their role in innate immune control, have emerged as central players in 

neuroinflammation, ensuring that TLR agonists/antagonists are currently undergoing preclinical and 

clinical evaluation for the treatment of sepsis and inflammatory disease. Cannabinoids are recognized as 

anti-inflammatory agents, with identified protective roles in many neuroinflammatory disorders. This 

review summarized the main data demonstrating the propensity of cannabinoid compounds to impact 

TLR-induced signaling, further highlighting the potential of these compounds to regulate innate immune 

cell functioning and subsequent inflammatory events. Although these cannabinoid effects await further 

in-depth studies, it is clear that cannabinoid impact on the TLR system presents a pharmacological target 

with promising therapeutic potential. 
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