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Abstract

Background: Genetic variability is a major feature of the human immunodeficiency virus type 1 (HIV-1) and considered the
key factor to frustrating efforts to halt the virus epidemic. In this study, we aimed to investigate the genetic variability of
HIV-1 strains among children and adolescents born from 1992 to 2009 in the state of Sao Paulo, Brazil.

Methodology: Plasma and peripheral blood mononuclear cells (PBMC) were collected from 51 HIV-1-positive children and
adolescents on ART followed between September 1992 and July 2009. After extraction, the genetic materials were used in a
polymerase chain reaction (PCR) to amplify the viral near full length genomes (NFLGs) from 5 overlapped fragments. NFLGs
and partial amplicons were directly sequenced and data were phylogenetically inferred.

Results: Of the 51 samples studied, the NFLGs and partial fragments of HIV-1 from 42 PBMCs and 25 plasma were
successfully subtyped. Results based on proviral DNA revealed that 22 (52.4%) patients were infected with subtype B, 16
(38.1%) were infected with BF1 mosaic variants and 4 (9.5%) were infected with sub-subtype F1. All the BF1 recombinants
were unique and distinct from any previously identified unique or circulating recombinant forms in South America.
Evidence of dual infections was detected in 3 patients coinfected with the same or distinct HIV-1 subtypes. Ten of the 31
(32.2%) and 12 of the 21 (57.1%) subjects with recovered proviral and plasma, respectively, protease sequences were
infected with major mutants resistant to protease inhibitors. The V3 sequences of 14 patients with available sequences from
PBMC/or plasma were predicted to be R5-tropic virus except for two patients who harbored an X4 strain.

Conclusions: The high proportion of HIV-1 BF1 recombinant, coinfection rate and vertical transmission in Brazil merits
urgent attention and effective measures to reduce the transmission of HIV among spouses and sex partners.
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Introduction

Since the beginning of the HIV/AIDS pandemic, until the end

of 2010, over 3 million children under 15 years of age have been

infected with HIV-1 and 390,000 new viral infections each year

(most recent data from UNAIDS/WHO; http://www.who.int/

hiv/pub/progress_report2011/hiv_full_report_2011) have been

reported. Up until 2009, the Centers for Disease Control and

Prevention (CDC) estimates that perinatal transmission of the

infection by the mother accounts for 91% of all AIDS cases among

children under the age of 13 (CDC- Basic Statistics. Available at:

http://www.cdc.gov/hiv/topics/surveillance/basic.htm. Accessed

November 21, 2011). While mother to child transmission (MTCT)

has been drastically reduced (1–2%) in rich countries, pregnant

women living with HIV in poorer countries still have limited

access to the same quality of counseling and antiretroviral therapy

(ART) [1]. Therefore, these women are at higher risk of

transmitting the virus to their offspring during pregnancy, labor

or after childbirth via breastfeeding. Risk factors associated with

MTCT include lack of receipt of prenatal ART, advanced

maternal clinical status, detectable maternal viral load at delivery,

low maternal CD4 T cell counts, immunogenetic host factors, and

a high viral heterogeneity in the mother [2,3,4,5,6]. Without
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treatment, the chance of transmitting HIV from a mother to a

baby is somewhere between 12% and 25% in resource rich

settings, and between 20% and 45% in resource poor settings [7].

Although MTCT is being addressed by interventions of highly

active ART (HAART), which usually comprises three drugs, the

ultimate solution to HIV/AIDS will be a globally effective vaccine

to curb HIV from spreading further. However, the development of

such vaccines requires an in-depth knowledge of the virus strains

being transmitted in the target population.

One of the most prominent features of HIV-1 is the remarkable

accumulation of genetic diversity in its population during the

course of infection. This diversity reflects the high mutation rate of

reverse transcriptase (361025 substitutions per site per generation)

[8], rapid viral turnover (1028 to 1029 virions per day) [9], large

number of infected cells (107 to 108 cells) [10], and recombination

[11]. Consequently, the HIV-1 population is composed of a swarm

of highly genetically related variants, i.e. a quasispecies, capable of

rapidly adapting to various selective pressures. This diversity has

been shown to have an impact not only on viral phenotypes at the

level of transmission patterns, pathogenicity and immunology but

also in responses to ART and vaccines [12,13,14]. Nine distinct

genetic subtypes, (A–D, F–H, J and K) are joined in the pandemic

today by more than 50 major circulating recombinant forms

(CRFs) [http://www.hiv.lanl.gov/content/sequence/HIV/

CRFs/CRFs.html] and numerous unique recombinant forms

(URFs) have been isolated from individual patients [15,16].

Brazil, the most populous country in the Latin America, is home

to about one third of the people living with HIV (608,230) in

Central and South America (UNAIDS. 2010–2011 Report on

the Brazilian response to HIV/AIDS; http://www.unaids.org/

en/dataanalysis/knowyourresponse/countryprogressreports/2012

countries/UNGASS_2012_ingles_rev_08jun.pdf). According to

2008 estimates from UNAIDS (most recent data), 13,728 cases

of HIV-infected Brazilian children were notified and 84.5% of

them were infected by vertical transmission. Despite the

availability of free HIV diagnostic tests and ART, perinatal

transmission of HIV-1 infection by the mother remains a national

public health challenge in some areas, where difficulties in

providing the requisite antenatal HIV screening exist. Like in

other European countries and in North America, HIV-1 subtype B

is a major genetic clade circulating in the country but the overall

prevalence of non-B strains, particularly URF BF1, C and URF

BC, is increasing [17,18,19,20]. Data from recent studies of the

viral near full length genomes (NFLG) have provided evidence of

Brazilian CRF strains designated as CRF28_BF, CRF29_BF,

CRF39_BF, CRF40_BF, CRF46_BF and CRF31_BC

[18,19,21,22] (http://www.hiv.lanl.gov/content/sequence/HIV/

CRFs/CRFs.html.). However, most HIV molecular variability

studies in Brazil so far have been limited to adult patients and/or

are based on sequence information derived from small genetic

fragments that may not predict the subtype classification of other

regions of the viral genomes.

