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Background: The current standard of care during severe acute respiratory distress

syndrome (ARDS) is based on low tidal volume (VT) ventilation, at 6 mL/kg of predicted

body weight. The time-controlled adaptive ventilation (TCAV) is an alternative strategy,

based on specific settings of the airway pressure release ventilation (APRV) mode.

Briefly, TCAV reduces lung injury, including: (1) an improvement in alveolar recruitment

and homogeneity; (2) reduction in alveolar and alveolar duct micro-strain and stress-

risers. TCAV can result in higher intra-thoracic pressures and thus impair hemodynamics

resulting from heart-lung interactions. The objective of our study was to compare

hemodynamics between TCAV and conventional protective ventilation in a porcine

ARDS model.

Methods: In 10 pigs (63–73 kg), lung injury was induced by repeated bronchial saline

lavages followed by 2 h of injurious ventilation. The animals were then randomized into

two groups: (1) Conventional protective ventilation with a VT of 6 mL/kg and PEEP

adjusted to a plateau pressure set between 28 and 30 cmH2O; (2) TCAV group with

P-high set between 27 and 29 cmH2O, P-low at 0 cmH2O, T-low adjusted to terminate

at 75% of the expiratory flow peak, and T-high at 3–4 s, with I:E > 6:1.

Results: Both lung elastance and PaO2:FiO2 were consistent with severe ARDS after 2 h

of injurious mechanical ventilation. There was no significant difference in systemic arterial

blood pressure, pulmonary blood pressure or cardiac output between Conventional

protective ventilation and TCAV. Levels of total PEEP were significantly higher in the TCAV

group (p< 0.05). Driving pressure and lung elastance were significantly lower in the TCAV

group (p < 0.05).

Conclusion: No hemodynamic adverse events were observed in the TCAV group

compared as to the standard protective ventilation group in this swine ARDS model,

and TCAV appeared to be beneficial to the respiratory system.
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INTRODUCTION

Acute Respiratory Distress Syndrome (ARDS) is a life-
threatening condition due to a lung injury that can result from
numerous causes (e.g., infectious, toxic, or inflammatory). Its
mortality raises up to 50% in the most severe cases (1).

ARDS treatment is based on protective mechanical
ventilation, prone positioning, neuromuscular blockade or
VV-ECMO (2). The current standard of care is based on the
limitation of ventilator-induced lung injury (VILI) by reducing
the insufflated tidal volume (VT) to 6 mL/kg of predicted
body weight (PBW) and by maintaining driving pressure (1P)
below 15 cmH2O (3, 4). As positive end expiratory pressure
(PEEP) can provide both lung recruitment and overdistension,
it can lead to an increase in pulmonary blood pressure (PBP)
(5, 6). An alternative strategy is the time-controlled adaptive
ventilation (TCAV), a specific combination of settings applied
to set the airway pressure release ventilation (APRV) mode.
Initially reported by Habashi et al., TCAV reduces lung injury
in both experimental and clinical studies (7–9). TCAV is based
on delivering a continuous inspiratory positive airway pressure
(CPAP) phase (Phigh), followed by a brief expiratory release
phase (Tlow) (10).

A significant concern is the hemodynamic effect of an increase
in intrathoracic pressure leading to a decrease in cardiac output
(6, 11). Our hypothesis is that TCAV, that results in higher intra-
thoracic pressures due to the prolonged inspiratory phase, can
lead to harmful heart-lung interactions. The main objective of
our study was to compare hemodynamics during the first hour
of TCAV or conventional protective ventilation in a porcine
ARDS model.

METHODS

The present study was conducted in accordance with the
ARRIVE consensus guideline for reporting animal experimental
studies (12).

Abbreviations: APRV, Airway pressure release ventilation; ARDS, Acute

respiratory distress syndrome; ATC, Automatic tube compensation; CO, Cardiac

output; CPAP, Continuous positive airway pressure; CRS, Compliance of

respiratory system; EL, Elastance of the lung; ER, Elastance ratio; ERS, Elastance

of respiratory system; EtCO2, End-tidal carbon dioxide; EIT, Electrical Impedance

Tomography; FIO2, Fraction of oxygen inspired; HiFi, High-fidelity pressure

catheter; I:E, inspiratory to expiratory time ratio; IVC, Inferior vena cava; LVV,

