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Trauma is one of the leading causes of death and disability in the world. Multiple trauma 
or isolated traumatic brain injury are both indicative of human tissue damage. In the early 
phase after trauma, damage-associated molecular patterns (DAMPs) are released and 
give rise to sterile systemic inflammatory response syndrome (SIRS) and organ failure. 
Later, protracted inflammation following sepsis will favor hospital-acquired infection 
and will worsen patient’s outcome through immunosuppression. Throughout medical 
care or surgical procedures, severe trauma patients will be subjected to endogenous 
or exogenous DAMPs. In this review, we summarize the current knowledge regarding 
DAMP-mediated SIRS or immunosuppression and the clinical consequences in terms of 
organ failure and infections.

Keywords: damage-associated molecular pattern, posttraumatic immunosuppression, remote organ dysfunction, 
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iNTRODUCTiON

Trauma represents the most extreme form of human tissue damage and is one of the leading causes 
of mortality and disabilities in the world (1). Ischemia-reperfusion, crush syndrome, surgical 
procedures, acidosis, hypoxemia, blood loss, or massive transfusion can all give rise to secondary 
tissue damage. Following trauma, a number of mediators, also called damage-associated molecular 
patterns (DAMPs), are released in the bloodstream by injured tissues. The recognition of DAMPs 

Abbreviations: ALI, acute lung injury; APC, antigen-presenting cells; ARDS, acute respiratory distress syndrome; ATP, adeno-
sine 5′-triphosphate; CARS, compensatory anti-inflammatory response syndrome; CXCL12, SDF1-α (stromal cell-derived 
factor 1); DAMPs, damage-associated molecular patterns; DIC, Disseminated intravascular coagulation; DNA, desoxynucleic 
acid; ERK, extracellular signal-regulated kinase; F-MIT, N-formyl peptides; FRP1, formyl peptide receptor-1; GPCR, G protein-
coupled surface receptors; HAP, hospital-acquired pneumonia; HLA, human leukocyte antigen; HMGB1, high-mobility group 
box 1; HSP, heat-shock protein; ICU, intensive care unit; IKK, IκB kinase; IFN, interferon; IRAK, IL-1 receptor-associated 
kinase-4; IRF, interferon regulatory factor; IS, Immunosuppression; ISS, injury severity score; ITAM, immunoreceptor tyrosine- 
based activation motif; LPS, lipopolysaccharide; MD-2, myeloid differentiation factor 2; MHC, major histocompatibility 
complex; MMP9, metalloproteinase 9; MTD, mitochondrial damage-associated molecular patterns; mtDNA, mitochondrial 
DNA; MODS, multiple organ dysfunction syndrome; MRPs, myeloid-related proteins; MyD88, myeloid differentiation protein 
88; NET, neutrophil extracellular trap; NK, natural killer; NLRP3, NOD-like receptors pyrin domain containing 3; NOD, 
nucleotide oligomerization domain; PD-1, program death-1; PI3K, phosphoinositide-3 kinase; PRR, pattern recognition recep-
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receptor expressed on myeloid cells-1; TRIF, TIR domain-containing adaptor protein inducing interferon β.
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by immune cells initiates a systemic inflammatory response 
syndrome (SIRS) that induces physiological changes such as 
hypo or hyperthermia, elevated heart rate and leukocytosis/
leukocytopenia (2). Early uncontrolled and protracted SIRS has 
been reported to be a risk factor of “sterile” organ failure (3) and 
of delayed hospital-acquired infection (mainly pneumonia) (3, 4).  
The high susceptibility to secondary infection after the initial 
phase of sepsis or trauma is attributable to an intense and long-
term compensatory anti-inflammatory response (CARS) (5–7) 
leading to posttraumatic immunosuppression (IS). Initially, IS 
corresponds to a homeostatic phenomenon to avoid the remote 
organ injuries caused by the initial SIRS. It becomes deleterious 
when it persists, rendering patients prone to secondary bacterial 
(8) or fungal infections and viral reactivation.

Damage-associated molecular patterns are the origins of both 
SIRS and IS and are, therefore, promising targets as biomarkers 
for patient stratification and as therapeutic targets.