Unlike HIV-1 infection in adults, multiple HIV-1 strains are not

expected to co-circulate in children and the precise timing of the

transmission event can be traced to the time of birth, providing a

unique opportunity to explore the viral evolution [23].

The present study was undertaken to describe the genetic

variability and identify resistance-associated mutations in HIV-1

isolates recovered from children, adolescents, and young adults

with majority perinatally acquired HIV infection.

Materials and Methods

Study Population
A cross sectional study was conducted among 51 HIV-1 infected

children (ages 0–14 years) and adolescents (aged 15–20 years) on

ART followed between September 1992 and July 2009 at the

Division of Pediatric Infectious Disease Clinic (CEADIPe), at the

Federal University of São Paulo (UNIFESP), Brazil. All, but three

of the participants had been born to HIV-1 seropositive mothers.

From their medical records, almost all of the seropositive mothers

had multiple sexual partners or had an exclusive sexual

relationship with a partner whom they knew either to have had

other sexual partners or, less commonly, to have a history of

injection drug use. Three participants were born to women

seronegative for HIV-1 and thus had an unknown transmission

mode of their infection. All study participants gave written

informed consent. Parents or legal guardians provided written

informed consent on behalf of the children. The study plan and

consent procedures were approved by the ethics committee of the

federal University of São Paulo.

Amplification & Sequencing
Proviral DNA and RNA were extracted from peripheral blood

mononuclear cells (PBMC) and plasma with commercial kits

(QIAamp DNA Blood mini Kit and QIAamp Viral RNA Kit,

QIAGEN, Germany) according to the manufacturer’s instructions.

To make complementary DNAs, the extracted RNA samples were

subjected to reverse transcription PCR using SuperScript III

(Invitrogen, Carlsbad, CA). Both cDNAs and proviral DNAs were

Table 1. Patient characteristics for the study population.

Age, median (range) years 11.5 (4–20)

Gender (%)

Male 21 (41.2)

Female 30 (58.8)

Race (%)

White 32 (69.6)

Black 6 (13)

colored 8 (17.4)

Undetermined 6 (13)

HIV RNA level, median (range) 6.346102

(,4927.56105)

Current HIV RNA ,50 (%) 19 (36.5)

Current HIV RNA .50 (%) 33 (63.5)

CD4 cell count (cells/mm3), Median (range) 640 (18–1821)

CD8 cell count (cells/mm3), Median (range) 1052 (212–2377)

Antiretroviral therapy exposure

Naı̈ve (%) 4 (7.7)

Previous exposure (%) 2 (3.8)

Unkown status 1 (1.9)

Receiving antiretroviral therapy (%) 45 (86.6)

Treatment regimen at the time of enrollment

Combined NRTIs+PI (%) 28 (62.2)

Combined NRTIs (%) 4 (8.9)

Combined NRTIs+NNRTI (%) 9 (20)

NRTI+NNRTI+ PI (%) 3 (6.6)

NRTI+PI (%) 1 (2.3)

doi:10.1371/journal.pone.0062552.t001
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Table 2. The near full-length genomic (NFLG) and partial fragments subtyping of HIV-from plasma and blood samples.

Sequence ID Sample Age/yrs Sequence fragment Subtype VL*

A (546–2598) B1 (2157–3791) B2 (3236–5220) C (4890–7808) D (7719–9537)