Left ventricular volume; PAWP, Pulmonary artery wedge pressure; Paw, Airway

pressure; Pes, Esophageal pressure; PBW, Predicted body weight; PEEP, Positive

end-expiratory pressure; PEFR, Peak expiration flow rate; Phigh, High pressure; PL,

Transpulmonary pressure; PLER, Transpulmonary pressure according to ratio of

elastance method; Plow, Low pressure; PLV, Left ventricular pressure; Pes, Pleural

pressure or esophageal pressure; PVR, Pulmonary vascular resistance; RAP, Right

atrial pressure; RR, Respiratory rate; S/D/M ABP, Systolic, diastolic, mean aortic

blood pressure; S/D/M CBF, Systolic, diastolic, mean carotid blood flow; S/D/M

PBP, Systolic, diastolic, mean pulmonary blood pressure; SVO2, Mixed venous

oxygen saturation; TCAV, Time-controlled adaptive ventilation; Thigh, Time high;

Tlow, Time low; VCV, Volume-controlled ventilation; VD, Dead volume; VILI,

Ventilator-induced lung injury; LVV, Left ventricular volume; VT, Tidal volume;

VV-ECMO, Veno-venous extracorporeal membrane oxygenation; 1Paw, Driving

pressure; 1PL, Inspiratory transpulmonary pressure—expiratory transpulmonary

pressure; ROI, Region of interest; RCROI, Regional compliance.

Ethics
All experiments were reviewed and approved by the Nancy
University Ethics Committee for Animal Experimentation
(APAFIS Number 2020082407561244). The procedure for the
care and sacrifice of the study animals was in accordance with
the European Community Standards on the Care and Use of
Laboratory Animals.

Animal Preparation
Animals were fasted overnight with free access to water. All the
pigs were of male sex with a median weight of 67 kilograms.
Intramuscular premedication was performed with ketamine (1.5
mg/kg, Warner Lambert, Nordic, AB Solna, Sweden) before
transportation to the experiment facility. Sedation was deepened
with propofol (2.5 mg/kg, B. Braun, Melsungen, Germany) via an
ear vein cannula. After being placed in a supine position, animals
were intubated with a 7.5-mm internal diameter endotracheal
tube (ETT). Anesthesia was maintained with a continuous
infusion of midazolam 5 mg/h and sufentanyl 20 µg/h. Depth
of anesthesia was assessed regularly by checking on movements
and hemodynamic response to a painful stimulus. Muscle
paralysis was then maintained with a continuous infusion of
cisatracurium (0.5 mg/kg/h) (GlaxoSmithKline, Marly-le-Roi,
France) throughout the experiment. Pigs were connected to the
ventilator (Dräger Evita Infinity V500, Lübeck, Germany), with
the baseline settings adjusted to the following levels: VT,7 mL/kg;
respiratory rate (RR), 22 breaths/min; PEEP, 5 cmH2O; fraction
of inspired oxygen (FiO2),100%. Automatic tube compensation
(ATC) was adjusted to 100%. The ventilator settings were then
adjusted to pH > 7.35 and PaCO2 between 40 and 45 mmHg.

Hemodynamic Monitoring
Measurements were performed at the following successive
periods: after intubation and catheters placement at basal state
(TB), after ARDS induction with saline lavages and injurious
mechanical ventilation (T0), and at 15min (T15) and 60min
(T60) following randomization to either conventional protective
ventilation or TCAV (Supplementary Figure 1). A pulmonary
artery catheter (Swan-Ganz, Edwards Lifesciences, Irvine, USA)
was inserted via the left internal jugular vein for measuring
PBP, pulmonary artery wedge pressure (PAWP), right atrial
pressure (RAP) and mixed venous oxygen saturation (SVO2).
The pressure transducer was positioned at the level of the right
atrium. A conductance catheter (Transonic Systems Inc., Ithaca,
USA) was inserted into the left ventricle via the left carotid
artery for simultaneous registration of both instantaneous high-
fidelity left ventricular pressure (PLV) and instantaneous left
ventricular volume. Central aortic pressure (ABP) was assessed
by a high-fidelity pressure catheter (HIFI) (Transonic Systems
Inc., Ithaca, USA) percutaneously inserted via the femoral artery
into the descending thoracic aorta. The catheters were inserted
under fluoroscopy. The right carotid artery was dissected, and a
Transit Time Flow probe (Transonic Systems Inc., Ithaca, USA)
was secured around it. Data were computed using a designated
analysis program (IOX 2.4.2.6 R©, EMKA Technologies, France).
The signals were recorded continuously at a sampling rate of
2,000Hz. A period of 2 h was required for the calibration and
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the correct positioning of the probes, assessed by fluoroscopy
and chest X Ray. The core body temperature was measured via
a rectal probe and maintained between 37 and 38◦ by a warming
blanket system.

