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Abstract

Baboons are one of the most abundant large nonhuman primates and are widely studied in biomedical, behavioral, and anthropo-

logical research. Despite this, our knowledge of their evolutionary and demographic history remains incomplete. Here, we report a

0.9-fold coverage genome sequence from a 5800-year-old baboon from the site of Ha Makotoko in Lesotho. The ancient baboon is

closely related to present-day Papio ursinus individuals from southern Africa—indicating a high degree of continuity in the southern

Africanbaboon population. This level of population continuity is rare in recent humanpopulationsbut may providea goodmodel for

the evolution of Homo and other large primates over similar timespans in structured populations throughout Africa.
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Introduction

Baboons (genus Papio) are Old World Monkeys, widely dis-

tributed throughout Africa and the Arabian Peninsula. The six

extant species of baboon occupy largely independent geo-

graphic ranges (Jolly 1993; Zinner et al. 2013) but readily hy-

bridize in contact regions (Nagel 1973; Samuels and Altmann

1986; Jolly 1993; Jolly et al. 2011). The oldest splits among

them date to 1.5–2 Ma, between Northern (Papio hamadryas,

Papio anubis, and Papio papio) and Southern (Papio ursinus

and Papio cynocephalus) clades (Zinner, Groeneveld, et al.

2009; Zinner et al. 2013; Rogers et al. 2019). The southern-

most species (P. ursinus) has two deeply diverged subspecies

(ursinus and grisepes), whose history and distribution may

have been shaped by historical changes in range driven by

aridification cycles (Sithaldeen et al. 2009; Sithaldeen et al.

2015). Thus, the boundary between the P. ursinus subspecies,
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as well as between P. ursinus and other species, may have

shifted over time. Here, we test this by analyzing the genome

of a 5800-year-old baboon from close to the present-day

ursinus/grisepes contact zone. As well as illuminating this phy-

logeographic question, our results show more broadly the

usefulness of ancient DNA for understanding the history, evo-

lution and paleoenvironmental context of African primates.

Results

We extracted and sequenced DNA from a baboon proximal

phalanx excavated at the archaeological site of Ha Makotoko,

western Lesotho, and directly dated to �5,800 calBP (fig. 1A

and B, supplementary table 1 and methods, Supplementary

Material online). We generated, sequenced and aligned 13

libraries (supplementary table 2, Supplementary Material on-

line) to the Panu_2.0 (P. anubis) nuclear genome, and to the

P. ursinus mitochondrial genome. For these libraries, we es-

timated an average endogenous DNA content of 8.5% and

obtained a total mean mapped autosomal coverage of 0.93�
and mitochondrial coverage of 36.6�. The Panu_2.0 refer-

ence genome does not contain a Y chromosome, but com-

parison of coverage on the X chromosome (0.47) to the

autosomes (mean 0.93, range 0.84–1.04) indicates that the

phalanx belonged to a male. Fragment lengths (supplemen-

tary fig. 1, Supplementary Material online) and damage pat-

terns are consistent with authentic ancient DNA (Dabney

et al. 2013) with C>T transitions at 50 ends affecting

�15% of bases in the last position (supplementary fig. 2,

Supplementary Material online). Low mitochondrial (1.3%)

and X chromosome (0.47%) consensus mismatch at nonre-

ference, nondamage sites indicates that contamination (from

other baboons) is low. We restricted our analysis to reads

with evidence of cytosine deamination, characteristic of au-

thentic ancient DNA (Skoglund et al. 2014), and find results

consistent with the unrestricted data (supplementary table 3,

Supplementary Material online).

We compared the ancient baboon with mitochondrial

data from 66 present-day baboons (Zinner, Groeneveld,

et al. 2009), including Guinea (P. papio), olive (P. anubis),

hamadryas (P. hamadryas), Kinda (P. kindae), yellow

(P. cynocephalus), and chacma (P. ursinus) baboons. We in-

cluded geladas (Theropithecus gelada) as an outgroup.

These publicly available data include the complete coding

sequence (CDS) of CYTB, part of the CDS of NADH5 and

the complete tRNA-His, tRNA-Ser, and tRNA-Leu sequences.

The resulting tree (fig. 1C) shows that the ancient baboon

has haplogroup U13/U14 and clusters with southern

P. ursinus (i.e., Cape chacma, P. ursinus ursinus). Ha

Makotoko is at the eastern end of the range of this subspe-

cies, which extends to the south and west of the Kalahari

Desert (Sithaldeen et al. 2015). The most closely related

specimens come from the Giant’s Castle Game Reserve

and the Goegap Nature Reserve (fig. 1A). We also compared

the complete ancient mitochondrial genome (36� coverage)

with complete mitochondrial genomes from 10 present-day

baboons (Zinner et al. 2013), and to the 16 present-day

baboons from the baboon genome project diversity panel

(Rogers et al. 2019), confirming that it is closely related to

present-day southern P. ursinus (supplementary fig. 3,

Supplementary Material online).