DAMPs DeFiNiTiON

Damage-associated molecular patterns are endogen nuclear, 
mitochondrial, or cytosolic molecules that have physiological 
functions inside the cell. They activate innate and adaptive immu-
nity when released into the extracellular milieu. Innate immunity 
cells, mainly antigen-presenting cells (APC) such as dendritic cells 
(DCs) and neutrophils (PMNs) recognize DAMPs via pattern 
recognition receptors (PRRs). After PRR activation, PMNs and 
APC give rise to the local production of cytokines, chemokines, 
and other soluble factors. Local inflammatory response aims to 
ensure adequate tissue repair and may also generate a systemic 
and uncontrolled inflammatory response inducing remote organ 
failure.

Damage-associated molecular patterns released after trauma 
are also called alarmins. Since any molecule expelled in the 
microenvironment after tissue damage may be considered as an 
alarmin, it is of major importance to detect those that are clini-
cally relevant and immunologically active. Clinically pertinent 
alarmins during trauma were defined in a consensus in 2006 (9) 
as substances:

•	 immediately released after trauma,
•	 responsible for immune cell activation whose concentration 

reflects the severity of trauma,
•	 giving rise to pro-inflammatory response on cultured cells 

with a clearly elucidated mechanism of activation,
•	 with plasma levels that correlate with the extent of the inflam-

matory response.

Finally, trauma alarmins have redundant activity on several 
receptors with highly variable effects depending on the microen-
vironment (10).

CHARACTeRiZATiON OF DAMPs 
ReLeASeD AFTeR TRAUMA

Nucleic Acids
All human cells contain nucleic acids [desoxynucleic acid (DNA) 
or messenger RNA] (11) or mitochondrial DNA (mtDNA) and 

mature erythrocytes may also retain some residual non-functional 
mtDNA (12). During severe trauma, nuclear and mitochondrial 
nucleic acids are released into the cytosol and in the bloodstream. 
The plasma levels of DNA increase parallel to the severity of the 
trauma and the concentration of mtDNA is correlated with the 
occurrence of acute lung injury (ALI), the severity of SIRS and 
the occurrence of multiple organ dysfunction syndrome (MODS) 
(13–17). Nuclear DNA recognition by monocytes triggers the 
same inflammatory response as microbial nucleic acids (also 
called PAMPs or pathogen-associated molecular pattern). In 
particular, monocytes produce IL-6 after stimulation by nuclear 
DNA (18) or IL-8 after exposition to messenger RNA (19).

High-Mobility Group Box 1 (HMGB1)
High-mobility group box 1 is a nuclear chaperone protein that 
regulates DNA transcription. In physiological settings, HMGB1 
binds to DNA and bends it to facilitate gene transcription. After 
severe trauma, HMGB1 is either secreted by activated or stressed 
immune and non-immune cells or can leak out from dead 
cells (20). In the same way, hypoxia or ischemia-reperfusion in 
hepatocytes or cardiomyocytes cause time-dependent extracel-
lular release of HMGB1 (21, 22). Its plasma concentration peaks 
within 6 h after injury and the concentration remains elevated 
for at least 24  h (23). Its level 30  min after trauma correlates 
with the injury severity score (ISS), SIRS, MODS, death, and 
with the amplitude of immune activation (24, 25). For example, 
a high level of HMGB1 after trauma was associated with lung 
dysfunction and longer duration of mechanical ventilation (26). 
Moreover, HMGB1 release after trauma with bone fracture can 
exert remote effects on several organs. For example, HMGB1 can 
worsen cerebral lesion after ischemic brain injury (BI) (27) or 
lead to lung injury (28). Interestingly, the variations of redox con-
ditions influence HMGB1 activity. HMGB1 contains two redox 
sensitive sites that deeply impact its function (29). During severe 
trauma, excessive production of radical oxygen species enhances 
oxidative stress and leads to multiple redox reactions. HMGB1 
function shifts to promote severe inflammation when oxidative 
stress increased (30). At the opposite, the reduced form rather 
enhances chemotactic signaling. Finally, this protein has a poor 
pro-inflammatory activity but acts as a cofactor of inflammation 
with lipopolysaccharide (LPS), nuclear DNA, or IL-1β.

