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1  |  INTRODUC TION

Cancer is characterized by the aberrant properties of tumor cells, 
including abnormal fast growth and division as well as the resistance 
to apoptosis. The initiation and development of cancer often de-
pend on a series of genetic mutations affecting cellular programs. 

This leads to the effort by the scientific community on identifying 
the molecular basis of cancer and on the development of mathemat-
ical and computational approaches addressing tumor morphological 
evolution. The main goal of such models is to describe the observed 
phenomena based on the biological mechanisms that control the 
system's behavior. Moreover, the correct implementation in these 
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Abstract
Objectives: Computational modeling of biological systems is a powerful tool to clarify 
diverse processes contributing to cancer. The aim is to clarify the complex biochemi-
cal and mechanical interactions between cells, the relevance of intracellular signaling 
pathways in tumor progression and related events to the cancer treatments, which 
are largely ignored in previous studies.
Materials and Methods: A three- dimensional multiscale cell- based model is devel-
oped, covering multiple time and spatial scales, including intracellular, cellular, and ex-
tracellular processes. The model generates a realistic representation of the processes 
involved from an implementation of the signaling transduction network.
Results: Considering a benign tumor development, results are in good agreement 
with the experimental ones, which identify three different phases in tumor growth. 
Simulating	 tumor	vascular	growth,	 results	predict	a	highly	vascularized	 tumor	mor-
phology in a lobulated form, a consequence of cells' motile behavior. A novel sys-
tematic study of chemotherapy intervention, in combination with targeted therapy, is 
presented to address the capability of the model to evaluate typical clinical protocols. 
The model also performs a dose comparison study in order to optimize treatment effi-
cacy and surveys the effect of chemotherapy initiation delays and different regimens.
Conclusions: Results not only provide detailed insights into tumor progression, but 
also support suggestions for clinical implementation. This is a major step toward the 
goal of predicting the effects of not only traditional chemotherapy but also tumor- 
targeted therapies.
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simulations of the main physical mechanisms underlining tumor de-
velopment leads to a real possibility for evaluating pre- clinical drug 
design opportunities and helping the optimization of drug delivery.1,2

The development of benign tumors is caused by excessive cell 
proliferation, which is commonly limited by space, or more usually, 
by the nutrient availability in the tissue. This early phase of tumor 
development, labeled avascular growth, has tumor cells in the hy-
poxic cell state, where they are able to survive with a lower nutrient 
concentration. Hypoxic cells within a tumor express the hypoxia- 
inducible	 factor-	1	 (HIF-	1),	 upregulating	pro-	angiogenic	 factors	 and	
triggering tumor vascularization. A denser vasculature gives access 
to an additional supply of nutrients, driving the tumor growth to the 
vascular phase. Tumor vascular growth is a feature of malignancy, 
enabling tumor cells to invade other tissues by entering the circula-
tion via nearby blood vessels (metastasis).3,4

Various mathematical techniques have been used to simulate 
tumor growth and associated processes, being applied to tumors 
both in the avascular5– 7 and at the vascular stages.8– 11	Indeed,	most	
of the early mathematical models of tumor growth address avascu-
lar	tumor	morphology.	Developing	mathematical	models	of	tumor-	
induced angiogenesis permits a more realistic description of nutrient 
availability in tumors.12– 15	 See16–	19 for complete reviews of angio-
genesis models. Recently, multiscale approaches have been intro-
duced to reproduce the biological and physical mechanisms in tumor 
growth and angiogenesis. These models consider both subcellular 
and tissue scales.19–	23

Alarcón et al.24– 26 introduced a hybrid structured lattice- based 
model to simulate vascular tumor growth, which considers blood 
flow and oxygen transport in a tissue scale and accounts for cellu-
lar interactions and progress in cellular and intracellular scales. The 
model investigates the effects of nutrient spatial heterogeneity on 
the evolution and invasion of cancerous tissue, and the emergent 
growth	 laws.	 The	 diffusive	 transport	 of	 oxygen	 and	 VEGF	within	
the	 tissue	 is	 described	 through	 reaction–	diffusion	 equations.	 In	 a	
subsequent study, the authors considered the diffusion of standard 
cytotoxic drugs as a treatment and investigated the effects of ves-
sel normalization on chemotherapy.26 The authors concluded that 
vessel normalization improves the efficiency of chemotherapeutic 
drugs, observing also the decrease in the prevalence of hypoxia. 
Subsequently,	Owen	et	al.27 developed the same model into a more 
realistic one by simulating blood flow and vascular remodeling 
during angiogenesis. Their findings show that a tumor may continue 
to grow near the parent vessel until the formation of new vessels 
creates	bridges	between	adjacent	vessels.	Following	these	studies,	a	
3D	version	of	the	proposed	model	is	described	by	Perfahl	et	al.28 A 
more	recent	study	presented	by	Stepanova	et	al.	introduced	a	hybrid	
stochastic	2D	multiscale	model	which	accounts	 for	cell	 rearrange-
ments in the formation of angiogenic networks. The authors stated 
that their model reproduces properties describing the gene expres-
sion	patterns	of	ECs.	The	results	predict	that	there	is	an	imbalance	
between effective sprout elongation and branching when cells at 
the sprouts have difficulty in rearranging their position.29	Stéphanou	
et al.30,31 simulated tumor development and angiogenesis with a 

hybrid model. This uses a lattice- based cellular automaton (CA) to 
represent	cells	and	their	interaction	and	a	continuous	PDE	describ-
ing the evolution of endothelial cells density. This model explores 
the alterations of the vessels and their effect on tumor dormancy. 
The described results show tumor dormancy as a consequence of 
vascular changes in the larger upstream vessels in the host tissue. 
Welter	et	al.32 presented a different hybrid lattice- based model for 
trans- vascular oxygen transport in a synthetic tumor and host tis-
sue vasculature using a series of steady- state diffusion equations. 
Reduction in the vessels' radii leads to a decrease in blood oxygen 
saturation in tumors in comparison with normal tissue, which is in-
terpreted as emulating vessels' compression caused by intra- tumoral 
stress.

Cell- based models have a great potential in tracking single- cell 
traits and cell behavior rules. The cellular Potts model (CPM) is a 
widely used cell- based modeling framework, simulating biophysi-
cal and molecular interactions between cells, based on biophysical 
cellular properties. This capability makes it a popular approach to 
describe	events	in	cancer	development.	Shirinifard	et	al.33	used	a	3D	
multiscale cellular Potts model to study tumor growth and angiogen-
esis. The tumor cell behavior is determined by oxygen concentration 
in	 the	microenvironment,	 diffusing	 from	 the	 blood	 vessels.	 Szabo	
et al.34 introduced a hybrid model that couples CPM with a contin-
uous tissue scale, to describe the concentration of oxygen, glucose, 
and lactate. This model successfully predicted the effect of vessel 
blocking probabilities on the evolution of tumor cells. Accordingly, 
instabilities in blood supply can lead to a reduction in tumor aggres-
siveness.	 Kanigel	Winner	 et	 al.35 used the CPM framework to in-
vestigate the administration of anticancer drugs to ovarian cancers. 
The model provides a comparison between the effects of intrave-
nous injections and intraperitoneal infusions in tumor penetration. 
The authors reported that intraperitoneal infusion is the preferable 
route in the initial growth phase, when the tumor is still small and 
avascular.	Jafari	Nivlouei	and	co-	workers36	proposed	a	2D	multiscale	
agent- based model, addressing two distinct phases in tumor growth. 
In	 each	 stage,	 tumor	 progression	 is	 considered	 with	 and	 without	
normal healthy cells. The authors reported the formation of a dense 
intra- tumoral vascular network throughout the entire tumor mass as 
a sign of a high malignancy grade.

In	what	concerns	cancer	therapy,	computational	studies	focusing	
on tumor response to therapy are fundamental tools that facilitate 
the understanding of drug's mechanism of action, helping to deter-
mine	the	most	effective	treatment	protocols.	Different	approaches	
to chemotherapy modeling have been proposed, including contin-
uous37 and hybrid discrete- continuum models, in which the model 
describes the effect of interstitial fluid pressure and lymphatic drain-
age on drug delivery to tumors.38– 40 This class of studies permits 
the evaluation of the parameters that limit the delivery of nutrients 
and therapy. More recently, multicellular and multiscale techniques, 
which incorporate drug therapy at the extracellular level, are be-
coming	increasingly	important	in	tumor	treatment	simulation.	Wang	
et al.41 developed a multiscale agent- based model to simulate the 
melanoma tumor vascular growth and to study the response of 
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tumor to combined drugs treatments. The authors reported that the 
interruption in the communications between melanoma cells and the 
vasculature might increase the drugs' effectiveness.

Targeted therapy is a novel type of treatment which reduces 
systemic drug toxicity by inducing modifications in the tumor mi-
croenvironment and not in normal cells.42,43 Targeted drugs are 
characterized by the binding of their therapeutic molecules to spe-
cifically expressed receptors on the tumor cells' membranes. Kim 
and co- workers44 modeled targeted therapy by focusing on specific 
intracellular signaling pathways that prevent cancer cells' abnormal 
behavior and finally induce cell apoptosis or suppress cell growth. 
They developed a hybrid model where they targeted the MAPK and 
PI3K-	AKT	 signaling	 pathways,	which	 are	 activated	 in	 lung	 cancer,	
and used it to investigate the effects of this pathway inhibition under 
different microenvironmental conditions. The model uses a CA ap-
proach	to	describe	the	cellular	process	and	a	set	of	ODEs	to	address	
tumor response to the targeted therapy. The authors suggested a 
new treatment combination strategy based on the predicted cell 
signaling responses. More recently, a new class of targeted thera-
pies	has	been	developed,	 targeting	cells	 in	 the	hypoxic	 regions.	 In	
hypoxia- activated pro- drugs (HAPs), the cytotoxic agents are re-
leased under low oxygen pressure.45 Hong et al.46 introduced a hy-
brid model that combines the CA model with continuous transport 
equations to simulate tumor response to HAP and to explore the 
bystander effects of the therapy. A similar study was presented by 
Karolak et al.,47 using a model that combines a discrete model with 
advection– diffusion– reaction equations describing the concentra-
tions of oxygen and drug.