Next, we analyzed the autosomal genome together with

14 present-day baboons sequenced as part of the baboon

genome project diversity panel (Rogers et al. 2019).

Heterozygosity at sites polymorphic in P. cynocephalus is sim-

ilar in the ancient baboon (8.5%) to present-day P. ursinus

(8.7%), suggesting a relatively constant level of genetic diver-

sity. In principal component analysis (PCA), the ancient baboon

falls closest to the two P. ursinus individuals (fig. 2A). D statis-

tics (Patterson et al. 2012) suggest that the ancient baboon

might carry some ancestry related to Northern clade subspe-

cies such as P. anubis. In particular, D(T. gelada, P. anubis,

P. ursinus, Ancient) has a Z score of 12.1 suggesting that

the ancient baboon shares significant drift with P. anubis to

the exclusion of P. ursinus. However, this is also consistent with

differential attraction to the reference genome (generated

from a P. anubis individual)—a common source of bias in an-

cient DNA studies (Cahill et al. 2018; Gunther and Nettelblad

2019; Sheng et al. 2019). This interpretation is supported by

the D statistic D(T. gelada, Ancient, P. anubis, papAnu2) that

has a Z score of 18.6 indicating that the ancient baboon shares

more drift with the reference than other P. anubis individuals.

To further investigate the effect of reference bias, we

constructed admixture graphs using TreeMix (Pickrell and

Pritchard 2012) and qpGraph (Patterson et al. 2012)

(fig. 2B and C, supplementary fig. 4 and methods,

Supplementary Material online). TreeMix finds evidence of

“gene flow”—in reality the effect of reference bias—be-

tween the Ancient lineage and the reference genome

(fig. 2B). Similarly, qpGraph shows that the observed D sta-

tistics can be explained with small amounts of gene flow

from the reference into other samples (fig. 2C). The

qpGraph model suggests that, relative to the ancient ba-

boon, present-day P. ursinus may carry a small amount

(2%) of ancestry related to P. cynocephalus. However, we

do not detect this signal using ADMIXTURE (Alexander et al.

2009) (supplementary fig. 5, Supplementary Material online)

or f3 statistics (Patterson et al. 2012) (f3(P. ursinus; Ancient;

P. cynocephalus); Z¼ 15.9) so it may be an artefact of the

graph fitting or reflect structure within the P. ursinus popu-

lation rather than admixture.

The Y chromosomal TSPY locus can distinguish between

subspecies (Tosi et al. 2003; Jolly et al. 2011). We aligned

reads to the T. gelada TSPY sequence (Tosi et al. 2003) and

compared with seven reported sequences (Tosi et al. 2003;

Zinner, Arnold, et al. 2009; Jolly et al. 2011) (supplementary

table 4, Supplementary Material online). High coverage at this

locus (because of multiple TSPY copies) confirms the male sex
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determination. The ancient baboon haplotype appears con-

sistent with that reported for P. ursinus griseipes in the ursi-

nus/kindae hybrid zone in Zambia (Jolly et al. 2011). At least

one other P. ursinus ursinus individual from Southern Africa

(Zinner, Arnold, et al. 2009) has a different haplotype (sup-

plementary table 4, Supplementary Material online), raising

the possibility of discordant mitochondrial and Y chromosome

phylogenies, consistent with female philopatry and male dis-

persal in P. ursinus (Kopp et al. 2014).

We investigated the metrics of the phalanx (supplementary

fig. 6, Supplementary Material online). The maximum length

and medio-lateral midshaft breadth, at 26.3 and 7.1 mm,

FIG. 2.—Autosomal genome analysis. (A) First two principal components of genome-wide data. (B) TreeMix (Pickrell and Pritchard 2012) analysis of

southern clade baboons with one northern clade representative (Papio anubis) and the papAnu2 (Pa2) reference genome with two migration edges (worst

outlier 3.9 S.E). (C) An admixture graph that is consistent with the data (worst D-statistic Z score 0.4) of southern clade baboons with one northern clade

representative (P. anubis) and the papAnu 2 reference genome. Other graphs may be equally consistent. Apparent gene flow (dashed red lines) between the

Pa2 lineage and other samples likely reflects the effect of reference mapping bias. Abbreviations: anc, ancient baboon; anu, P. anubis; cyn, Papio

cynocephalus; gel, Theropithecus gelada; ham, Papio hamadryas; kin, Papio kindae; pap, Papio papio; Pa2, papAnu2 reference genome.