Heat-Shock Proteins (HSPs)
Heat-shock proteins are molecular chaperones that control intra-
cellular trafficking and prevent the misfolding of polypeptide 
chains. These proteins are named according to their molecular 
weight and are expressed both constitutively and under stressful 
conditions (31). HSPs are present in the bloodstream of healthy 
volunteers (32). Their circulating levels decrease with aging 
(33) and increase under several pathological conditions. HSPs 
are released into the extracellular compartment after trauma 
(34–36). In particular, in severe trauma with an ISS score higher 
than 16, HSP72 levels were significantly higher compared with 
healthy controls (37). Interestingly, severe trauma patients with 
the highest HSP72 circulating levels on hospital admission had 
better survival rates (37). HSPs activate both innate and adap-
tive immunity and can trigger pro-inflammatory response.  
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FiGURe 1 | Pathway activation after damage-associated molecular patterns (DAMPs) stimulation. DAMPs are recognized by surface or endosomal TLRs and trigger 
either TRIF and NF-κB activation. TLR4, toll-like receptor 4; TIR, toll/interleukin-1 receptor; DNA, desoxyribonucleic acid; RNA, ribonucleic acid; IRF, interferon 
regulatory factor; TRIF, TIR domain-containing adaptor protein inducing interferon β; NF-κB, nuclear factor κB; NEMO, NF-κB essential modulator; IRAK, IL-1 
receptor-associated kinase-4; MyD88, myeloid differentiation protein 88; RAGE, receptor for advanced glycation end products; HMGB1, high-mobility group box 1; 
HSP, heat-shock protein; IKK, Iκ-B kinase.
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In particular, HSPs promote antigen presentation and the matu-
ration of DCs as demonstrated by the upregulation of the major 
histocompatibility complex (MHC) class II molecules (38) and 
co-stimulatory signals, such as CD80 and CD86 (39, 40).

S100 Proteins
This family includes more than 20 distinct proteins. S100 proteins 
are calcium-binding proteins and are mainly expressed by myeloid 
cells. Their release in extracellular compartments is secondary to 
cell damage or phagocytosis (41). Three S100 proteins are specifi-
cally linked to innate immune functions: S100A8, S100A9, and 
S100A12. Protein S100A8, also called Calgranulin A or Myeloid-
related protein 8 (MRP8), and S100A9, also called Calgranulin B 
or MRP14 are found in monocytes and macrophages (42). Protein 
S100A12 (Calgranulin C) is mostly expressed in granulocytes 
(43). During inflammatory response, monocytes or macrophages 

release MRP8 (S100A8) and MRP14 (S100A9) into the circulation. 
They then form a heterodimer (44) and are recognized by PRRs. 
After severe burn injury, myeloid-related protein (MRP) levels in 
bloodstream are correlated with poor outcome (45). S100β protein 
is specifically released after acute BI (46, 47). Similar to HMGB1, 
MRP8 and MRP14 levels in the bloodstream increase early in the 
acute phase of trauma or BI (48).

DAMPs ACTivATe SeveRAL ReCePTORS, 
SiGNALiNG PATHwAYS, AND CeLLULAR 
SUBSeTS

Damage-associated molecular patterns released by injured organs, 
tissues, or cells can be detected by several receptors including 
PRRs and activate several pathways (Figure  1). Of interest, a 
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given DAMP may stimulate several receptors and engage differ-
ent pathways—a phenomenon called receptor redundancy.

Pathogen Recognition Receptors
Pattern recognition receptors are expressed by a large variety of 
innate immune cells including PMNs, natural killer lymphocytes 
(NK), macrophages and DCs. Among PRRs, the main receptors 
involved after trauma are nucleotide oligomerization domain 
(NOD)-like receptors (NLRs) and toll-like receptors (TLRs). 
NLRs are intracellular PRRs that are localized in the cytoplasm. 
They usually sense degradation products from bacterial cell wall 
components. NOD receptors activate the nuclear transcription 
factor NF-κB and the MAP kinases leading to pro-inflammatory 
cytokine production.