Here,	a	3D	multiscale	model	is	developed	to	cover	multicellular	
dynamics of tumor growth and tumor- induced angiogenesis. This 
work	extends	the	2D	model	proposed	by	Jafari	Nivlouei	et	al.36 that 
is the first to consider the cellular interactions and cell behavior in 
tumor progression process as a consequence of the activation of on-
cogenes and the deactivation of gene signaling pathways. The cur-
rent model involves different scales, including intracellular, cellular, 
and	extracellular.	It	describes	the	mechanical	interactions	between	
cells, based on biochemical mechanisms, to generate realistic pre-
dictions. At the intracellular scale, the cell phenotype is determined 
directly from the signaling pathways' gene regulatory network, and 
alterations in the cells' response to different receiving signals are 
investigated. At the cellular scale, the model uses the cell- based 
cellular Potts model to simulate tumor progression, describing the 
interactions between different cells' types and with their microenvi-
ronment.	In	this	work,	the	mechanical	environment	applied	to	each	
cell determines its dynamics. To model the formation of new vessels, 
the	local	concentration	of	vascular	endothelial	growth	factor	(VEGF)	
diffused from the tumor, along with vessel- supplied nutrients, is cal-
culated in the extracellular scale from partial differential equations 
(PDEs).	 Similarly,	 in	 order	 to	 describe	 the	 response	 of	 tumor	 cells	
to chemotherapy, cytotoxic drug pharmacodynamics is modeled 
through	a	set	of	PDEs.	This	study	aims	to	link	models	of	avascular	
and vascular tumor growth as a predictive model of carcinogene-
sis, to mimic experimental assays and test different therapeutic 

strategies,	 including	 chemotherapy	 and	 targeted	 therapy.	 Despite	
remarkable progress in the development of models of tumor growth 
and angiogenesis over the last three decades, previous mathematical 
investigations have largely ignored the complex biochemical and me-
chanical interactions between cells in the host microenvironment, 
and the relevance of intracellular signaling pathways in tumor pro-
gression and related events to the cancer treatments. The current 
model presents an explicit description of the key interactions that 
mediate morphogenic processes and highlights receptor influence 
in cell state evolution and extracellular reaction– diffusion dynamics. 
This provides a significant and novel contribution to the field of sim-
ulating tumor growth and different methods of cancer treatment in 
a simplified way. The model integrates all the information received 
from each spatial and temporal scale to predict the system response. 
It	enables	us	to	survey	cell	phenotypic	alterations	by	considering	the	
interaction of signaling molecules and the signaling pathways. This 
helps	 to	 explore	 the	mechanism	 of	 anti-	tumor	 and	 ECM-	targeted	
strategies by inhibiting the activity of specific receptors. Results will 
not only provide detailed insights into tumor progression, but the 
model is also a step toward clinical implementation. This represents 
an opportunity to analyze tumor response to both treatment strat-
egies (i.e., chemotherapy and combination therapy) and to evaluate 
typical clinical protocols.

2  |  MATERIAL AND METHODS

The model simulates the tumor development processes at intracel-
lular,	 cellular,	 and	 extracellular	 scales.	 Each	 scale	 of	 the	 model	 is	
presented in the following sections to detail the implemented mech-
anisms of tumor progression.

2.1  |  Intracellular scale

At the intracellular level of this tumor growth simulation, signal 
transduction pathways determine the cellular processes occurring 
during	tumor	development	and	angiogenesis.	Intracellular	signaling	
leads to genetic activity modulation in the cancer cells and to the 
production of growth factors, which increase the cell proliferation 
rate, promote its survival, and facilitate healthy tissue invasion. To 
investigate the mechanisms by which a cell responds to the environ-
mental signals and, consequently, drives cancer initiation and devel-
opment, the model focuses on pivotal pathways involved in various 
types of cancer including: receptor tyrosine kinases (RTKs), integrin, 
cadherin	and	Wnt.

Oncogenic	 mutations	 not	 only	 cause	 the	 overexpression	 of	
genes,	 but	 also	 can	 produce	mutated	 proteins.	 Growth	 factor	 re-
ceptor tyrosine kinases (RTKs) are often de- regulated in neoplasms. 
These are proteins involved in commonly activated survival signaling 
pathways, whose activity leads to stimulation of serine/threonine 
kinases	(e.g.,	Raf	and	Akt)	and	lipid	kinases	(e.g.,	PI3Ks)	through	the	
activation	of	small	GTPases	 (e.g.,	Ras).	Moreover,	the	activation	of	
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Ras	can	originate	from	the	loss	of	neurofibromin	(NF1)	protein,	en-
coded	by	the	NF1	gene.	NF1	functions	as	a	tumor	suppressor	that	
negatively regulates the activity of Ras.48- 51 Loss of tumor suppres-
sors' function results in cancer initiation and progression because 
of their role in cell division inhibition, induction of apoptosis, and 
metastasis	suppression.	While	the	hyperactivation	of	Ras-	ERK	and	
PI3K-	Akt	 signaling	pathways	 can	 lead	 to	excessive	proliferation	 in	
tumor cells, mutations can promote the cancer phenotype by dis-
abling cell death signaling.52,53	For	instance,	p53	is	known	as	a	tumor	
suppressor protein whose loss through mutation can contribute to 
tumor development by the interruption of cell death signaling, as it 
regulates cell apoptosis by binding directly to Bax, a pro- apoptotic 
protein.54 As tumor progression transits into the malignant phase, 
cells are more aggressive and can migrate and invade the surround-
ing tissue. Cells' migration can be regulated by different stimuli, such 
as growth factors and adhesion receptors.55,56	Importantly,	integrin	
receptors	and	matrix	adhesion	proteins	(e.g.,	FAK),	accompanied	by	
cadherin cell– cell adhesion complexes, are known as major targets 
that regulate various cellular functions, including cell survival as well 
as cell migration through downstream effectors.57,58	 Integrins	 are	
transmembrane receptors that mediate cells' adhesion to the extra-
cellular	matrix	 (ECM).	 Integrin	attachment	to	the	ECM	deregulates	
the activation of the mitogen- activated protein (MAP) kinase cas-
cade that controls cell cycle progression and drives the actin cyto-
skeleton, which is fundamental for cell motility.59-	61

Cell–	cell	 adhesion	 through	 the	 E-	cadherin	 transmembrane	 re-
ceptor keeps the cells together and guarantees the formation of 
cohesive multicellular structures, promoting cell viability in mul-
ticellular organisms.62- 64	 E-	cadherin	provides	 a	mechanism	 for	 cell	
communication through cell– cell junctions and mediates contact 
inhibition of cell growth.65,66	Furthermore,	the	endothelial	cell	(EC)-	
specific	 cadherin	 transmembrane	 receptor,	 VE-	cadherin,	 whose	
association with the protein ß- catenin facilitates its binding to the 
actin cytoskeleton, is responsible for the tight but dynamic con-
nection between neighboring cells.67 This protein plays an import-
ant role in providing a cohesive structure for the new blood vessel. 
Strikingly,	 the	 cadherin–	catenin	 adhesion	 system	 regulates	 cell	
proliferation and migration through downstream signaling effects 
during	cancer	development.	E-	cadherin	loss	of	expression	promotes	
the release of ß- catenin into the cytosol, which results in the acti-
vation	of	Wnt	signaling.	ß-	catenin	 is	 the	main	effector	of	 the	Wnt	
signaling pathway,68,69	and	E-	cadherin	negatively	regulates	the	Wnt/
ß- catenin signaling. Nevertheless, the loss of expression of cadherin 
by itself is not sufficient for the activation of ß- catenin signaling.70 
Recent research reveals that the loss of APC function is associated 
with increased levels of ß- catenin.71,72 APC is a tumor suppressor 
localized inside the cells' nucleus, which regulates cell proliferation 
by	inhibiting	Wnt/ß-	catenin	signaling,	and	facilitates	cell	apoptosis	
to suppress tumor progression and metastatic cell spread.73 The re-
introduction of APC into mutant cells, in order to restore its function 
in	Wnt/ß-	catenin	signaling,	has	been	investigated	in	several	thera-
peutic treatments.74- 76	Experimental	observations	demonstrate	that	
the early loss of APC function and the activation of ß- catenin can be 

followed	by	the	later	loss	of	E-	cadherin,	leading	to	the	cell's	invasive	
behavior.70

Considering the described key events in tumor growth and an-
giogenesis, a signaling cascade is modeled based on the cross talk 
between the main regulators of growth factors (RTKs), integrin, 
cadherin,	 and	Wnt	 (Figure	 1A).	 Moreover,	 different	 experimental	
studies are used to integrate the information of the most important 
effectors that play a key role in cell cycle regulation, as presented in 
Table 1. The dependences between the network nodes are specified 
by the arrows, which indicate the activation of the corresponding 
effector.	 On	 the	 contrary,	 an	 inhibitory	 effect	 is	 pictured	 as	 bar-	
headed lines. The aim of modeling the intracellular scale is to deter-
mine the cell phenotype in response to the active signals.