010BR_001 PBMC 20 – – – – –

Plasma – – – – – 49

010BR_002 PBMC 14 – – – – –

010BR_IMT_002_pl Plasma – + – – – BF1 7433

010BR_003 PBMC 19 – – – – –

010BR_IMT_003_pl Plasma

010BR_004 PBMC 17 – – – – –

010BR_IMT_004_pl Plasma

010BR_005 PBMC 7 + + – + + BF1

010BR_IMT_005_pl Plasma – – – – – 5473

010BR_006 PBMC 11 – + – + + BF1

010BR_IMT_006_pl Plasma + – – + – BF1 1543

010BR_007 PBMC 11 – – – + – B

010BR_IMT_007_pl Plasma – – – – – 49

010BR_008 PBMC 11 – – – – –

010BR_IMT_008_pl Plasma – – – – – 49

010BR_009 PBMC 8 + – – + + B

010BR_IMT_009_pl Plasma + – – – – B 1879

010BR_010 PBMC 13 – + – – – B

010BR_IMT_010_pl Plasma – + – – – B 49

010BR_011 PBMC 10 – + – – – F1

010BR_IMT_011_pl Plasma + – – – – BF1 1452

010BR_012 PBMC 10 – – – – + B

010BR_IMT_012_pl Plasma – – – – – 29361

010BR_013 PBMC 12 – – – + – BF1

010BR_IMT_013_pl Plasma + – – – – B 560

010BR_014 PBMC 11 – – – – –

010BR_IMT_014_pl Plasma + – – – – F1 1858

010BR_015 PBMC 11 + – – – – B

010BR_IMT_015_pl Plasma + – – + – B 3859

010BR_016 PBMC 7 + + – + – BF1

010BR_IMT_016_pl Plasma + + – – – B 33650

010BR_017 PBMC 18 – – – + + B

010BR_IMT_017_pl Plasma – – – + – B 39153

010BR_018 PBMC 15 + – – – – B

010BR_IMT_018_pl Plasma – – – – – 49

010BR_019 PBMC 11 + – – – – B

010BR_IMT_019_pl Plasma + – – – – B 1209

010BR_020 PBMC 14 + + + + + B

010BR_IMT_020_pl Plasma – – – + – B 572

010BR_021 PBMC 12 + – – – + B

010BR_IMT_021_pl Plasma – – – – – 87

010BR_022 PBMC 10 + – – + – BF1

010BR_IMT_022_pl Plasma – – – – – 49

010BR_023 PBMC 10 – – – – –

010BR_IMT_023_pl Plasma – – – – – 49

010BR_025 PBMC 13 – – – + + BF1

010BR_IMT_025_pl Plasma – – – – – 49
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Table 2. Cont.

Sequence ID Sample Age/yrs Sequence fragment Subtype VL*

A (546–2598) B1 (2157–3791) B2 (3236–5220) C (4890–7808) D (7719–9537)

010BR_026 PBMC 11 + + + + + BF1

010BR_IMT_026_pl Plasma + – – + – B 37134

010BR_027 PBMC 7 + – – – + B

010BR_IMT_027_pl Plasma – – – + – B 10038

010BR_029 PBMC 14 + + – – + BF1

010BR_IMT_029_pl Plasma – – – – – 49

010BR_030 PBMC 15 – – – – + BF1

010BR_IMT_030_pl Plasma – – – – – 49

010BR_031 PBMC 15 + – – – – F1

010BR_IMT_031_pl Plasma – – – – – 49

010BR_032 PBMC 13 – + + – – B

010BR_IMT_032_pl Plasma – + + + – B 7824

010BR_033 PBMC 10 + – – – + B

010BR_IMT_033_pl Plasma – – – – – 49

010BR_034 PBMC 10 + + – – – B

010BR_IMT_034_pl Plasma + – – – – B 13391

010BR_035 PBMC 14 – – – – + BF1

010BR_IMT_035_pl Plasma + + + + + BF1 35172

010BR_036 PBMC 18 – – – + + B

010BR_IMT_036_pl Plasma + – – – + B 17292

010BR_037 PBMC 4 + – – – – B

010BR_IMT_037_pl Plasma + – – – – B 697

010BR_038 PBMC 11 – – – – + B

010BR_IMT_038_pl Plasma – – – – – 365

010BR_039 PBMC 12 + – – – + B

010BR_IMT_039_pl Plasma + – – – – B 83187

010BR_040 PBMC 16 – + – – – BF1

010BR_IMT_040_pl Plasma – – – – – 49

010BR_041 PBMC 9 + + + + + F1

010BR_IMT_041_pl Plasma + + + + – BF1 5411

010BR_042 PBMC 10 + + + – + BF1

010BR_IMT_042_pl Plasma + + – – – B 13213

010BR_043 PBMC 9 – – – + – B

010BR_IMT_043_pl Plasma – – – – – 49

010BR_044 PBMC 19 – + + + – B

010BR_IMT_044_pl Plasma – – – – – 750000

010BR_045 PBMC 14 + – – + + BF1

010BR_IMT_045_pl Plasma – – – – – 49

010BR_046 PBMC 6 + – – – + BF1

010BR_IMT_046_pl Plasma – – – – – 139

010BR_047 PBMC 11 + + + + + F1

010BR_IMT_047_pl Plasma + + + + – F1 15556

010BR_048 PBMC 13 – – – – –

010BR_IMT_048_pl Plasma + – – – + F1 10365

010BR_049 PBMC 14 – + + – + BF1

010BR_IMT_049_pl Plasma – – – – – 49

010BR_051 PBMC ND

010BR_IMT_051_pl Plasma – – – – + B 49

HIV-1 Variability among Children and Adolescents
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Table 2. Cont.

Sequence ID Sample Age/yrs Sequence fragment Subtype VL*

A (546–2598) B1 (2157–3791) B2 (3236–5220) C (4890–7808) D (7719–9537)

010BR_054 PBMC 13 – + – – + B

010BR_IMT_054_pl Plasma – – – – – 24453

010BR_056 PBMC 11

010BR_IMT_056_pl Plasma – – – – – 49

010BR_057 PBMC 13 + + – – + B

010BR_IMT_057_pl Plasma – – – – – 49

010BR_058 PBMC 14 + + – – – BF1

010BR_IMT_058_pl Plasma – – – – – 1671

010BR_060 PBMC 12 – – – – –

010BR_IMT_060_pl Plasma – – – – – 126

*VL – Viral Load (copies/mL).
doi:10.1371/journal.pone.0062552.t002

Figure 1. Schematic representation of the NFLG, partial structure and breakpoint profiles of the BF1 sequences identified in this
study both from HIV RNA and proviral DNA. Samples that were identified in this study to host distinct viruses are indicated with the star
symbol. The region of subclade F1 and subtypes B are indicated at the bottom.
doi:10.1371/journal.pone.0062552.g001
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Figure 2. Genetic distances of overlapping regions between isolates recovered from patients with paired plasma and PBMC
samples. Concatenated sequences are indicated with the star symbol. The region of subclade F1 and subtypes B are indicated at the bottom.
doi:10.1371/journal.pone.0062552.g002
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used as the PCR template, as this allowed amplification of the

NFLGs from five overlapping fragments as previously described

[24,25,26]. Amplification reactions were done in duplicate to

eliminate PCR artifacts, ensuring that sequenced full-length

genomes were not assembled from heterogeneous DNA targets.