Toll-like receptors, initially described for PAMP recognition, 
also play a key role in the recognition of DAMPs such as: nucleic 
acids, HMGB1, HSPs, and S100 proteins. TLRs are localized 
on the cell surface and/or within the intracellular endosomal 
compartment. After DAMPs binding, TLRs dimerize and 
recruit adapter proteins through their intracellular TIRs (Toll/
Interleukin-1 receptor) domains. All TLRs except TLR3 signal 
through the adapter myeloid differentiation protein 88 (MyD88). 
Downstream, and depending on the TLR understudy, MyD88 
can activate two distinct signaling pathways. The first requires 
IL-1 receptor-associated kinase (IRAK) recruitment which 
activates the NF-κB apparatus and leads to TNF-α, IL-6, and 
IL-8 production. The second involves TIR domain-containing 
adaptor protein inducing interferon β (TRIF) activation that 
induces interferon regulatory factor (IRF) phosphorylation 
allowing the synthesis of type I interferon (IFN) (49, 50). TLR4 
plays a singular role in DAMP detection and (51) activates 
either NF-κB via MyD88–IRAK or TRIF after TLR4 transloca-
tion to the endosome through a CD14-dependent mechanism. 
Interestingly, TLR3 exclusively triggers the TRIF-dependent 
pathway.

The IRF pathway leads to type I IFN production and is critical 
for human leukocyte antigen (HLA)-DR regulation and co-stim-
ulatory molecules (CD80/CD86) expression on APCs. The NF-κB 
pathway leads to the production of several pro-inflammatory 
mediators (including TNF-α) and may be activated by extracel-
lular signals present in the blood and organs after trauma, such 
as reactive oxygen species, cytokines, and complement fragments 
(52). NF-κB activation requires a complex of kinases which are 
called IκB Kinase (IKK). IKK induces the degradation (phos-
phorylation and ubiquitination) of the cytoplasmic inhibitor 
of NF-κB: IκB-α. This degradation enables the translocation of 
NF-κB sub-units into the nucleus. After binding to the promoter 
of the gene, the heterodimer form of NF-κB (P65/P50) enhances 
whereas the homodimer P50/P50 inhibits the transcription of 
proinflammatory cytokines. NF-κB activation also gives rise to 
inflammasome formation and caspase-1 release and promotes 
IL-1β synthesis (53).

Nucleic acids trigger TLR3 (mRNA) or TLR9 (DNA and 
mtDNA) activation. Among mitochondrial damage-associated 
molecular patterns, N-formyl peptides (F-MIT), and mtDNA can 
give rise to sterile inflammation. The former activates formyl pep-
tide receptor-1 (FRP1) and the latter binds TLR9 and promotes 

the formation of NOD-like receptor pyrin domain containing-3 
(NLRP3) inflammasome (13, 54).

High-mobility group box 1 activates NF-κB transcription 
factor through TLR2, TLR4, or TLR9 and leads to TNF-α, IL-1β, 
and IL-6 production (55–57). The recognition of HMGB1 by 
TLR4 requires myeloid differentiation factor 2 (58). HMGB1 
can also link to LPS, thereby strengthening its ability to activate 
TLR4 through CD14 (59). Finally, HMGB1 can complex with 
CpG-ODN and bind TLR9 to enhance cytokine production of 
APCs (60).

Heat-shock proteins promote antigen presentation, the 
maturation of DCs and activate the TLR-MyD88-NF-κB pathway 
(38). MRP8 (PS100A8), MRP14 (PS100A9), and PS100A12 are 
recognized by TLR4 or TLR2 (45, 61).