Our	model	 is	 implemented	as	a	Boolean	network	model	 that	 in-
tegrates the signaling network and, from its output, determines the 
cell phenotype. Quantitative information for the kinetics of the rele-
vant biochemical reactions is scarce and imprecise, and the initial state 
of the nodes under different circumstances is almost inaccessible. 
Stochastic	methods	are	commonly	applied	to	simulate	biological	sys-
tems and handle the lack of data.116-	119 Boolean network approaches 
were	 introduced	by	Stuart	Kauffman120,121 and have become a use-
ful tool to examine the dynamics of gene regulatory networks. They 
are also used to predict unknown correlations inside the signaling 
networks, as in recent studies on angiogenesis.122,123 Hence, using a 
MATLAB- based toolbox, a Boolean network model has been applied 
to describe the proposed signaling cascade, critical to determining the 
cellular	phenotype	during	tumor	growth.	For	a	more	detailed	descrip-
tion of Boolean network models, see references.124- 126

2.2  |  Cellular scale

To capture system dynamics at the cellular level, a lattice- based 
Monte Carlo model, a cellular Potts model, is extended to describe 
the	interactions	between	cells	and	the	ECM	in	three	dimensions.	The	
cellular	Potts	model	is	a	stochastic	model	developed	by	Glazier	and	
Graner,127 which describes cells' behavior in response to environ-
mental cues based on the effective energy and constraints. This ap-
proach enables us to incorporate the intracellular scale, capturing 
both tumor and vessel cells' interactions as they are growing, prolif-
erating, migrating, or undergoing apoptosis.

The model includes a list of generalized cells (i.e., cancer cells, en-
dothelial	cells,	and	ECM)	that	are	spatially	extended	through	the	com-
putational	domain	and	reside	on	a	three-	dimensional	cell	lattice.	Each	
cell type has a unique cell index, τ, which is assigned to every entity oc-
cupying	a	lattice	site.	One	unique	cell	index	tag,	for	example,	σ = 1, 2, …, 
represents each individual cell. The “cell index” 0 is assigned to all lat-
tice	sites	that	are	filled	by	ECM.	Lattice	site	occupation	evolves	based	
on a total effective energy minimization algorithm, which means that 
any configuration evolves toward one that satisfies the energy minimi-
zation. The term representing energy is denominated Hamiltonian, , 
and the simulations are performed using the Metropolis criteria based 
on the variation of the Hamiltonian value, Δ. Accordingly, any change 
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that decreases the total energy is accepted; otherwise, the Boltzmann 
probability determines the acceptance of the alteration, with the ex-
pression: e−Δ∕Tm, where Tm is a gauge of system disorder, representing 
the amplitude level of cell membrane fluctuations, describing the ef-
fective cell motility.

In	the	current	study,	the	Hamiltonian	is	considered	as	a	sum	of	
four effective energy terms describing cellular adhesion, cell growth, 
chemotaxis, and guaranteeing cell continuity.

• The adhesion energy: describes the interaction between adjacent 
cells	and	the	cells'	contact	with	the	ECM.	Depending	on	the	cell	
type, J� ,�′ is the measure of adhesion strength between the en-
tities of types � and �′ (the larger J� ,�′, the weaker the adhesion 
between types � and �′)

The sum is run over all the neighboring pixels, � and �′ are the 
cells'	ID,	and	δ is the Kronecker symbol.

• Cell growth: describes the energy involved in cell growth and 
proliferation	 through	mitosis.	During	 the	 cell	 cycle	 progression,	
cells grow until they reach twice their initial volume, and then they 
divide. After mitosis, the parent cell target volume is restored to 
its initial volume, and the offspring cell will inherit the type and 
target volume of the parent cell, being assigned a new unique 
ID.	The	energy	responsible	 for	setting	 the	 target	cell	 size	 in	 the	
Hamiltonian is:

where v� denotes the cell volume, while VT
�
 is the target volume and �e 

is the cell elasticity.
(1)Eadhesion =

∑
site

J� ,�� (1 − ��,�� )

(2)Egrowth =
∑
cell

�e
(
v� −VT

�

)2

F I G U R E  1 Determination	of	cell	phenotype	at	the	intracellular	level.	(A)	Signal	transduction	network	of	the	current	tumor	growth	
model,	focusing	on	Ras-	PI3K-	Akt	and	Wnt/ß-	catenin	signaling	pathways.	External	stimuli,	Wnt,	RTK,	cadherin,	and	integrin,	are	considered	
to regulate the cell cycle progression and to determine the cell's phenotype. Arrows represent the activation of the protein involved and 
bar-	headed	lines	describe	inhibition.	Different	experimental	studies	are	used	to	integrate	the	information	of	the	most	important	effectors	
that play a key role in cell cycle regulation, as presented in Table 1 (Methods and Materials). (B) Boolean map of cell phenotype for different 
input	configurations.	Colors	indicate	activity	of	the	signal	from	each	correspondent	receptor	(i.e.,	integrin,	RTK,	and	Wnt),	and	receptor	
inactivation	is	shown	in	gray.	For	instance,	considering	cadherin	activation,	case	(110)	represents	receiving	signal	from	integrin	and	RTK,	and	
no	signal	from	Wnt,	and	the	model	predicts	cell	growth	and	proliferation	(1100).	The	binary	codes	on	the	first	row	specify	the	integrin,	RTK,	
and	Wnt	states,	respectively
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• Chemotaxis: tumor cells' migration in the microenvironment 
via chemotaxis is critical in cancer metastasis. Assuming that 
nutrients and oxygen diffused from vessels work as chemoat-
tractants, tumor cells move toward the vessels and are able to 
invade distant organs after crossing into the blood stream. The 
energy involved in the chemotaxis of tumor cells with a migra-
tion phenotype is proportional to the concentration gradient of 
the nutrients (n), as:

The	 migration	 of	 endothelial	 cells	 (ECs)	 is	 the	 most	 import-
ant event that occurs during sprouting angiogenesis. Considering 
VEGF	as	a	chemoattractant	agent	that	regulates	the	vascular	net-
work	 development,	 ECs	move	 toward	 a	 higher	 concentration	 of	
VEGF	(V ).

�σ is a negative parameter that determines the chemotaxis inten-
sity and is denoted as chemotactic potential.

• Haptotaxis: describes the movement of cells by adhesion gradi-
ents, and in particular cell motion according to the concentration 
gradient	of	relevant	molecules	linked	to	the	ECM.20 This mecha-
nism is modeled through the adhesion energy between cells and 
ECM.

• Cell continuity: Cells are a continuous medium. To keep the con-
tinuity of lattice sites that are occupied by a single cell, a con-
straint term is added to the Hamiltonian. This term introduces a 
severe increase in the system total energy when a cell is about to 
rupture:

where � is a large penalty factor that increases the system energy 
when there is a difference between the current contiguous cell size 
(v�) and the number of lattice sites occupied by the cell with unique 
identification � (v′

�
).

Therefore, the contribution of the energy terms related to cell ad-
hesion, volume, continuity, and chemotaxis, which is referred collec-
tively as Hamiltonian, will be as follows:

(3)Echemotaxis =
∑
cell

��Δn

(4)ΔEchemotaxis =
∑
cell

��ΔV

(5)Econtinuity =
∑
cell

�

(
1 − �v� ,v��

)

(6)

 = Eadhesion + Egrowth + Econtinuity + Echemotaxis =
∑
site

J� ,�� (1 − ��,�� ) +
∑
cell

�e
(
v� −VT

�

)2
+

∑
cell

�

(
1 − �a� ,a��

)
+

∑
cell

��C

TA B L E  1 Boolean	dependence	relations	of	the	nodes	presented	
in	the	signaling	network	of	Figure	1A,	based	on	the	experimental	
data of given references. The colors correspond to the color coding 
of	the	nodes	in	Figure	1A

Node Dependence relation Reference

Integrin External	signal	(Integrin	binding) 77

RTK External	signal	(VEGF	binding) 78

E-	cadherin External	signal	(cadherin	binding) 79,80

Wnt External	signal	(Frizzled	receptor) 81,82

ß- Catenin Wnt	Or	Akt	And	Not	cadherin	
AND	Not	APC

79,83

APC External	signal 84

Grb-	2/Sos RTK	And	Scr 85

Src FAK 86,87

FAK ITG 87

Rho- A FAK 87

ROCK Rho- A 88,89

Rac- 1 PI3K	And	Not	Rho-	A 90,91

Ras Grb-	2/Sos	And	Not	NF1 85,92,93

NF1 External	signal 48- 50

Raf- 1 Ras 94-	96

MEK1/2 Raf-	1	Or	Rac-	1 94,97

ERK1/2 MEK1/2 94,97

RSK ERK	1/2 98,99

TSC Not	RSK	Or	Not	Akt 99,100

mTORC Not	TSC 101

MNK ERK	1/2 102

eIF4E MNK 103

MSK ERK	1/2 104

Fos MSK	And	RSK 105,106

Myc ERK	1/2	Or	ß-	Catenin 107,108

PI3K Ras 94

Akt PI3K 109,110

eNOS Akt 111

NO eNOS 112

Caspase Not	NO 110

Mdm2 Akt 54

p53 Not Mdm2 113

Bax p53 114

Actin ROCK	Or	Rac-	1 91

SNAIL ß- Catenin 82

Cell growth eIF4E	Or	mTORC 101,103

Cell proliferation Fos	And	Myc 94,98,115

Cell apoptosis Caspase	Or	p53 54,74

Cell migration Actin	And	SNAIL 82,91
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where C is the chemoattractant agent, replaced by the nutrient con-
centration n	in	what	concerns	tumor	cells,	or	the	VEGF	concentration	
(V) for the activated endothelial cells.

2.3  |  Extracellular scale

At this level, concentrations of nutrients and growth factor, and 
the drug distribution are described by a set of reaction– diffusion 
PDEs.