The expected sizes of the amplified products were verified using

ethidium-bromide staining after agarose gel electrophoresis. Each

PCR included a known HIV-1 subtype B positive control and an

interspersed no DNA template negative controls. Strict laboratory

precautions were taken to avoid cross contamination.

Both DNA complementary strands were sequenced directly

from purified PCR products in an overlapping fragment of 400

nucleotides by using a variety of sequence specific primers,

fluorescent-dye terminators, and Taq polymerase on an automated

sequencer (ABI 3100, Applied Biosystems Inc., Foster City, CA).

The data from the sequenced fragments were edited, assembled

into contiguous sequences on a minimum overlap of 20 bp with a

Figure 3. Maximum-likelihood phylogenetic trees form each non-recombinant fragment were constructed using all available
sequences from proviral DNA (indicated by black circles) and plasma isolate (indicated by an empty circles) along with HIV-1
reference sequences from the Los Alamos HIV-1 database representing 11 genetic subtypes. The numbering for the HIV-1 fragment A,
B1, B2 and C sequences corresponds to the HXB2 reference sequence. For purposes of clarity, the tree was midpoint rooted. The approximate
likelihood ratio test (aLRT) values of $70% are indicated at nodes. The scale bar represents 0.05 nucleotide substitutions per site.
doi:10.1371/journal.pone.0062552.g003
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85%–90% minimal mismatch and a consensus of both strands was

formed by the Sequencher program (Gene Code Corp., Ann

Arbor, MI). Such assembly criteria would prevent any fragment

from overlapping if it is not derived from the same variant. All the

sequences were checked for contamination by BLAST search

against HIV-1 sequence database and among themselves [27].

Phylogenetic Analysis
Full genome sequences were aligned with reference sequences

representing subtypes A–D, F–H, J and K obtained from the Los

Alamos database (http://hiv-web.lanl.gov) using the CLUSTAL

X program [28] with the ‘‘slow-accurate’’ default alignment

parameters and IUB DNA weight matrix. Aligned sequences were

manually edited and trimmed to the minimal shared length in the

BioEdit Sequence Alignment Editor Program. The gap-stripped

aligned sequences were screened for the presence of recombina-

tion patterns by the bootscan methods implemented in the

SIMPLOT program v3.2 beta [29,30] and the jumping profile

Hidden Markov Model [31]. For the bootscan method, nucleotide

distances were calculated in a sliding window of 300 bp moving in

steps of 30 bp by the F84 model of evolution, transition\transver-

sion ratio of 2.0. Recombinant regions of the alignment as

determined by the crossover points from bootscanning were

analyzed separately by phylogenetic analysis. Maximum likelihood

phylogenies were constructed using the GTR+I+G substitution

model and a BIONJ starting tree. Heuristic tree searches under

the ML optimality criterion were performed using the NNI

branch-swapping algorithm. The approximate likelihood ratio test

(aLRT) based on a Shimodaira-Hasegawa-like procedure was used

as a statistical test to calculate branch support. The maximum

Figure 4. Genetic distances and phylogenetic tree constructed using a maximum-likelihood method from concatenated regions of
HIV RNA (indicated by black circles) and proviral DNA (indicated by black squares) marked with Arabic numbers 1 and 2 from
patient 010BR_IMT_020 along with HIV-1 reference sequences from the Los Alamos HIV-1 database representing 11 genetic
subtypes. For purposes of clarity, the tree was midpoint rooted. The approximate likelihood ratio test (aLRT) values of $70% are indicated at nodes.
The scale bar represents 0.05 nucleotide substitutions per site.
doi:10.1371/journal.pone.0062552.g004
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composite likelihood in MEGA version 4 [32] was used to

calculate the genetic distances between and within isolates.

Genotyping Analysis
All amino acid positions associated with ART resistance, in the

protease (Pro) and reverse transcription (RT) regions, according to

IAS-USA 2011 and Stanford HIV drug resistance database were

evaluated on both plasma and blood samples.

Measurement of HIV RNA and Cell Count
The viral load was measured using the Roche Amplicor HIV-1

Monitor test (Roche, Branchburg, NJ; lower limit of detection 50

copies per ml). CD4+ and CD8+ T cell counts were performed

using a lymphocyte staining panel containing CD3, CD4, CD8,

and CD45 conjugated monoclonal antibodies (BD Biosciences,

San Diego, California, USA).

Genotypic Tropism Analysis
For the predictions of HIV tropism, the env region identified in

the NFLGs and partial-length env sequences that would encompass

the V3 region were analyzed using a tropism prediction algorithm

implemented as the web-based service geno2pheno [coreceptor]

http://www.geno2pheno.org. To minimize the number of false

predictions of CXC chemokine receptor 4 (CXCR4 or X4) tropic

sequences as C–C chemokine receptor 5 (CCR5 or R5) tropic, a

conservative false-positive rate (FPR) of 20% was used as a cutoff.

Therefore, X4 or X4 dual/mixed-tropic viruses (X4/DM) were

reported positive if their sequences had a prediction result FPR of

#20% or the 11/25 rule predicted a X4 virus, otherwise, they

were considered R5-tropic viruses.