A C

B

FIG. 1.—Mitochondrial genome analysis. (A) Image of the ancient baboon phalanx. (B) Location of ancient baboon and geographic distribution of

baboon species. Map: modified from Zinner, Groeneveld, et al. (2009) (CC BY). (C) Phylogenetic tree of the ancient baboon and present-day baboons using

partial mitochondrial sequences from Zinner, Groeneveld, et al. (2009). The locations of the two most closely related mitochondrial genomes (U13/14) are

indicated with labeled arrows in B and C, and those in the other southern ursinus haplogroups U10,11,12 and 15 are indicated with unlabeled arrows.
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respectively are within the range of variation of an identified

male P. ursinus (UCT/87/09) (n¼ 7, mean¼ 28.3 and 6.3 mm,

SD¼ 5.1 and 0.8 mm) and a larger sample of n¼ 16 males

represented by one third phalanx per individual (mean¼ 28.5

and 7.2 mm, SD¼ 2.4 and 0.7 mm) (Vernon 2013). However,

the medio-lateral breadth at the base (the proximal joint) is

12.5 mm larger and outside the range of variation of both

comparative samples (mean¼ 10.5 and 10.5 mm, SD¼ 0.9

and 0.8 mm). This suggests that it was more robust than a

modern animal. Because the genetic data show that it is not a

hybrid, this could reflect the effect of altitude (Bergman 1847;

Sayers 2014). Carbon and nitrogen isotope values (d13

C¼ –16.996 0.19& and d15N¼ 4.466 0.18& and a C:N

ratio of 3.3) reflect a predominantly C3 diet, typical of P. ursi-

nus, although the low value may reflect a diet more heavily

focused on browse or fleshy fruits. The nitrogen values reflect

low trophic level species and a largely vegetarian diet.

Discussion

Our data demonstrate that P. ursinus ursinus persisted in the

foothills of the Maloti-Drakensberg Mountains throughout

the past 6,000 years. This is despite the fact that paleoenvir-

onmental proxies predict drier conditions across the summer

rainfall zone which may, for example, have limited human

occupation across all of southeastern Southern Africa from

6.0 to 3.5 ka (Stewart and Mitchell 2018). It remains to be

seen how far back in time this continuity extends, but more

ancient genomes would address that question. Additional nu-

clear genomes from ancient and present-day baboons will

allow us to estimate the extent and timing of gene flow be-

tween the ursinus and grisepes subspecies.

These data demonstrate that it is possible to extract and

sequence high quality ancient genomes from southern Africa.

This 0.9� genome is �3,500 years older than the oldest hu-

man shotgun genome from the region (Schlebusch et al.

2017) and demonstrates that it should be possible to obtain

much older human genomes, but also genomes from the

different baboon species and other nonhuman primates. In

particular, the temporal resolution provided by ancient DNA

allows precise comparisons with paleoclimate data, allowing

tests of specific hypotheses about the relationship between

climatic variation and phylogeography. Although the vast ma-

jority of effort in ancient DNA is geared toward humans or

domesticated species, this study underscores the utility of an-

cient DNA for understanding the history and evolution of

nonhuman species under natural conditions.

Materials and Methods

Data Processing and Quality Control

All ancient DNA work was performed in the aDNA clean lab

facility of GeoGenetics, Copenhagen. From bone material

obtained from the center of the phalanx, we extracted DNA

(Allentoft et al. 2015) for 13 libraries, 9 of which were treated

with the Uracil-Specific Excision Reagent (USER). aDNA librar-

ies were prepared according to Meyer and Kircher (2010),

using the modification described by Allentoft et al. (2015).

The libraries were 75-bp paired-end sequenced on the

Illumina platform HiSeq-2000 v4. Sequence reads were proc-

essed with AdapterRemoval v2.1.7 (Schubert et al. 2016) to:

Remove adaptor remnants and low-quality ends (“Ns” and

bases with quality< 20); merge read pairs when mate-pairs

overlap at least 11 bp; and discard reads shorter than 30 bp.

Parameters were “- -collapse - -minalignmentlength 11 - -

minlength 30 - -trimqualities - -minquality 20 - -trimns - -qual-

itybase 33 - -qualitymax 42 - -mm 3.”