Receptor for Advanced Glycation end 
Product (RAGe) and Triggering Receptor 
expressed on Myeloid Cells-1 (TReM-1)
Triggering receptor expressed on myeloid cells-1 is a member of 
the immunoglobulin superfamily expressed on monocytes and 
PMNs that synergize with TLR4 to mediate the effects of HMGB1 
(62). TREM-1 is associated with an immunoreceptor tyrosine-
based activation motif and an adaptor molecule called DAP12 
for signal transduction. In fine, TREM-1 pathway phosphorylates 
extracellular signal-regulated kinase and phosphoinositide-3 
kinase leading to NF-κB activation (63). HMGB1 is also detected 
by the RAGE (64), an immunoglobulin superfamily cell surface 
receptor. Contrary to TLRs, RAGE is a specific receptor for 
DAMP that is not activated by PAMP. It activates NF-κB pathway 
through RAS family proteins and MAP kinase phosphorylation 
(65). Finally, among S100 proteins, RAGE recognize S100A12 
and S100β (46, 47) and subsequently engage the NF-κB pathway.

Overall, DAMPs triggers massive cytokine relapse including 
TNF-α, IL-1, IL-6, IL-8, IL-12 and IFN types I and II. These 
mediators amplify the activation, maturation, proliferation, and 
recruitment of immune cells at the site of trauma, causing indirect 
activation of innate and adaptive immune cells such as DCs or 
T cells (66).

DAMPs Activate Neutrophils and DCs
During severe trauma, F-MIT activate PMNs via FRP1, a G 
protein-coupled surface receptors (GPCR) (67) and trigger their 
chemotaxis and phagocytosis (68). In parallel, HMGB1/RAGE 
enhances PMNs recruitment toward injured tissues and ampli-
fies the inflammatory response via NF-κB transcription factor 
activation (69). HMGB1 can also activate PMNs through TLR4 or 
TLR7 during ischemia-reperfusion injury (70). Besides, extracel-
lular adenosine 5’-triphosphate (ATP) release enhances PMNs 
adhesion to blood vessel wall upon sterile injury (71) and pro-
motes cell migration to injury site (72). Finally, PMNs activation 
contributes to SIRS, cardiovascular collapse, and remote organ 
injury (73). Notably, the release of metalloproteinase 9 (MMP9) 
after traumatic brain injury (TBI) is involved in secondary brain 
damage (74).

Damage-associated molecular patterns will also activate DCs 
and trigger both the innate and the adaptive immune response 
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(75). Among the most described DAMPs, activation and matu-
ration of DCs are mainly driven by HMGB1 binding to TLR2, 
TLR4 (55), or RAGE (76, 77). HMGB1 also acts as a chemokine 
for DCs when binding to CXCR4. Then, HSPs bind TLR4 (78) 
and participate in antigen processing by DC before presentation 
(79) to T cells. Moreover, mtDNA and especially mitochondrial 
transcription factor A can synergize with CpG to induce type 
I IFN release (80, 81). DCs also recognize extracellular ATP 
by high affinity purinergic receptors P2Z/P2X7 (82) leading to 
inflammasome activation (83).

NOveL iNSiGHTS

DAMPs Participate in Posttraumatic iS
Following trauma, DAMPs participate in IS that renders patients 
prone to secondary infections. Timmermans et  al. recently 
evaluated the role of DAMPs in IS in 166 adult trauma patients. 
The authors reported that plasma nuclear DNA and HSP70 
levels correlated negatively with HLA-DR expression. Moreover, 
higher levels of circulating nuclear DNA and a further decrease 
in HLA-DR expression on blood monocytes were associated 
with infections. Overall, the role of DAMPs in the induction of 
an overwhelming inflammatory process leading to remote organ 
failure is well known. This study is one of the first descriptions 
that associates plasma levels of DAMPs with IS and with second-
ary infections (34).

DAMPs induce endotoxin Tolerance
After massive DAMP release, the early overwhelming inflam-
matory response can further leave an immunological scar that 
will be responsible for protracted immune alterations (IS) (84) 
and will worsen patient outcome. This IS decreases the capac-
ity of monocytes to produce inflammatory cytokines after TLR 
stimulation (52, 85, 86) and APC to prime antigen on type 2 MHC 
molecules. Austermann et al. highlighted that MRP linkage with 
TLRs induced phagocyte hyporesponsiveness to subsequent TLR 
agonist stimulation and was correlated with poor outcome (45). 
In the same way, HSPs can also induce a tolerogenic response. 
After HSP70 recognition by monocytes through CD14/TLR4 
complex, subsequent LPS stimulation fails to activate IKK. As 
a result, the phosphorylation of P65 is altered and prevents the 
NF-κB activation (35).