All nucleotide sequences obtained during our study were

reported to GenBank (Accession numbers pending).

Results

Samples
In total, 49 paired samples of whole blood and plasma and 2

unpaired samples of each type from an additional 4 different

patients were subjected to NFLG amplification and sequencing.

Of these 51 subjects, 21 (41.2%) were males and 30 (58.8%) were

females. The participants were predominantly white (69.6%), were

Figure 5. Genetic distances and phylogenetic tree constructed using a maximum-likelihood method of HIV isolates recovered from
patient 01BR_IMT_041. A: Phylogenetic tree from concatenated regions assigned as subtype B from the BF1 recombinant isolate. B: Phylogenetic
tree showing the clustering pattern of F1 sequences (marked by dotted box). F1 region from genuine F1 sequence recovered from plasma and
PBMCs are marked by a black circle and square, respectively while the F1 region from the BF1 recombinant sequence is marked by an empty square.
The approximate likelihood ratio test (aLRT) values of $70% are indicated at nodes. The scale bar represents 0.05 nucleotide substitutions per site.
doi:10.1371/journal.pone.0062552.g005
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followed from birth and reached a median age of 11.5 years (range

between 4 and 20 years). The median HIV-1 viral load and CD4

cell count, as judged by levels at the time of inclusion, were

6.346102 copies/ml (range,,4927.56105) and 640 cells/mm3

(range, 18–1821 cells/mm3), respectively. Four (8%) patients were

naı̈ve and an additional 2 (4%) patients were not taking therapy at

the time of enrollment, although they were drug-experienced. The

therapeutic status was not known for one subject. Among the 43

subjects, 69.7% had received $3 different ART regimens during

their follow-up. The median duration of ART at the time of

genotyping was 27.5 months. The main characteristics and ART

regimens of the study population are given in Table 1.

NFLG and Partial Amplification of HIV-1 from both PBMC
and Plasma Specimens

Sequences were obtained for all five overlapped fragments that

cover the NFLGs of 4 PBMC DNA and one plasma RNA virus.

Partial sequences were obtained from at least one fragment

derived from 38 blood and 24 plasma samples as shown in Table 2.

Of the 26 plasma samples for which partial and NFLGs failed, 21

(80.7%) had a viral load under 500 copies/ml and the remaining 5

(19.3%) RNA viruses had multiple peaks present in the sequencing

chromatogram probably indicating different quasispecies in the

same sample or HIV-1 dual infections. On the other hand, partial

amplification of 1126 bp of fragment B1(Nucleotide position from

start of HXB2 genome 2196–3322) and 494 bp stretch of

fragment D (Nucleotide position from start of HXB2 genome;

8997–9491) were subtype B positive for isolates 010BR_IMT_010

and 010BR_IMT_051, respectively, and both patients had viral

loads below 50 copies/ml (Table 2). These results may suggest an

underestimation of the measured viremia or high efficacy of our

nested PCR approach in some patients. On the other hand, our

results among paired samples demonstrated that 20 patients had

detectable HIV proviral DNA and undetectable viral RNA, 21

were dually positive for viral RNA and DNA, and 4 patients were

dually negative. It is unclear why we were unable to amplify more

plasma RNA viruses, particularly for patients 010_BR_IMT_05,

010_BR_IMT_12, 010_BR_IMT_54, and 010_BR_IMT_58

(median viral load 1.56104, range 1.66103–2.96104) using our

fragment-based amplification strategy, although RNA degradation

may account for this finding.

HIV Variants and Sequences
Based on phylogenetic analysis, the NFLGs and partial proviral

nucleotide sequences (n = 42) of the clinical HIV-1 isolates

indicated that 22 (52.4%) patients were infected with HIV-1

subtype B, 16 (38.1%) were infected with a mosaic consisting of

subtype BF1 and 4 (9.5%) were infected with sub-subtype F1

(Table 2). Of the total 25 plasma samples for which viral subtype

was determined, 17 (68%) were classified as subtype B, 3 (12%)

Figure 6. Phylogenetic clustering profile of the non-overlapped fragments assigned as subtype B from both plasma and provirus
isolate 01BR_IMT_013 were compared to a number of additional Brazilian subtype B sequences and other HIV-1 reference
sequences from the Los Alamos HIV-1 database representing 11 genetic subtypes. For purposes of clarity, the tree was midpoint rooted.
The approximate likelihood ratio test (aLRT) values of $70% are indicated at nodes. The scale bar represents 0.05 nucleotide substitutions per site.
doi:10.1371/journal.pone.0062552.g006
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were sub-subtype F1, and 5 (20%) were BF1 recombinant viruses

(Table 2). All chimeric viruses were unique according to their

recombination profile, i.e., not assigned to any subtype or CRF

(Figure 1). The relationships of the viral sequences from patients’