• Diffusion of nutrients in the ECM: nutrient and oxygen depriva-
tion (hypoxia) in tumor cells leads to the secretion of angiogenic 
factors,	 such	as	VEGF.	This	 factor	 activates	ECs	and	 stimulates	
the growth of new capillaries to irrigate the tumor lesion and in-
crease the oxygen supply.128 To model this process, a reaction– 
diffusion equation is used to describe the diffusion, production, 
and consumption of nutrients from vessels into the microenviron-
ment	(Equation	7).

where n denotes nutrient concentration, Dn is its diffusion coefficient, 
Sn refers to the process of nutrients release from vessels, and B is a 
function expressing the uptake rate of nutrients by tumor cells, as de-
scribed below:

where β is the maximum consumption rate of nutrients per cell voxel 
for a tumor cell. The release rate of nutrients from the endothelial cells 
is given by:

• Diffusion of VEGF in the ECM:	The	tumor	starts	to	secret	VEGF	to	
extend	new	capillaries	by	activating	the	ECs.	Hence,	a	concentra-
tion gradient between the tumor and the nearby vascular network is 
generated,	which	drives	activated	ECs	to	migrate	toward	the	tumor.	
To	 simulate	 sprout	migration,	VEGF	distribution	 in	 the	 domain	 is	
governed	by	a	PDE	similar	to	nutrients	diffusion.	Hence,	consider-
ing	diffusion,	uptake,	and	decay	of	the	VEGF,	the	equation	for	VEGF	
concentration is given by:

where DV	is	the	diffusion	constant	of	VEGF	(V), kV refers to its decay 
rate, SV	 is	the	function	of	secretion	rate	of	VEGF,	and	E denotes the 
uptake	function	of	VEGF	by	ECs,	with	a	maximum	rate	of	e.

• Diffusion of the chemotherapeutic drug: The model includes che-
motherapy with a cytotoxic drug. The diffusion of drugs from the 
vessels and the new tumor- induced capillaries (neovasculature) is 
described by a reaction– diffusion equation:

where c denotes the chemotherapy drug concentration, Dc its diffusion 
coefficient, and kc represents the drug decay rate. R is the function of 
drugs' uptake rate by tumor cells, as described below:

ρ is the maximum consumption rate of drug per proliferative cell 
voxel.	The	drug	release	rate	from	the	ECs	will	be:

• Initial and boundary conditions:

The simulation starts with a tumor, with a diameter of approxi-
mately 65 µm,	at	the	center	of	the	computational	domain.	Initially,	it	
is assumed that the signaling from all receptors, including the RTK 
receptors, is active, and the concentration of nutrients is sufficient 
to	irrigate	the	cells.	So,	the	initial	and	the	boundary	conditions	are:	
n(x, y, z, t)(x,y,z)⊂ECs = sn, n (x, y, z, 0) = S0 = 4.6pg∕voxel.

Since	the	secretion	of	VEGF	is	induced	in	the	hypoxic	area	of	the	
tumor,	there	is	no	VEGF	concentration	in	the	domain	until	a	hypoxic	
core is formed, which means V (x, y, z, 0) = 0.	In	response	to	hypoxia,	
VEGF	is	secreted	at	a	rate	sV inside the tumor core.

(7)
�n

�t
= Dn∇

2n − B (x, y, z, n) + Sn

B (x, y, z, n) =

⎧
⎪⎪⎨⎪⎪⎩

nif0≤n≤𝛽and{(x, y, z) ⊂Cancer cell}

𝛽if n>𝛽 and{(x, y, z) ⊂Cancer cell}

0if {(x, y, z) ⊄Cancer cell}

Sn (x, y, z) =

⎧
⎪⎨⎪⎩

snif{(x, y, z) ⊂Endothelial cell}

0if{(x, y, z) ⊄Endothelial cell}

(8)

𝜕V

𝜕t
=DV∇

2V−kVV−E (x, y, z,V) +SV

E (x, y, z,V) =

⎧
⎪⎪⎨⎪⎪⎩

V if0≤V ≤eand{(x, y, z) ⊂Endothelial cell}

e if V >e and{(x, y, z) ⊂Endothelial cell}

0if {(x, y, z) ⊄Endothelial cell}

SV (x, y, z) =

⎧⎪⎨⎪⎩

sV if{(x, y, z) ⊂Hypoxic cancer cell}

0 if{(x, y, z) ⊄Hypoxic cancer cell}

(9)
�c

�t
= Dc∇

2c − kcc − R (x, y, z, c) + Sc

R(x, y, z, c) =

⎧
⎪⎪⎨⎪⎪⎩

cif0≤ c≤𝜌and{(x, y, z)⊂Proliferative Cancer cells}

𝜌if c>𝜌 and{(x, y, z)⊂Proliferative Cancer cells}

0if {(x, y, z)⊄Proliferative Cancer cells}

Sc (x, y, z) =

⎧
⎪⎨⎪⎩

scif{(x, y, z) ⊂Endothelial cell}

0if{(x, y, z) ⊄Endothelial cell}
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2.4  |  Simulation algorithm

To simulate tumor growth with realistic capillary structures, the 
model couples multiple time and length scales. At every time 
step, each cell gathers information from its microenvironment to 
feed the simulated signaling pathways. At the intracellular level, 
these signals are interpreted and the model determines each cell's 
phenotype. The predicted cell phenotype is implemented at the 
cellular level, where the model calculates the Hamiltonian varia-
tion, and, based on probability values, changes are applied to the 
system. The model then calculates the new distribution of nutri-
ents,	VEGF	and	chemotherapeutic	drug	in	the	environment,	which	
serve as inputs to the next time step. As this process is repeated, 
the extracellular dynamic environment controls the cells' behavior 
at the cellular scale.

The whole process is repeated for each pixel of the lattice at every 
Monte	Carlo	step	(MCS),	which	can	be	converted	into	a	biological	scale	
of	time.	In	the	current	model,	1	MCS	represents	one	real-	time	minute,	
based on the fastest cell cycle time for cell division of ∼ 24h.20, 123

All parameter values used in the model are listed in Table 2.

2.5  |  Computational setup

Using	 the	 open-	source	 CompuCell3D	 simulation	 environment	
(http://www.compu	cell3d.org/),	 a	 3D	 tumor	 vascular	 growth	
model and its response to therapy has been developed. The mod-
eled microenvironment is a 150 × 150 × 200 lattice, equivalent to 
600 × 600 × 800 μm3.

Initially,	 the	 simulation	 starts	 with	 a	 tumor	 size	 of	 ∼ 65 μm ,	
containing proliferating cells, surrounded by pre- existing vessels. 
Nutrients are constantly diffused from the vascular network, while 
the diffusion of the chemotherapeutic drug is carried out accord-
ing to a specific treatment protocol. Moreover, the concentration of 
VEGF	 secreted	 from	hypoxic	 cells	 is	 calculated,	 being	 a	 driver	 for	
ECs'	activation,	which	leads	to	neo-	vessel	growth.

A sensitivity analysis is performed to tune the model and to 
identify and adjust key parameters. Hence, by varying a particular 
parameter at a time (and keeping fixed all the other Table 2 param-
eters), the main observations were listed as follow. Considering the 
values for the adhesion energy between cells, decreasing the J value 
leads to a higher bond that drives unrealistic cell's shape with greater 
tumor	cell	densities,	while	it	causes	an	accumulation	of	ECs	during	
angiogenesis, ending up in a rupture of the parent vascular struc-
ture.	In	contrast,	increasing	J results in a less cohesive population of 
tumor	cells	and	in	a	separation	of	tip	ECs	from	the	parent	vessel.	In	
what concerns cell– matrix binding energies, the stronger bond the 
more elongated the cell. Values reported in Table 2 show a balance 
between the contact guidance and the cell– matrix adhesion energy. 
Assessing the compressibility properties, cell size is sensitive to γe, 
which when large made the cells small, resistant to deformation 
and requiring more energy to grow. The results are also insensitive 
to the value of Tm until it is increased by more than two orders of 

magnitude. The larger values of Tm, the larger the cell membrane 
fluctuations.

To investigate the sensitivity of the obtained results to changes 
on the signaling thresholds, comparisons between numerical simu-
lations and experimental data were performed, and the main results 
are the following:

• A higher activation threshold of a receptor means that the corre-
sponding receptor is unlikely to be activated.

•	 Increasing	the	threshold	for	RTK	receptor	activation,	a	regulator	
of cell survival suppresses tumor progression.

•	 The	E-	cadherin	 threshold	controls	contact	 inhibition	of	growth.	
Accordingly, for low values (<0.2) proliferation of cells is com-
pletely	 inhibited.	For	TCadherin	≥	0.2,	E-	cadherin	 regulates	 tumor	
growth, and vessels' extension velocity increases in a way insensi-
tive to the threshold.

•	 The	activity	of	Wnt	signaling	pathway	is	dependent	on	cadherin,	
and when TWnt	≥	0.15,	it	plays	a	role	in	cell	migration.

•	 Integrin	 regulates	 proliferating	 tumor	 cell	migration	 toward	 the	
vessels	 and	 ECs	 movement	 toward	 the	 VEGF	 gradients	 when	
0.25	≤	TITG	≤	0.3,	by	controlling	cell–	ECM	connection.

To	 show	 the	 robustness	 of	 our	 3D	multiscale	model,	 the	 ana-
lytical	 solution	 of	 the	 Glioblastoma	 (brain	 tumor)	 growth	 model	
is presented to evaluate the chemotherapy, which is accessible in 
the	Supporting	 Information.	 Introducing	the	fraction	of	killed	cells	
(FKCs)	as	a	criterion	for	assessment	of	treatment	efficacy,	the	FKCs	
predicted by the current model are compared with those from the 
analytical solution during tumor recurrence.