Damage-associated molecular patterns may also induce 
epigenetic alterations including chromatin modifications leading 
to a transient silencing of the transcription of pro-inflammatory 
mediators (87). These epigenetic modifications induce hypore-
sponsiveness (tolerance) to subsequent stimulation of TLRs. 
After trauma, Austermann et al. reported that after TLR–MyD88–
NF-κB activation by MRPs, RelB nuclear translocation increases 
the methylation of the promoter gene of TNF-α and reduces its 
transcription (45).

Finally, DAMPs release in severe trauma patients can induce 
tolerance similarly to post-septic scenarios (52). After trauma, 
although early tolerance attenuates the severity of the organ 
failures caused by ischemia-reperfusion, long-term tolerance can 
also increase susceptibility to secondary infection.

immunosuppressive Properties of HMGB1
The rate of infections after severe TBI is very high—up to 
40%—and is largely correlated with IS (8). TBI-induced IS 
consists in monocytic deactivation along with decreased expres-
sion of HLA-DR on monocytes and lymphopenia (88–90). In 
TBI patients, our team confirmed that the downregulation of 
HLA-DR on monocytes leads to an increased susceptibility to 
secondary infection (91). At the same time, cytotoxic response of 
NK cells is altered (91), CD4+Th1-type cell response is suppressed 
(92) whereas Th2-type response is enhanced (93). As a result, TBI 
appears to affect both innate and adaptive immunity.

A strong correlation between the severity of BI and the inten-
sity of immune depression has been previously reported (94).  
It is generally believed that the autonomic nervous system plays a 
major role in IS after BI because catecholamines are elevated and 
alter immunity. However, recent clinical (95) and experimental 
(96) studies have challenged this paradigm and there is evidence 
that alarmins are a cornerstone of IS after TBI.

High-mobility group box 1 is released in the early phase after 
BI and has been identified as a key player in overwhelming sterile 
inflammatory response (97). HMGB1 can also trigger the prolif-
eration of suppressive cells (89, 90). For example, after BI HMGB1 
induces the expansion of altered monocytes in the spleen. This was 
characterized by a low level of type II MHC molecule expression 
and reduced cytokine production (TNF-α and IL-12) in response 
to TLR agonists (97). These altered monocytes can suppress lym-
phocytes and lead to lymphopenia, a hallmark of IS after BI.

Finally, HMGB1 may alter the prognosis of severe BI patients 
not only through the initial pro-inflammatory response but also 
because it may induce IS which is a major cause of secondary 
bacterial infections.

DAMPs Can induce iS without Prior 
Overwhelming inflammatory Response
Recently published data suggest that DAMPs may directly induce IS 
without the need for a first overwhelming inflammatory response 
(98). Endogenous purine nucleosides are major regulators of the 
inflammatory response. In this setting, adenosine, which is a cat-
abolite of ATP, signals through the binding and activation of GPCR 
such as A2AR, a purinergic receptor. High amount of adenosine 
released after cell injuries including severe trauma may induce a 
major inflammatory response. More recently, it was shown that 
adenosine also promotes Th2 immunity, a critical component of 
posttraumatic IS. Indeed, when binding to GPCR, adenosine may 
activate DCs to promote the production of IL-4 by CD4 T cells 
(99, 100). In the study by Patel et al. (98), the authors suggested 
that the specific GPCR for adenosine (A2AR) initiates Th2 immune 
response. In their model, A2AR induced expression of the alarmin 
IL-33, which subsequently triggered ILC-2 (Type 2 Innate lymphoid 
cells) and Th2 cell activation and production of IL-4 and IL-13—
cytokines which are known to participate in posttraumatic IS. The 
results of Patel et al. are important because they suggest that a single 
DAMP such as adenosine may directly induce a Th2 response. 
There is another way by which endogenous purine molecules may 
alter immunity. The release of ATP from necrotic cells is increased 
in inflamed tissues like after severe trauma. This alarmin activates 
DCs and cellular immunity in general via P2 receptors (99–101). 
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CD39 degrades ATP to adenosine (a trigger of the Th2 response, 
see above), and CD39 expression on CD4+Foxp3+ Treg is known 
to contribute to the suppressive functions of these cells (102–104). 
This is important since CD39 is constitutionally expressed on Treg 
cells and is a critical pathway for negative regulation of inflamma-
tion (Figure 2).