PBMCs to the sequences obtained from the corresponding RNA

virus within the same regions were examined for each patient to

assess the viral diversity in both compartments. The results

revealed that all but one patient, 010BR_IMT_020, had plasma

RNA and proviral DNA variation only ranging between 0–2.7%

(Figure 2). These relations were further confirmed by phylogenetic

analysis, which showed close branching as demonstrated in

Figure 3. These findings may indicate that the primary infected

PBMCs of these patients were likely the source of plasma

circulating viral sequences however; more sophisticated genetic

tests able to detect viral population structure are needed to confirm

this conclusion. The observed differences in the percent nucleotide

variations between proviruses and plasma free viruses in this group

may reflect evolution that occurs during the initial phase of acute

infection, before the therapeutic control of HIV-1 replication is

established. Surprisingly, the intra-individual plasma and proviral

sequence variation for patient 010BR_IMT_020 in the overlapped

regions depicted in Figure 4 were 9.8% and 6.5%, respectively,

indicating that the plasma viruses were derived from a population

significantly distinct from those of the cellular sources in this 13

years old asymptomatic patient. This result is consistent with dual

distinct variants of the same subtype being involved in establishing

infection. Dual infection with subclade F1 and BF1 recombinant

was observed in patient 010BR_IMT_041 plasma sample

(Figure 5). This patient was a nine year old child who diagnosed

in February 2005 and until the sampling period had been

asymptomatic. The patient had been receiving ART since

September 2005. This observation of dual infection occurred

accidentally during assembling of the generated data, in which

some sequences failed to assemble to other overlapping stretches of

fragment B1. As a result, we sought to compare this stretch to HIV

sequences available from public databases. Upon analysis with the

basic local alignment search tool (BLAST) available from

GenBank, the stretch (010BR_IMT_041_PL- REC; 548 bp) from

plasma revealed high percentages of nucleotide sequence identity

to the BF1 isolate 99JY-TRA0133 (Genbank accession:

JN235964), whereas the other larger fragment

(010BR_IMT_041_pl; 5720 bp) revealed high homology to

subclade F1 isolate 02BR082 (Genbank accession: FJ771006) at

the nucleotide levels. To ensure that the generation of the two

Table 3. Drug-resistance mutations detected in plasma.

Sample ID Resistance mutations HIV-1 subtypeTropism CV*

PI NRTI NNRTI

010BR_IMT_002 M36I M184V BF1 7433

010BR_IMT_006 L10V, K20R, M36I, I54V, L63P, A71V,
V82A, L90M

BF1 R5 1543

010BR_IMT_009 K20T, M36I, I62V, L63P, I64V,
V82I, L90M

B 1879

010BR_IMT_011 L10V, K20R, L24I, M36I, M46L, I54V,
L63P, V82A

BF1 1452

010BR_IMT_013 I64V, V77I, V82I B 560

010BR_IMT_014 M36I, L89M F1 1858

010BR_IMT_015 M36I B R5 3859

010BR_IMT_016 L63P B 33650

010BR_IMT_019 D60E, I62V, L63P, I64V B 1209

010BR_IMT_026 M36I, L63P B R5 37134

010BR_IMT_032 D60E, L63P, H69K, V77I M184V B R5 7824

010BR_IMT_034 L10V, V32I, L33F, K43T, M46I, I54V,
L63P, A71V, V82A, L89V, L90M

B 13391

010BR_IMT_035 L10V, K20T, M36I, I62V, L63P, L89I,
L90M, I93L

M41L, A62V, V75I, F116Y,
Q151M, K65R

G190A BF1 X4 35172

010BR_IMT_036 L10I, L33F, M36I, I54V, Q58E, D60E,
I62V, I64V, L76V, V82A, L89M

B 17292

010BR_IMT_037 I62V, I64V B 697

010BR_IMT_039 L63P, A71V, V77I, I93L B 83187

010BR_IMT_041 L10V, K20R, M36I, M46I, I54V, I62V,
L76V, V82A, L89M

M41L, L74V,
M184V, T215Y

K103N F1 5411

010BR_IMT_042 L10I, K20R, M36I, Q58E, D60E, L63P,
A71V, V82A, L90M, I93L

B 13213

010BR_IMT_047 L10V, M36I, L89M K103N F1 R5 15556

010BR_IMT_048 M36I, I64V F1 103665

*copies/Ml.
Regions not sequenced are indicated by empty boxes.
High resistance mutation are indicated by bold lettering.
doi:10.1371/journal.pone.0062552.t003
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consensus sequences from patient 010BR_IMT_041 plasma

sample was not the result of sample contamination, repeat

sequence analysis using the purified B1 amplicon was performed

and revealed identical findings. These results possibly indicate that

some internal sequencing primers of fragment B1 preferentially

annealed to the BF1 string during sequencing reaction. Regions

that were the same F1 subclade in the two pols were then

compared to determine whether the 010BR_IMT_041_PL viruses

were the actual parents of the recombinant fragment or if an

infection in this patient was acquired with two genetically distinct

viruses (Figure 5B). While both partial pol genes were sub-subtype

F1 fragments, these were from different subclade F1 isolates, since

the sequences from the two plasma demonstrated high nucleotide

divergence (up to 6.8%). Moreover, as shown in Figure 5B, both

F1 non-recombinant sequences recovered from plasma and

PBMC clustered separately (aLRT 100%) and the branch lengths

separating them from the F1 fragment involved in the recombi-

nation event were typical for other sequences of unrelated F1

variants. The analysis was then extended to include isolates with

non-overlapping fragments, namely 010BR_IMT_013 and

010BR_IMT_027, to determine whether the PBMC viruses were

truly parental strains to those recovered from the plasma. For this

Table 4. Drug-resistance mutations detected in PBMC.