3  |  RESULTS

3.1  |  Cell phenotype assessment

The cells' dynamics are controlled by the signals they constantly re-
ceive from their microenvironment. Hence, a Boolean network model 
is employed to predict the cell phenotype from the various receptor 
activation states, dependent on the implemented signaling cascades 
(Figure	1A).	The	input–	output	map	extracted	from	this	Boolean	net-
work	is	presented	in	Figure	1B.	The	states'	activation	is	represented	
by Boolean variables 1 and 0, corresponding to on and off switches 
of each component, respectively. At the top of the table are given 
the	states	of	the	integrin,	RTK,	and	Wnt	receptors,	while	the	signals	
from	E-	cadherin	and	tumor	suppressors,	APC	and	NF1,	are	indicated	
at the right and left of the table, respectively. The predicted cellular 
behavior is indicated by four Boolean variables corresponding to “cell 
growth,”	“cell	proliferation,”	“apoptosis,”	and	“migration.”	Out	of	the	
16 theoretically possible combinations, the network only produces 
three biologically relevant cell phenotypes: “cell growth, prolifera-
tion, and migration” (1101), “cell apoptosis” (0010 or 0011), and “cell 
growth	and	proliferation”	(1100).	For	instance,	considering	cadherin	
activation, case (110) represents signaling from integrin and RTK, and 

http://www.compucell3d.org/
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no	signal	from	Wnt,	in	which	instance	the	model	predicts	cell	growth	
and	proliferation	 (1100).	 In	 the	 table	can	also	be	observed	 that,	 in	
this	 scenario,	 the	 tumor	 suppressor	NF1	would	 be	 able	 to	 change	
the cell's phenotype into the apoptotic state (0010). Here is given a 
summary of the major results of the signaling transduction network 
analysis:

• Consistent with experimental observations reported in,137- 140 cell 
apoptosis is the dominant phenotype when a disruption in the ac-
tivity of either RTK or integrin receptors occurs. This is indepen-
dent	from	E-	cadherin	activity.

•	 In	the	presence	of	RTK	and	integrin,	signaling	from	the	cadherin	
regulates cell motility, confirming its role in cell– cell contacts.

TA B L E  2 Parameters	used	in	the	model	and	corresponding	references

Parameter Symbol Value Ref.

Nutrients diffusion equation parameters

Nutrient diffusion constant Dn 103 μm2/s 129

Nutrient source term sn 8.83×10−16 mol/cell/sa 33

Nutrient consumption rate by proliferating and migrating 
cells

βP 5.17×10−17 mol/cell/sa 130

Nutrient consumption rate by quiescent cells βQ 2.41×10−17 mol/cell/sa 130

Nutrient consumption rate by necrotic cells βN 0.00 mol/cell/s — 

Drug	diffusion	equation	parameters

Drug	diffusion	constant Dd 1.5×103 μm2/s 131

Drug	source	term sd 2.55×10−16– 5.1×10−16 mol/cell/sa Estimated	based	on131 and 132 
reports

Drug	consumption	rate	by	proliferating	and	migrating	
cells

κP 9.2×10−18 mol/cell/sa 131,132

RTK signal threshold TRTK 4.48×10−3pg/pixel 133

RTK signal threshold (quiescent cells) TRTK_Q 8.96×10−3pg/pixel Estimated

Integrin	signal	threshold TITG 0.3 Estimated

Cadherin threshold TCadherin 0.3 Estimated

Wnt	threshold TWnt 0.15 Estimated

VEGF	diffusion	equation	parameters

VEGF	diffusion	constant DV 10 μm2/s 134

VEGF	decay k 0.9375	h−1 134

VEGF	uptake e 0.001 pg/cell/sa 135

VEGF	Source sv 0.035 pg/pixel 6

Activation threshold Tv 0.00095	pg/pixel 20

Cellular potts model parameters

Migrating cells elasticity γeM 8 Estimated

Proliferating cells elasticity γeP 8 136

Quiescent cells elasticity γeQ 2 136

EC	membrane	elasticity γeEC 0.8 20

Intracellular	continuity α 300 20

ECs	chemotactic	sensitivity ��_EC −1.61	× 106	E/conc 20

Migrating cells chemotactic sensitivity ��_Q −1.50	× 106	E/conc Estimated

Proliferating cells chemotactic sensitivity ��_P −1.45	× 106	E/conc Estimated

Boltzmann temperature Tm 10 Estimated

Cell– cell adhesion matrix

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

JEC−ECJM−ECJP−ECJQ−ECJN−ECJm−EC

JEC−M JM−M JP−M JQ−M JN−M Jm−M

JEC−P JM−P JP−P JQ−P JN−P Jm−P

JEC−Q JM−Q JP−Q JQ−Q JN−Q Jm−Q

JEC−N JM−N JP−N JQ−N JN−N Jm−N

JEC−m JM−m JP−m JQ−m JN−m Jm−m

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5 3030303012

30 8 8 8 1012

30 8 8 8 1012

30 8 8 8 1012

30101010 8 10

121212121066

⎤⎥⎥⎥⎥⎥⎥⎥⎦

aEach	tumor	cell	has	an	initial	volume	of	about	64	voxels.
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•	 In	the	absence	of	Wnt	signaling,	cell	migration	can	be	blocked	by	
cadherin (case 110).

• Although the reintroduction of APC into mutant cells is explored 
as a therapeutic strategy to drive cell apoptosis, by inhibiting path-
ways	activated	by	the	loss	of	APC,	including	Wnt/β- catenin,74,75 
according to the Boolean network implemented there is no clear 
evidence	 for	 an	 APC	 role	 in	 apoptosis	 and	 in	 control	 of	 Wnt	
signaling.141- 143

•	 In	the	case	of	main	receptors'	activity,	 the	presence	of	NF1	 im-
pairs further progression to malignancy by inducing apoptosis. 
This	 shows	a	potential	 treatment	 strategy	by	 restoring	NF1,	al-
though there is no systemic therapy until now.

To incorporate the resulting mapping, it should be noted that 
the	activation	of	 signals	 from	 integrin,	RTK,	and	Wnt	 is	 related	 to	
E-	cadherin	activation.144- 147	The	implementation	of	Wnt	activity	de-
pends	on	the	E-	cadherin	loss,	which	stimulates	canonical	Wnt	signal-
ing.	E-	cadherin	is	related	to	cell–	cell	contacts;	the	connection	of	each	
cell with its adjacent cells is a criterion that determines the activity 
of	E-	cadherin	receptor	signaling.	Integrin	activity	is	associated	with	
its	role	in	cells	binding	to	the	ECM	and,	therefore,	the	connection	be-
tween	cells	and	ECM	defines	the	activation	of	the	integrin	receptor.	
The activation of the RTK receptor signaling is controlled by nutri-
ents	availability,	due	to	the	role	of	the	PI3K-	Akt	pathway	in	the	pro-
motion of glycolysis, necessary for cell growth.110,148 Therefore, the 
corresponding state is determined by the nutrient consumption rate 
averaged over the cell size. As a consequence, the thresholds for the 
turn- on of each receptor determine the state of signal transduction 
pathways and allow to track cell dynamics and capture the tumor 
morphological	changes	along	the	process.	Similarly,	 it	has	been	as-
sumed	that	the	concentration	of	VEGF	to	activate	the	ECs	must	be	
above a threshold for sprouting angiogenesis initiation. Viable tumor 
cells can be in one of three different states: quiescent, proliferating, 
and migrating, with different oxygen consumption rates, according 
to	experimental	data	reported	by	Freyer.130	It	should	be	noted	that	
the	quiescent	state	is	a	distinct	state	from	those	of	Figure	1A,	since	
it is not detectable through the signaling network. Tumor cells are 
able to be in a quiescent slow- growing state in regions of hypoxia 
and nutrient deprivation in areas far from vessels.

3.2  |  Model verification

To measure the network robustness against the fluctuations and, 
at the same time, investigate whether the signal transduction is in-
dependent of the initial internal states, a systematic simulation is 
performed for all possible 229	initial	combinations	of	states	of	all	29	
internal	components	of	the	network	described	in	Figure	1A.	Results	
show that the network dynamics in all these cases converge to the 
final four attractors (1101, 1100, 0010, and 0011), summarized in 
Figure	1B,	with	a	small	difference	in	convergence	time,	confirming	
the high robustness of the signal transduction network. Moreover, 
the simulations have a strong sensitivity to transient switching of the 

main external signals, since any changes on inputs lead to the cor-
respondent attractor after only a few updates.

Considering the input/output map, the final results are consis-
tent	with	the	experimental	observations.	Some	important	confirma-
tions	are	mentioned	in	the	last	section.	For	instance,	cell	apoptosis	
is predicted as a cell response to the inhibition of the pathways Ras/
Raf/MEK/ERK	 and	 PI3K/PTEN/Akt/mTOR.	 This	 is	 confirmed	 by	
various experimental results and included as a targeting pathway in 
developing a targeted therapy.94,149 The model enables us to profit 
from this result in the treatment proposal.

The current multiscale model is initially compared with experimen-
tal	data	from	a	study	of	a	 long-	term	3D	tumor	cultivation	model.150 
The authors reported the tumor spheroid growth in a microfluidic sys-
tem and measured the tumor volume evolution over time. Modeling 
a similar situation, the avascular growth of a spherical tumor is com-
pared with the experimental results, in which the variation between 
experimental	and	numerical	results	indicates	a	small	difference	of	9%	
on	 average	 (Figure	 2).	The	 estimated	 tumor	 size	 is	 an	 average	 of	 5	
independent simulations with the same parameter set.