Overall, these data show that alarmins play a role in the pro-
duction of IL-4 which is mainly produced by activated T cells. 
The antagonistic nature of IL-4 on Th1 response makes it an 
important potential factor in IS. Activated Treg (CD39+) further 
alters immunity by increasing the levels of Adenosine.

immune Dysfunction Following 
Transfusion is Triggered by DAMP
Transfusion is reported to suppress innate immunity (105) and 
is associated with an increased risk of death during surgery. 

Multiple trauma patients often require massive transfusion 
(106) and transfusion correlates with infection in a dose-
dependent manner (107, 108). Packed red blood cells (PRBC) 
contain immunologically active compounds. Several studies 
have reported changes in supernatant composition during 
storage of red blood cell (RBC) and hypothesized that these 
modifications could explain morbidity (109, 110). However, 
large randomized studies have assessed the impact of the stor-
age duration of PRBC in blood banks and provided conflicting 
results regarding patient outcome (111–113). Up to 25% of 
RBC can undergo hemolysis within 24 h following transfusion 
regardless of group incompatibility or immunologic reactions 
(114). RBC contains most of the DAMPs described above. As a 
result, hemolyzed RBC release high amounts of DAMPs into the 
circulation including Heme, HSP70, Retinol-Binding Protein-4 
(RBP-4), IL-33, S100 proteins, and adenosine (115). Heme acts 
as a DAMP and promotes the formation of the inflammasome 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FiGURe 3 | Damage-associated molecular patterns (DAMPs) effect overview on remote organ dysfunction after trauma. After severe trauma, multiple DAMPs are 
released and can trigger lung edema or kidney tubular epithelium activation. Besides, subsequent transfusion, fluid resuscitation and surgery will worsen these 
phenomenon and lead to remote acute organ failure. ALI, acute lung injury; ARDS, acute respiratory distress syndrome; CARS, compensatory anti-inflammatory 
response; PMN, polymorphonuclear leukocytes; MTD, mitochondrial damage-associated molecular patterns; RBP4, retinol-binding protein-4; PS100, protein S100; 
HSP, heat-shock protein; TNFR1, Type 1-TNF receptor; TNF-α, tumor necrosis factor-α; HMGB1, high-mobility group box 1.

7

Vourc’h et al. DAMPs in Severe Trauma Patients

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1330

in LPS-primed macrophages after TLR4 stimulation (116, 117). 
RBP4, which was recently identified in PRBC (118), is a TLR4 
agonist and can be considered as a DAMP (119). Most RBC 
DAMPs will trigger NF-κB or IRF activation leading to TNF-α or 
type I IFN production influencing cell survival, differentiation, 
and proliferation (120). RBC lysis has also been reported to be 
responsible for IL-33 relapse (115). IL-33 is a nuclear-associated 
IL-1 family cytokine inducing type 2 cytokine response (121) 
and promoting regulatory T-cell response (122). ATP intracel-
lular concentration in RBC is very high (123). After extracellular 
release, ATP is cleaved in adenosine which also acts as a DAMP 
(see above). Adenosine either triggers inflammatory response 
through NLRP3 activation and inflammasome formation or 
promotes Th2 response though GPCR activation (121). RBC 
lysis can release HSP70 (115) which stimulates monocytes and 
DCs via TLR2 and TLR4/CD14 pathways. This DAMP could 
account for transfusion-related acute renal failure (124). Finally, 
non-functional mtDNA can be retained in mature RBC and 

participate in the sterile inflammation response after transfusion 
via TLR9 stimulation and NLRP3 inflammasome formation.