Sample ID Resistance mutations HIV-1 subtype Tropism

PI NRTI NNRTI

010BR_IMT_005 L10V, L20R, M36I M41L, T215Y BF1 R5

010BR_IMT_006 I54V, V82A, L10V, L20R, M36I,
L63P, A71V, I93M

M41L,V75M, M184V, T215Y K103N, A98G,
V108I, H221Y

BF1 R5

010BR_IMT_009 K20T, M36I, I62V, L63P, I64V,
V82I, L90M

B R5

010BR_IMT_0111 L24I, I54V, V82A, L90M, L10I,
L20R, M36I, L63P

D67G,K70R, M184V F1

010BR_IMT_015 M36I B

010BR_IMT_016 M36I, L63P G190A, E138A BF1 R5

010BR_IMT_018 M36I, I64V, H69K B

010BR_IMT_019 D60E, I62V, L63P, I64V B

010BR_IMT_020 M36I, M46I B R5

010BR_IMT_021 I64V B

010BR_IMT_022 I64V BF1 R5

010BR_IMT_026 M36I, L63P M41L,T215C BF1 R5

010BR_IMT_027 A71V, V77I, I93L B

010BR_IMT_029 V82A, L20R, M36I D67N, K70R, M184V BF1

010BR_IMT_031 M36I, L63P F1

010BR_IMT_032 D60E, L63P, H69K, V77I M184V B

010BR_IMT_033 G16E, L33V, I62V, V77I B

010BR_IMT_034 I30V,M46I, I54V, V82A,
L33F, A71V

D67N, K70R, L210W, T215Y B

010BR_IMT_037 I62V, I64V B

010BR_IMT_039 L63P, A71V, V77I, I93L B

010BR_IMT_040 D30N, M46I, I54V, L76V, V82A,
L90M, L10I, L20R, M36I, I62V

M41L, D67N, M184V E138K BF1

010BR_IMT_041 M46I,I54V, L76V, V82A, L10V,
L20R, M36I

M41L, L74V, V75M, M184V,
T215Y

K103N F1 X4

010BR_IMT_042 I54L, V82A, L90M, L10I, M36I,
Q58E, D60E, L63P, A71V, V77I, I93L

M41L, D67N,L74I, V75T Y181C BF1

010BR_IMT_045 M36I BF1 R5

010BR_IMT_046 M36I BF1

010BR_IMT_047 M46I, L10V, M36I F1 R5

010BR_IMT_049 I64V, V77I, I93L L210W, T215Y Y181C BF1

010BR_IMT_054 L90M, L20I, M36I, L63P, A71T M41L, M184V, T215Y L100I, K103N B

010BR_IMT_057 D30N, M36I, L63P B

010BR_IMT_058 M36I, D60E, I62V, I64V M41L, M184V, T215Y K103N,P225H,
E138A

BF1

1Displayed insertion at position 69.
Regions not sequenced are indicated by empty boxes.
High resistance mutations are indicated by bold lettering.
doi:10.1371/journal.pone.0062552.t004
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purpose, the phylogenetic clustering profile of the non-overlapped

fragments from both compartments were compared to a number

of additional Brazilin subtype B and other HIV-1 reference

sequences to increase our confidence in the analyses and provide a

broader perspective. These results revealed the magnitude of

aLRT value supporting the identical clustering of the plasma

isolate 010BR_IMT_013_pl (Figure 6A) and the proviral

010BR_IMT_013_pr strains (Figure 6B) with the Brazilian

subtype B BREPM 1040 and 05BR 1092 subtype B sequences

(branch marked with green color). Based on these results, it is

possible to assume that the primary infected PBMCs in this patient

were likely the source of the plasma circulating viral sequences.

However, this interpretation does not hold true when the analysis

was applied to the plasma and proviral non-overlapping fragments

of patient 010BR_IMT_027. The clustering profile to subtype B

references and genetic distances as shown in Figure S1 were

significantly different between both fragments in this patient

indicating dual infection with distinct subtype B variants.

Genotypic Drug Resistance Test Results
The results of the genotyping analysis from both plasma RNA

and whole blood DNA are presented in Table 3 and 4. Resistance

analyses were performed from proviral DNA in 32 patients (19

PR/RT and 13 PR) and from plasma-associated RNA in 21

patients (8 PR/RT and 13 PR). Regardless of paired or unpaired

samples, 10 of the 31 (32.2%) and 12 of the 21 (57.1%) subjects

with recovered proviral and plasma PR sequences, respectively,

were on ART at the time of specimen collection and were infected

with major mutants resistant to protease inhibitors (PIs). Regard-

ing the primary resistant mutations for PIs among the naive

patients with available PR sequences from PBMCs (n = 4) and

plasma (n = 3), various mutations were detected in only one patient

(010BR_IMT_034; Table 3 and 4). The RT region of the provirus

of the same patient displayed some major transmitted mutations

both for the NRTIs and NNRTIs. Detailed frequency of single Pro

and RT mutations detected in patients on ART both in plasma

RNA and whole blood DNA is also illustrated in Table 3 and 4.

V3 Sequence Analysis and Viral Tropism
An evaluation of the V3 loop amino acids and predictions of

viral tropism were performed for patients with available sequences

from PBMCs (n = 10) and plasma (n = 7) of the derived fragment C

intact frame sequences. The inferred HIV tropism in paired

samples of plasma and PBMCs was successfully determined in 3

samples and all concordant with the R5 virus. The inferred HIV

tropism study in the other 3 plasma demonstrated that 2 patients

harbored the R5 virus. The V3 sequences of the 7 patients with

available sequences from only PBMC were predicted to be R5-

tropic virus except for patient 01BR_IMT_035 who harbored an

X4 strain.