Accordingly, the growth pattern of the tumor from the simula-
tion	is	consistent	with	the	experimental	measurements.	Experiments	
claim that in spheroid cultures three different phases of growth can 
be	observed.	In	the	first	phase,	days	0–	3,	initial	cell	aggregation	and	
spheroid formation at a slow rate is reported.150	Similarly,	the	numer-
ical results imply that there is not a noticeable change in the tumor 
volume since the cell proliferation depends on the binding of adhe-
sive proteins.151	For	the	small	tumor	size,	the	adhesion	energy,	as	a	
regulator of contact inhibition of proliferation, is still developing and 
not high enough to lead to a considerable increase in cells' number. 
However, in the second phase, that is, days 3– 10, there is an intense 
cell proliferation and, as a result, a fast volume increase is observed. 
In	contrast	with	the	first	phase,	the	signaling	from	E-	cadherin	controls	
cell–	cell	 adhesion	 in	 the	proliferation	of	new	cells.	 E-	cadherin	pro-
motes tumor cell proliferation,152 facilitates the interaction between 
cells, and keeps them together, although a low expression of cell ad-
hesion molecules leads to the loss of contact inhibition in prolifer-
ation.62- 64 However, after day 10, proliferation slows down and the 
tumor volume is almost constant. This can be interpreted as a stage in 
which tumors are avascular and likely to still be benign. These tumors 
have typical spheroid shape, with a necrotic core surrounded by lay-
ers of viable proliferating and quiescent cells, as was reported in.150 
So,	there	is	no	significant	increase	in	tumor	size	in	the	third	phase	of	
growth.	See	Video	S1	and	Video	S2	for	tumor	avascular	growth.

3.3  |  3D tumor growth in a vascular network

Figure	3.	 shows	 the	 tumor	growth	 in	 the	presence	of	pre-	existing	
blood vessels at different time points. The primary capillary plexus 
has a regular structure, with ordered patterning that produces nutri-
ents and releases the chemotherapeutic drug into the tissue. The ex-
ponential growth of the tumor during the avascular phase continues 
until	day	33.	In	these	conditions,	the	tumor	growth	cannot	continue	
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after the tumor reaches a diameter of about 150 µm	(Figure	3F).	Due	
to limited diffusion of nutrients, a hypoxic core is formed inside the 
tumor	 that	 induces	 angiogenesis	 by	 secreting	 VEGF.	 The	 hypoxic	
core consists of low oxygen concentration and cells in a quiescent 
state that cannot proliferate. As the tumor keeps growing, depletion 
of oxygen and glucose influences quiescent cells and results in the 
appearance	of	necrotic	cells.	Figure	4A	shows	the	first	activated	EC,	
and quiescent and necrotic cells.

3.3.1  |  Tumor	angiogenesis

When	VEGF	reaches	the	nearest	vessel,	it	activates	ECs	after	a	few	
hours.	Activated	ECs	proliferate	and	move	by	chemotaxis	along	the	
increasing	VEGF	concentration.	The	growth	rate	of	ECs	is	based	on	
the	number	of	VE-	cadherin	 junctions	and	new	vessels	 form	a	con-
nected	 network	 peripheral	 to	 the	 tumor.	 VE-	cadherin	 is	 a	 trans-
membrane	receptor-	specific	of	ECs	and	is	a	main	adherent	junction	

F I G U R E  2 Growth	curve	of	a	tumor	
spheroid. Comparison between simulation 
results from the present work with the 
experimental data reported in.150	Error	
bars represent standard deviations of the 
mean of 5 simulations

F I G U R E  3 Evolution	in	time	of	an	avascular	tumor.	(A)	3rd	day	of	growth,	the	tumor	starts	growing,	while	the	signaling	pathways	are	
activated	and	lead	to	growth,	proliferation,	and	migration	of	cells.	(B)	9th	day	of	growth,	spheroid	formation	is	observed.	(C)	17th	day	of	
growth,	cell	proliferation	leads	to	a	fast	volume	increase.	(D)	25th	day	of	growth,	the	tumor	is	constantly	growing.	(E)	30th	day	of	growth,	
cell	behavior	is	based	on	receiving	signals	from	their	environment.	(F)	33rd	day	of	growth,	the	tumor	maintains	its	spherical	shape
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molecule	 that	controls	 the	stability	of	EC	boundaries.	On	the	con-
trary,	 the	 formation	 of	 new	 junctions	 regulated	 by	 VE-	cadherin	
blocks	ECs'	response	to	VEGF	and	induces	contact	inhibition	of	cells'	
growth. Therefore, depending on the area of cell– cell junctions, the 
contact inhibited stalk cell proliferation is modeled to simulate new 
functional and stable capillaries. Hence, not only this guarantees ves-
sel cohesion but also it achieves optimal vasculature growth, tuning 
the proportions of sprout thickness and length. As a result, activated 
ECs	form	a	network	of	vessels	around	the	tumor	and	peripheral	to	
it	 (Figure	4B,	 in	 green),	 in	 response	 to	 stimulation	by	 chemotactic	
factors. The induced angiogenesis reproduces tumor growth in its 
vascular phase, which generates new sources of nutrients for cancer 
cells	 (See	Video	 S3).	 The	 evolution	 of	 the	 tumor	 and	 its	morpho-
logical alterations induced by sprouting angiogenesis are shown in 
Figure	4B	until	day	110.

The model presents a clear interplay between blood vessel dis-
tribution	and	VEGF	and	nutrient	concentration.	New	vascularization	

at the periphery of the tumor results in relatively higher nutrients 
concentration in the outer versus inner regions. Cells of the quies-
cent and necrotic population in the center of the tumor have a lower 
consumption	rate.	In	contrast,	the	concentration	of	VEGF	produced	
inside the tumor tissue is larger in the inner layers, which are popu-
lated	by	quiescent	cells	(Figure	5A).

As the tumor grows and the vascular network expands, the 
initial spherical tumor shape changes to a lobulated form. Tumor 
cells need to find enough room to proliferate, nevertheless, when 
new capillaries form and the space for cell proliferation is more 
confined.	In	fact,	competition	for	space	and	resources	limits	tumor	
cell densities and influences the population distribution patterns. 
Cells with a high proliferation rate cause local crowding that leads 
to an unfavorable condition associated with limitations on re-
sources availability and space to occupy. Hence, migration toward 
the vessels and to less dense locales, away from the crowding, 
is the most favorable situation that starts from the edge of the 

F I G U R E  4 Tumor	vascular	growth.	(A)	Induction	of	the	first	activated	EC	(identified	in	green)	at	day	33.	EC	will	move	toward	the	higher	
VEGF	concentration	(zoom	in)	released	by	quiescent	and	necrotic	cells	of	the	tumor	core	(zoom	in).	(B)	Evolution	of	tumor	and	vascular	
morphology during sprouting angiogenesis, days 50– 110
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tumor and even can lead to movement from the interior region of 
the tumor. Hence, the tumor appears as a mass with a lobulated 
contour. The highly vascularized tumor supplies fast- proliferating 
cells at the tumor periphery and lets them grow along the near-
est vessels, while the poorly vascularized tumor center contains 
quiescent and necrotic cells that are unable to proliferate. As dis-
played	in	Figure	5B,	the	tumor	center	is	a	nutrient-	depleted	area	
with a large quiescent and necrotic region. Hence, in order to 
access the nutrients, the tumor core releases angiogenic factors, 
such	as	VEGF	at	a	constant	 rate	 to	stimulate	 the	growth	of	new	
capillaries.	 It	 leads	 to	 the	accumulation	of	VEGF	 throughout	 the	
tumor,	 being	 the	highest	 density	 inside	 it	 (Figure	5B).	 Figure	5C	
shows the highly vascularized tumor with a lobulated form on day 
110	from	different	perspectives	(See	also	Video	S4).

3.4  |  Chemotherapy

Chemotherapy is the application of drugs that target, in general, rap-
idly	dividing	 cells	with	 the	aim	of	 killing	mainly	 cancer	 cells.	Despite	
the existence of different classes of chemotherapeutic drugs, which are 
based on the biochemical mechanisms of drug action, chemotherapy 
usually	targets	cell	proliferation	by	inducing	DNA	damage.	Hence,	con-
sidering the mitotic inhibition mechanism of action in proliferating cells 
that leads to cell death, therapy is modeled by the distribution of drug 
throughout the tumor. The current model is inspired by the mechanism 
of cytotoxic chemotherapy drugs, such as paclitaxel, doxorubicin, and 
fluorouracil that affect proliferative cells, resulting in their death.

Referring	to	Equation	7,	drug	concentration	in	the	tumor	micro-
environment is calculated to assess the response to chemotherapy. 

F I G U R E  5 Vascularized	tumor	at	different	stages.	(A)	Cross	section	of	tumor	indicating	cells	field	(proliferating	and	migrating	cells	are	
in orange, quiescent cells in purple, and apoptotic cells in gray), concentration of nutrients diffused from the vessels (in pg/cell/s), and 
distribution	of	VEGF	produced	inside	the	tumor	tissue	which	decreases	from	the	tumor	inner	to	outer	layers	(in	pg/cell/s).	(B)	Cross	section	
of highly vascularized tumor, indicating the distribution of cells field (proliferating and migrating cells are in orange, quiescent cells in purple, 
and	apoptotic	cells	in	gray),	nutrients	field	(in	pg/cell/s),	and	VEGF	field	(in	pg/cell/s).	(C)	Tumor	lobulated	forms	on	day	110	from	different	
points of view
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The response to treatment rests on tumor necrosis induced by 
chemotherapy, and then the level of chemotherapy- induced ne-
crosis is a key prognostic factor to determine a treatment plan.153 
Histological results with high tumor necrosis following preoper-
ative chemotherapy have a better prognosis than those with poor 
responses.	Observations	reported	that	in	solid	tumors,	such	as	os-
teosarcoma and in most common childhood solid malignancies, such 
as	Ewing's	sarcoma	(ES),	neuroblastoma	(NB),	hepatoblastoma,	and	
rhabdomyosarcoma	(RMS),	more	than	90%	of	tumor	chemotherapy-	
induced necrosis reduces the risk of recurrence in comparison with 
the unsatisfactory treatment responses.