We aligned reads to the P. anubis (papAnu2) reference

sequence (Rogers et al. 2019) using the aln algorithm of bwa

v0.7.12 (Li and Durbin 2009), disabling seeding (-l 10000).

We removed duplicates from each library BAM file using

Picard tools v1.127 (http://broadinstitute.github.io/picard)

and merged libraries using Samtools v1.2 (Li et al. 2009).

Finally, we ran GATK’s RealignerTargetCreator and

IndelRealigner v3.4.0 (McKenna et al. 2010) to identify po-

tential indels and realign reads around them. The ancient

baboon’s mitochondria clustered with P. ursinus, so to pro-

duce a more accurate whole-mitochondrial sequence, we

replaced the reference P. anubis mitochondrial sequence

with the complete mitochondrial sequence of P. ursinus

from Zinner et al. (2013) (GenBank accession JX946205.2).

We removed unplaced contigs and scaffolds.

We assessed the authenticity of the ancient DNA by con-

firming damage patterns characteristic of ancient samples,

that is, DNA fragmentation and increased C>T transitions

at the 50 ends of DNA molecules. We used bamdamage

(v20140602) from the bammds package (Malaspinas et al.

2014). The distribution of read lengths shows a peak around

40 bp. C>T transitions show high rates at 50 ends, affecting

15% of cytosines (supplementary fig. 1, Supplementary

Material online), consistent with the presence of authentic

ancient DNA. For some analyses, we restricted to reads with

evidence of damage using pmdtools (Skoglund et al. 2014)

with the option –threshold¼ 3.

We tested for contamination by counting the propor-

tion of reads that mapped to the mitochondria and did not

match the majority call at sites where the majority call was

nonreference. Across all sites we found that 3.6% of

reads did not match, and at sites where a mismatch could

not be the result of deamination, 1.3% of reads did not

match. Because it is possible that potential contaminants

share nonreference variants with the ancient individual,

this is not a direct estimate of contamination, but never-

theless supports the authenticity of the data. We repeated

the same analysis for the X chromosome, finding that

0.63% of all sites and 0.47% of nondeamination sites

did not match.
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Mitochondrial Analysis

To call the mitochondrial genome of our ancient baboon we

skipped the removal of nonuniquely aligned reads, as

NUMTs in the nuclear genome result in missed coverage in

the mitochondrial genome. We required each site to be cov-

ered by 10 or more reads with base qualities> 30 and that

at least 80% consensus. For the partial mitochondrial

genomes of Zinner, Groeneveld, et al. (2009) we aligned

the data using Mafft v7.305b (Katoh and Standley 2013)

and built a tree using Phyml v3.0 (Guindon et al. 2010)

with a TN93þGþIþF model. For the complete mitochon-

drial genomes from Zinner et al. (2013) and Rogers et al.

(2019), we aligned the whole-mitochondrial sequences with

MUSCLE (Edgar 2004; Madeira et al. 2019), and estimated

the maximum clade credibility tree using Beast2 (Bouckaert

et al. 2019) with a GTR model.

Autosomal Analysis

We generated pseudohaploid calls by picking a random

base from all reads covering each site in the genome. We

obtained baboon genome project diversity panel SNP calls

from Rogers et al. (2019), merged with the pseudoha-

ploid ancient calls, and restricted to transversions that

were polymorphic in present-day baboons for all analysis.

We ran TreeMix v1.13 (Pickrell and Pritchard 2012) with

the “-root” option to use T. gelada as an outgroup, and

the option “-noss” to turn off sample size correction. We

ran qpGraph v6065 (Patterson et al. 2012), starting with

the tree inferred by TreeMix and manually adding admix-

ture edges until the absolute value of the worst D statistic

Z score was <3.

We estimated conditional nucleotide diversity (CND) by

restricting to sites that were polymorphic in a single

P. cynocephalus individual, and counted how many were het-

erozygous in present-day P. ursinus. For the ancient baboon,

we counted total ni and alternative ki allele counts at each SNP

i, restricted to the N SNPs where ni> 1 and then estimated

CND¼
�
2=N

�PN
i¼1 ½n2

i �k2
i � ni�kið Þ2�=½niðni�1Þ�

n o
. We

averaged the results obtained from ascertaining sites in each

of the two P. cynocephalus individuals, which were very

similar.

To analyze TSPY we aligned reads from the ancient baboon

that had not aligned to the reference to the T. gelada TSPY

sequence; GenBank: AF284278.2 (Tosi et al. 2003). We also

obtained the P. hamadryas sequence from the same refer-

ence, and four other partial sequences (Zinner, Arnold,

et al. 2009) which we aligned to the T. gelada sequence to

identify differences.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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