Our team is conducting a prospective study on transfusion-
induced immunomodulation and organ failure with the aim 
to identify DAMPs in the supernatant of labile blood products 
(NCT02763410). Our preliminary results have shown that the 
composition of each PRBC is highly variable even between 2 
PRBC with the same storage duration. Our results may, therefore, 
account for controversial results in the last large randomized 
studies. For example, we have noted major differences in terms 
of RBP-4 or SDF1-α, stromal cell-derived factor 1 (CXCL12) 
concentrations (unpublished data), see Figures S1A,B in 
Supplementary Material. Even if CXCL12 is not strictly a DAMP, 
it can complex and synergize with HMGB1 and enhance CXCR4 
activation (125). Finally, further studies are required to focus on 
RBC supernatant composition to study patient outcome and to 
better delineate the exact role of the DAMPs that are released after 
blood transfusion.
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CLiNiCAL CONSeQUeNCeS:  
DAMP-ReLATeD ORGAN DYSFUNCTiON

The ISS predicts further organ failure and patient outcome (126). 
MODS incidence can reach 60% of patients (127). If DAMP-
induced remote organ dysfunction is now a widely accepted 
phenomenon, its exact pathophysiology is only partially under-
stood. Organ dysfunction after trauma follows a biphasic pat-
tern. Early MODS is usually driven by an uncontrolled SIRS, and 
late MODS involves IS-induced nosocomial infections (mainly 
pneumonia).

early MODS
Despite well-conducted resuscitation, hypotension, transfusion 
support and the combined effects of rhabdomyolysis, ischemia-
reperfusion, acidosis, anemia, hypoxemia, and hypovolemia 
induce cell injuries leading to remote organ dysfunction [i.e., 
acute renal failure, disseminated intravascular coagulation (DIC), 
or ALI]. After cell injuries, massive DAMPs release leads to SIRS 
and when the response is overwhelming, the risk of MODS is 
high. The role of DAMPs in the occurrence of MODS is illustrated 
by the high level of circulating HMGB1 after trauma which has 
been associated with the magnitude of SIRS, MODS and death 
(24, 128, 129). Moreover, a high amount of HMGB1 in patient 
serum will give rise to lung injury characterized by tight junction 
alteration and an increased permeability leading to interstitial 
edema (25, 64, 130). Plasma mtDNA has also been associated 
with MODS as well as mortality in severe trauma (16).

Late MODS
In addition to SIRS, as mentioned above, DAMPs may lead to 
an IS that is directly responsible for increased susceptibility 
to secondary infection, mainly hospital-acquired pneumonia 
(HAP). Pneumonia in the intensive care unit (ICU) threatens 
patient prognosis. Of note, after severe trauma or TBI, the HAP 
rate can reach 40% (8). HAP can give rise to ALI, acute respira-
tory distress syndrome, severe sepsis and even MODS (131, 132).  
As a result, HAP increases ventilation duration, length of ICU 
stays and worsens prognosis in ICU trauma patients (133).

Disseminated intravascular Coagulation
Disseminated intravascular coagulation is a frequent issue fol-
lowing severe trauma. DIC can alter microcirculation leading 

to MODS following severe trauma. Among DIC determinants, 
many DAMPs were reported to disturb the procoagulant-
anticoagulant balance. For instance, the level of circulating 
serum HMGB1 or DNA–histone complex are two independent 
prognostic factors of DIC (134, 135). Specifically, nucleic acids 
and F-MIT activate coagulation pathways (73) whereas histones 
activate thrombin formation and platelets aggregation (136).  
In the same way, HMGB1 promotes coagulation by enhancing 
tissue factor expression on monocytes and neutrophil extracellular 
trap release (134). At the opposite, histones and HMGB1 inhi bit 
Protein C activation and impaired coagulation (137, 138).

CONCLUSiON

In conclusion, during severe injury, DAMPs are responsible for 
multiple innate and adaptive immune subset activation (Figure 3). 
The early stage of trauma is characterized by an inflammatory 
response leading to organ failure whose intensity differs between 
patients. Five to 15  days after trauma, a CARS occurs, leading 
to IS and increased susceptibility to nosocomial infection. This 
immunosuppressive phenotype results from the multiple aspects 
of immunity impairment (Figure 3).
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