Therefore, tumor responses to multiple cycles of chemotherapy 
are modeled, and morphological changes for two different cases are 
reported	 in	 Figure	 6.	 Accordingly,	 in	 the	 first	 example,	 the	 tumor	
receives five cycles of chemotherapy, from day 62, and each cycle 

takes	about	1	week	(Figure	6A).	Drug	release	induces	the	transition	
of proliferating cells into inactive quiescent cells (in purple) and fi-
nally	leads	to	necrosis	(in	gray).	It	should	be	noted	that	necrotic	cells	
disappear	over	time,	as	depicted	in	Figure	6A	on	days	65,	80,	95,	and	
110. This result is confirmed by observations in which in patients 
with a low percentage of necrotic cells there is an increased number 
of macrophages after chemotherapy, which means that the necrotic 
cells had already been cleared.154	When	monitoring	tumor	response	
to	therapy,	there	is	a	considerable	progression	of	tumor	from	day	95	
onwards, indicating treatment failure.

Once	 such	 resistance	 to	 the	 treatment	 in	 patients	 occurs,	 the	
trials are usually suspended and minor or major changes, for in-
stance, in drug dosage and/or in the combination of drugs, route 
and frequency of drug administration, are introduced to the proto-
cols. Hence, drug dosage is increased to optimize treatment efficacy 

F I G U R E  6 Time	evolution	of	tumor	response	to	chemotherapy,	indicating	treatment	failure.	(A)	The	tumor	receives	five	cycles	of	
chemotherapy at the dose of 5 µg/m2, from day 62, and each cycle takes about 1 week. Chemotherapy disrupts tumor development 
by targeting the actively dividing cells to kill and to decrease the growth rate, although the treatment ultimately fails. Proliferating and 
migrating cells are in orange, quiescent cells in purple, and apoptotic cells in gray. (B) Tumor response to chemotherapy, followed by growth 
recurrence. The tumor receives five cycles of chemotherapy at the dose of 7.5 µg/m2,	from	day	90,	and	each	cycle	takes	about	1	week.	
Chemotherapy disrupts tumor development by targeting the actively dividing cells to kill and decrease the growth rate, although the 
treatment ultimately fails
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(Figure	6B).	In	this	case,	treatment	is	implemented	on	day	90	while	
the	dosage	is	increased	by	50%.	The	increase	in	tumor	necrosis	leads	
to a favorable response to chemotherapy until day 135. However, 
growth rates then change unexpectedly, achieving an even faster 
growth	rate	than	before	the	treatment.	(Figure	6B,	day	275).

Strikingly,	 when	 the	 highly	 vascularized	 tumor	 undergoes	
chemotherapy- induced necrosis, angiogenesis is the key factor that 
plays a pivotal role in driving the tumor aggressiveness. Tumor cells that 
survived the therapy start new tumor colonies far from the primary 
tumor and induce new vessels to nourish their resulting secondary 
expanding mass. Most cytotoxic chemotherapy doses are personal-
ized	according	to	body	surface	area	(BSA).	Hence,	the	values	are	es-
timated based on the transport of drug through the microvessel walls. 
Therefore, the model performs a dose comparison that helps to evaluate 
the efficacy among different doses (i.e., 5 µg/m2, 7.5 µg/m2, and 10 µg/
m2). Comparisons of low and high doses demonstrate that the toxicity 
of drug with the highest concentration (i.e., 10 µg/m2) eliminates the 
tumor after five cycles, while 7.5 µg/m2 at 1- weekly intervals provides 
similar levels of benefit at long- term follow- up. However, treatment 
failed to stop the growth for the low dose of 5 µg/m2	(Figure	7A).

3.4.1  |  Chemotherapy	Initiation

Several	 investigations	 reported	 that	 the	 delay	 in	 treatment	 initiation	
may cause recurrence of cancer and have a negative impact on overall 
survival.155- 158 By contrast, several other studies proved that there is not 
a clear relation between treatment initiation delays and outcomes.159-	162 
Hence, the model analyzes the effect of delay in the initiation of treat-
ment	on	outcomes.	Figure	7B	presents	the	simulation	outputs	for	vari-
ous	 treatment	 initiation	 dates	 (i.e.,	 day	 60,	 90,	 or	 120).	According	 to	
these results, applying therapy at an earlier stage of tumor development 
leads to a remarkable reduction in its size over time and can completely 
eradicate the tumor. However, comparing a treatment initiation at day 
90	with	at	day	120	shows	that	the	delay	in	the	initiation	does	have	a	
significant effect on the whole process of tumor growth, although in the 
long term the tumor volume continues to increase throughout therapy 
in both cases. Referring to the initiation day of 120, although the thera-
peutic efficacy was not enough to prevent the regrowth of tumor, the 
tumor size is decreased significantly after the fourth cycle of chemo-
therapy.	Since	drug	transport	is	modeled	via	diffusion	through	the	en-
dothelial cells, a well- vascularized tumor increases drug distribution and 
delivery throughout the tumor. This implies tumor vasculature as a key 
determinant of drug transport, although the leakage rate and high per-
meability of new vessels enhance interstitial pressure that leads to inef-
ficient delivery of drugs and consequent treatment failure.39,131

3.4.2  |  Frequency

Designing	 the	 correct	 drug	 administration	 frequency	 is	 important	
to attain the desired pharmacologic effects, reducing adverse reac-
tions. A cytotoxic chemotherapy regimen is typically prescribed up 

to	a	maximum	tolerated	dose	 (MTD)	schedule.	 In	contrast,	metro-
nomic chemotherapy involves the frequent administration of lower 
doses	 than	MTD	chemotherapy	to	minimize	 the	overall	 toxicity	 to	
the	patient.	Several	studies	investigated	the	effectiveness	of	metro-
nomic regimens in the treatment of cancer and their impact on im-
mune response.163- 166 However, more investigations are needed to 
optimize metronomic chemotherapy for each tumor type.167 Here, 
drug	delivery	 is	modeled	on	a	10-	day	periodic	MTD	schedule	that	
yields a well- responding therapy and is compared to when the drug 
is	applied	on	a	6-	day	periodic	metronomic	schedule	(Figure	7C).

A significant decrease in tumor size is seen as early as 4 weeks of 
therapy. However, results indicate that the tumor evolution changes 
during the metronomic schedule and tumor relapse occurs after the 
10th	 cycle,	 whereas	 the	MTD	 schedule	 seems	 to	 be	more	 effec-
tive because of the elimination of tumor cells after the 8th cycle. 
Interestingly,	although	the	total	dose	delivered	in	the	12th	cycle	of	
the 6- day schedule (80 µg/m2) is equivalent to the dose delivered 
in	 the	 last	 cycle	 of	 the	MTD	 schedule,	 it	would	 not	 inhibit	 tumor	
growth.	Simulations	also	show	that	the	low-	dose	metronomic	che-
motherapy could be effective at the early stages of cancer, eradicat-
ing	all	malignant	tumor	cells	(Figure	7C).	However,	there	is	not	a	clear	
conclusion that confirms an increased effectiveness of metronomic 
therapy against the primary tumors at early cancer stages, although 
the use of combined low doses in an adjuvant therapy setting for 
frail elderly patients is suggested (see reviews).167,168

3.5  |  Targeted therapies in combination with 
chemotherapy

Targeted therapies are based on controlling the activity of signaling 
pathways that regulate cell growth and survival, inhibiting prolifera-
tion and migration and even triggering apoptosis of cancer cells. To 
enhance the efficacy of a neoadjuvant therapy, applying targeted 
agents is a novel strategy that introduces targeted drugs in combina-
tion with chemotherapy.169-	173 Therefore, targeting the established 
signaling pathways that induce cells' apoptosis and lead to tumor re-
mission by preventing cells' proliferation and differentiation, our re-
sults	on	the	intracellular	scale	are	incorporated	into	the	model.	Since	
cell surface receptors are targets outside cells that directly regulate 
the downstream signals of cell cycle progression and cell death, the 
modulation of receptors' activity on cells' response is considered by 
blocking major signaling pathways. Referring to results presented in 
Figure	1,	targeted	therapy	blocks	some	coding	cases	and	is	combined	
with chemotherapy in a multiscale approach. Coupling the tumor 
growth model with the cell- based model of angiogenesis and the 
intracellular Boolean network model allows us to track the system 
treatment response. This is a major step toward the goal of predict-
ing the effects of not only chemotherapy as a traditional strategy but 
also	tumor-	targeted	therapies.	Experimental	assays	strongly	suggest	
that the blockage of any single growth factor and inhibition of recep-
tor tyrosine kinase or intervention on integrin- mediated cellular ad-
hesion limit tumor growth.139-	140 Tumor metastasis can be disrupted 
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by	blocking	signals	from	E-	cadherin	and	related	receptors	to	inhibit	
cellular migration.144- 147 Considering these key factors as the most 
promising approaches to tumor- targeted therapies, our model fo-
cuses on intracellular signaling blockage that captures cellular ap-
optosis and targets the receptors that inhibit cell proliferation and 
migration	according	to	the	output	map	(Figure	1B).	The	applied	drug	
dosage is controlled through the thresholds which are introduced for 

the	activity	of	each	receptor	(Table	2).	In	what	concerns	the	combi-
nation therapy, the cytotoxic chemotherapy is applied to the tumor 
at	the	same	time,	through	Equation	9.