Discussion

This study describes the genetic variability and the prevalence of

drug resistance mutations and co-receptor usage of HIV-1 variants

in a small, well sampled group of children and adolescents. The

majority of these patients acquired their infection through vertical

transmission during the period 1992–2007. The results presented

confirmed that subtype B is still the main HIV-1 variant and

concordant with data from other studies on adult and children

populations from Brazil [24,33,34,35]. The most remarkable

observations in this study are that at least 38.1% of the 42 patients

with proviral DNA sequences are infected with HIV-1 BF1

recombinant variants, which is relatively much higher if compared

to earlier studies on children and adolescent patients in Brazil

[33,34,35,36,37,38]. This difference is not surprising, because

small fragments from different regions of HIV genomes were

characterized in the previous studies while we used larger

overlapped fragments to sequence the full-length genome, which

undoubtedly provides efficient discrimination of HIV subtypes and

the recombinant forms. Thus, the earlier study is likely to have

missed some recombinants. Despite the high rate of recombination

in our study, it is probable that our results have also underesti-

mated the true rate of infection with BF1 recombinant viruses,

particularly among patients with partially sequenced viral

fragments. Thus, it is possible that the BF1 infection in this group

may be higher than what was observed if we had sequenced the

virus NFLG in all samples. Our attempts to amplify the NFLG or

additional larger fragments for some samples to determine if

recombination had occurred were unsuccessful. Other likely

explanations for underestimation of BF1 recombination rate is

that some isolates could have been undetected by our PCR

strategy because of a mismatch at the primer binding sites, low

proviral load, employment of consensus sequences or that the BF1

isolates were maintained in another reservoir other than the CD4-

positive compartment that was sampled in the peripheral blood.

The results that indicate none of the BF1 recombinant structures

identified in this study showed any similarity to the known CRFs

or other recombinants strongly suggests that new recombinants are

arising continually in São Paulo, Brazil.

Additional observations of this study are the description of the

high level of intra-host diversity with evidence of mixed infections

with the same or distinct HIV-1 subtypes. The observation that

patients may be simultaneously infected with different HIV-1

subtypes has been reported in numerous cases and considered of

significant interest. For instance, the first documented dual

infection of two distinct HIV-1 subtypes B and E (later designated

as CRF01_AE) was reported in Thailand [39]. Janini et al. [40]

reported the first case of both horizontal and subsequent vertical

transmission of 2 distinct HIV-1 subtypes from 1 dually infected

person to another. In the present study, dual infections were

evident in three patients, lending further support to previous

studies [41,42,43], as this event is far more common in Brazil

where both subtypes co-circulate. The fact that existence of dual

infection in some patients contrasts with the hypothesis that an

initial viral infection produces some degree of protection against a

second infecting HIV subtype. If we assume that super-infection

occurs in these cases, then it is conceivable that antiviral immunity

evoked by one subtype had insufficient broad protection at the

time of primary infection against a second infecting virus. Indeed

this assumption has been challenged previously by convincing

findings revealing that a second super-infection with a different

HIV-1 strain can occur long after an initial infection is established

and can hasten the disease process [44,45]. Alternatively, the

subjects 010BR_IMT_041 and 010BR_IMT_027 (confirmed

MTCT) may have been vertically and concomitantly infected

with different HIV strains at the same time. On the basis of this

assumption, our results may suggest that despite the genetic

bottleneck occurring upon vertical transmission of HIV-1, the

replication capacity of transmitted variants is not necessarily

reduced. This interpretation is in line with previous studies that

provided evidences of multiple-variant transmission in MTCT,

and also agreed with the conclusion that in a majority of cases the

infant is infected with a single isolate [46,47,48]. By the lack of

mode of transmission in patient 010BR_IMT_020, it was

therefore not possible to interpret the simultaneous detection of

both viruses.
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Our results on genotype resistance mutations are consistent with

previous studies with similar subjects indicating that prevalence of

major mutations conferring ART resistance in viral DNA/RNA of

such chronically infected groups is common (20/38, 52.6%) [34].

In patients with available sequences from the Pro and/or RT, the

mutations found in PBMCs were generally also found in the

plasma, although some of the patients showed few differences

between the two compartments, while in one patient

(010BR_IMT_011) the 69 insertion in the protease region was

found in PBMC, but not in plasma.

Regardless of the sample compartment, the analysis of HIV

tropism revealed two patients with X4 viruses and both with CDC

class ‘‘C3’’ reflecting advanced disease. The assessment of HIV

tropism in our study was limited to sequence- based algorithms

rather than using phenotypic methods. Although phenotypic

assays still have an edge over genotypic methods, genotypic

predictors prove to be highly concordant with phenotype data and

can reliably be used to determine viral tropism with better results

in PBMC than in plasma samples [49]. In this study, we used

geno2pheno, which has shown a similar performance to the

Trofile phenotypic assay, the most often used tropism method

[50]. Moreover, the method has been shown to achieve higher

sensitivity while retaining high level of specificity when compared

with the performance of different algorithms [51,52].

We are aware that the demonstration of the high recombination

rate and evidence of double infections and their association with

virological response and viral tropism should be based on a larger

dataset to establish statistical influence of these factors in

determining the outcome. Another limitation of this study is that

direct bulk sequencing and genotyping of HIV-1 in plasma and

whole blood might underestimate low-level minority species

present as quasispecies which could be evidenced by more complex

methods, such as massive parallel pyrosequencing [53,54,55].

Despite these limitations, the results of this analysis indicate that

HIV-1 recombination and dual infections are much more frequent

than thought previously among children and adolescents in this

region. Evidently, more extensive studies with large sample sizes

are required to unravel the mechanisms underlying the emergence

of these recombinants and their implications for HIV control.
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