The results on tumor response to the different therapies are 
presented	 in	Figure	7D,	 in	which	chemotherapy	 is	applied	accord-
ing	to	the	MTD	strategy	for	a	highly	vascularized	tumor.	To	better	
investigate the overall effect, cytotoxic mono- chemotherapy is 

F I G U R E  7 Tumor	responses	to	various	chemotherapy	protocols	and	ECs'	behavior	with	inadequate	treatment.	(A)	Tumor	responses	to	
various drug dosages. The model performs a dose comparison that helps to evaluate the efficacy among different doses (i.e., 5 µg/m2, 7.5 µg/
m2, and 10 µg/m2). Comparisons of low and high doses demonstrate that the toxicity of drug with the highest concentration (i.e., 10 µg/
m2) eliminates the tumor after five cycles, while 7.5 µg/m2 at 1- weekly intervals provides similar levels of benefit at long- term follow- up. 
However, treatment failed to stop the growth for the low dose of 5 µg/m2. (B) Time evolution of tumor volume for different chemotherapy 
initiation	day	(i.e.,	day	60,	90,	or	120).	Comparing	a	treatment	initiation	at	day	90	with	at	day	120	shows	that	the	delay	in	the	initiation	
does have a significant effect on the whole process of tumor growth, although in the long term the tumor volume continues to increase 
throughout	therapy	in	both	cases.	(C)	Time	evolution	of	tumor	volume	for	diverse	frequencies	of	drug	administration.	Drug	delivery	is	
modeled	on	a	10-	day	periodic	MTD	schedule	that	yields	a	well-	responding	therapy	vs	it	is	applied	on	a	6-	day	periodic	metronomic	schedule.	
(D)	Time	evolution	of	tumor	volume	with	a	combination	of	chemotherapy	with	short-		and	long-	term	targeted	therapy	started	from	day	
140. Targeted drugs would enhance the efficiency of the combination treatment with chemotherapy, whether mono- chemotherapy fails in 
treating	the	disease.	(E)	Change	in	the	number	of	ECs	in	response	to	different	chemotherapy	protocols	for	two	drug	dosages	(i.e.,	5	µg/m2 
and 7.5 µg/m2).	(F)	Change	in	the	number	of	ECs	in	response	to	the	7.5	µg/m2 drug dosage, separate view
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administered in the first two cycles and targeted therapy is applied 
just as the tumor is approaching its size at the beginning of the sec-
ond cycle of chemotherapy. Results demonstrate a treatment suc-
cess as long as targeted therapy is involved. This is consistent with 
the studies reporting that targeted drugs have a long- term impact 
on controlling cancer and reducing the risk of disease develop-
ment.174,175	When	tumor	growth	 is	stopped	after	4	cycles	of	com-
bination therapy, our observations indicate that as soon as signals 
are reactivated, tumor progression returns. This means that targeted 
drugs that block the major pathways of the cell progression cycle 
would enhance the efficiency of the combination treatment with 
chemotherapy, whether chemotherapy alone may fail in treating the 
disease.

In	order	to	investigate	the	new	vasculature	behavior,	a	compar-
ison of tumor response to two different chemotherapy protocols is 
presented	 (Figure	7E-	F).	The	 first	 case	considers	applying	 the	 low	
dose of 5 µg/m2 at an early stage of tumor growth but it leads to 
treatment	failure.	Under	these	conditions,	endothelial	cells	are	rap-
idly	expanding.	 In	 the	 second	case,	 a	dose	of	7.5	µg/m2 is applied 
on	the	90th	day	of	tumor	growth,	yet	it	was	unable	to	avoid	tumor	
reoccurrence	after	8	cycles.	In	a	similar	way	to	a	previous	case,	the	
successful treatment, the growth of new arteries also stopped, to 
some extent, and no significant change in the number of endothelial 
cells was reported; however, with tumor recurrence, the angiogenic 
rate	increased	(Figure	7F).

4  |  DISCUSSION

In	this	study,	mathematical	and	computational	modeling	methods	for	
simulation of tumor growth and angiogenesis are used to explore 
opportunities in the development and testing of novel treatment 
strategies, including targeted therapies. The control of the signals 
involved in cell proliferation and, even more importantly, in cell ap-
optosis, is still a challenge in tumor reduction and/or elimination. 
Here, a multiscale model is presented to test this explicit aim in order 
to clarify how the signaling transduction operates and affects im-
portant	tumor	development	processes.	In	addition,	considering	the	
mechanisms of cytotoxic drug usage, chemotherapy is modeled by 
solving the distribution of a drug throughout the tumor.

A three- dimensional cell- based model is developed, in which 
cell dynamics is estimated from a cellular model describing the in-
teractions	between	cells	and	the	ECM;	at	the	intracellular	scale,	the	
model surveys the signal transduction network, determining the cell 
state evolution effected by the extracellular dynamics. Therefore, 
the avascular and vascular growth of a tumor is simulated in the 
presence of pre- existing blood vessels. The comparison of numeri-
cal results with experimental observations shows a good agreement 
in	the	growth	stages	of	the	avascular	tumor,	with	a	small	9%differ-
ence in tumor size. The growth curve is divided into three phases, 
and	 it	 depends	 on	 the	 adhesion	 energy,	 including	 the	 E-	cadherin	
and integrin- mediated cellular adhesion and signaling from growth 
factors that control the growth rate. As the tumor grows and the 

vascular network expands, the initial spherical tumor shape changes 
into a lobulated form. Limitations on resources and space cause cell 
migration toward less dense locales, avoiding over- crowd regions. As 
a result, the geometry of the tumor is more irregular and disordered 
than the avascular tumor, and it reflects a more complex phenome-
non	that	cannot	be	reproduced	in	2D	modeling.

Our	 research	 reveals	 the	 capability	 of	 a	multiscale	 and	 three-	
dimensional numerical simulation of tumor progression to explore 
the	outcomes	of	drug	treatment.	2D	models	yield	valuable	insights	
into the growth and dissemination of tumors, tumor- induced an-
giogenesis,	 and	 vascular	 remodeling.	 As	 a	 matter	 of	 fact,	 the	 2D	
assumptions are indeed acceptable when tumors are either approxi-
mately flat or when they have important symmetries (e.g., when they 
are	spherically	symmetric).	Although	modeling	in	2D	is	an	attractive	
alternative	to	3D	calculations,	as	 it	requires	notably	 less	computa-
tional resources, in the context of solving mechanical forces that 
mediate	cell	shape	and	orientation,	the	2D	hypothesis	might	not	be	
sufficiently accurate in predicting tumor behavior as a growing mass. 
Effective	 mechanical	 forces	 induced	 by	 tumor	 cells	 during	 their	
movement and migration are exerted on the surrounding endothe-
lial	cells	and	the	ECM.	Intercellular	adhesion	forces,	associated	with	
the chemotactic and tractional forces, simultaneously regulate cell 
shape. Consequently, cells deform dynamically, inducing a variety of 
cellular	processes.	The	presented	3D	multiscale	modeling	improves	
the results of the simulation of tumor growth and related events by 
describing the relationship between cell function and shape based 
on the forces that are applied in three- dimensional space.

The	 prediction	 of	 the	 3D	 tumor	 geometry	 is	 fairly	 consistent	
with the real tumors, which are characterized by an irregular and 
disordered	 shape.	While	 the	 2D	 simulations	 are	 not	 able	 to	 cap-
ture these irregular deformations, they are extensively employed to 
simulate	 the	process	 in	a	 simplified	way.	The	3D	version	captures	
a	tumor	surrounded	by	a	dense	3D	vascular	network	that	not	only	
transports	nutrients	to	the	tumor	tissue,	but	also	drugs.	In	addition,	
cells have more space to move and, hence, more ease in proliferating 
and migrating when the local drug concentration increases. Three- 
dimensional simulations can capture this effect by predicting irreg-
ular tumor shapes. The highly vascularized tumor supplies oxygen 
and nutrients to fast- proliferating cells at the tumor periphery, and 
highly motile cells tend to move toward the nearest vessels and grow 
along them.

In	 what	 concerns	 the	 modeling	 of	 cytotoxic	 chemotherapy,	
tumor responses to multiple cycles of chemotherapy are simulated, 
including treatment failure, relapse at a distance from the primary 
tumor,	 and	 effective	 therapy.	 Different	 protocols	 aiming	 at	 treat-
ment efficacy optimization have been investigated. The model per-
forms a dose comparison that helps to evaluate the dosing efficacy. 
Moreover, analyzing the effect on outcome of a delay in chemother-
apy initiation indicates that applying therapy at the earliest stage 
of tumor development leads to a remarkable reduction in its size 
over	 time.	 In	 highly	 vascularized	 tumors,	 representing	 high-	grade	
cancers, the initiation delay does not guarantee the treatment suc-
cess since tumor eradication has not been observed. However, a 



18 of 22  |     JAFARI NIVLOUEI Et AL.

significant effect on the long- term prospects is obtained, which re-
flects the longer period of tumor dormancy (76 days), and postpones 
recurrence of tumor for more than a month (40 days).

Since	drug	administration	 frequency	 is	 important	 to	attain	 the	
desired pharmacologic effects, and to reduce adverse reactions, the 
model	compares	the	MTD	schedule	of	chemotherapy	with	the	met-
ronomic regimen. Results show that low- dose metronomic chemo-
therapy can be effective at the earlier stages of cancer, eradicating 
all malignant tumor cells.

Anti-	tumor	and	ECM-	targeted	strategies	 in	novel	 cancer	 treat-
ments are based on controlling the activity of signaling pathways 
that regulate cell growth and survival. The current study introduces 
a novel technique, in three- dimensional mathematical modeling of 
targeted therapies, by blocking major signaling pathways. Modeling 
targeted therapy in combination with chemotherapy, results show 
treatment success with a long- term inclusion of a targeted drug, 
while mono- chemotherapy may fail.
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