Respiratory Monitoring
Airway pressure (Paw) was continuously registered by a probe
set on the ventilator Y-piece. The esophageal pressure (Pes) was
assessed by an esophageal balloon (BA-A-008 probe, MBMed,
Argentina) positioned with fluoroscopy and inflated up to 4mL.
The correct positioning of the devices was checked by using
the Baydur manoeuver (13). Transpulmonary pressure (PL) was
calculated in absolute value, as follows: PL = Paw – Pes. 1PL is
defined as the difference between PLend−insp and PLend−exp. The
absolute value of PL reflects the local pressure in the dependent
lung regions, adjacent to the esophageal balloon, independently
of the mediastinal structures (14). Elastance of the respiratory
system (ElRS) was assessed by: ElRS = 1Paw/VT. The elastance
ratio (ER) was calculated as follows: ER = ElL/ElRS, i.e., the
lung elastance (ElL) to total respiratory system elastance ratio
(15). Inspiratory transpulmonary pressure based on elastance
ratio (PLEr) reflects the local pressure in the non-dependent
lung regions (16). It was calculated as follows: PLEr = Paw x
ER. End inspiratory and end expiratory PL were measured after
a 5-s airway occlusion of the ventilator circuitry. Data were
computed using a designated analysis program with sampling
rate of 2,000Hz (IOX 2.4.2.6 R©, EMKA Technologies, France). In
TCAV, total PEEP was measured during a 5-s occlusion period at
the end of expiration.

End-tidal carbon dioxide (EtCO2) was monitored for
assessing the PaCO2-EtCO2 gradient and estimate the
physiologic dead space as described by Enghoff’s modification
of the Bohr equation: VD

VT = PaCO2 − EtCO2
PaCO2 where VD is the

dead space volume (mL), VT is tidal volume (mL), EtCO2 is the
end tidal expiratory CO2 (mmHg), and PaCO2 (mmHg) is the
systemic arterial CO2 pressure (17).

Electrical Impedance Tomography
An electrical impedance tomography (EIT) electrode belt, which
carries 16 electrodes with an inter-electrode distance of 40mm,
was placed around the thorax in the fifth intercostal space, and
one reference electrode was placed on the animal’s abdomen
(PulmoVista 500, Dräger Medical, Lübeck, Germany). The
measures of EIT were averaged over five respiratory cycles and
the images were divided into four regions of interest (ROI):
ROI 1 being the most ventral, to ROI 4, being the most dorsal.
Results are expressed as the percentage of total tidal volume
ventilation in the four ROIs (18, 19). The regional compliance
was calculated in the four ROIs as follows: RCROI = VT x ROI

1Paw
expressed in mL/cmH2O.

ARDS Induction
Induction of a double hit lung injury was performed by 4
repeated lung lavages for a total of 30 mL/kg warm 0.9% saline
solution intratracheally at 38.5◦C. The lung was filled up to
the endotracheal tube and fluid was drawn from the airways
after 2min via a tracheal aspiration. During the bronchoalveolar

lavage, all the animals developed a profound desaturation
with SpO2 < 60% without any bradycardia or life-threatening
hemodynamic alteration. This was followed by 2 h of injurious
ventilation with PEEP 0 cmH2O and inspiratory pressure of 40
cmH2O, RR 10/min, inspiratory to expiratory time ratio (I:E)
of 1:1 (20). The FiO2 was set at 1.0, providing an additional
mechanism of lung injury (21). Of note, mechanical power of
mechanical ventilation transferred to the respiratory system was
estimated at 41 J/min, by applying the equation proposed by
Louis et al. (22). The animals received a continuous intravenous
infusion of normal saline at 10 mL/Kg/h during lung injury
induction, and 2 mL/Kg/h during the study period.

Interventions and Study Groups
After the induction of ARDS, animals were randomly allocated to
one of the following two groups:

• Conventional protective group (n= 5):with VT 6 mL/kg, PEEP
adjusted to reach a plateau pressure of 28 to 30 cmH2O, RR 25
bpm, I:E 1:2.

• TCAV group (n= 5): Phigh set between 27 and 29 cmH2O, Plow
at 0 cmH2O, Tlow set to terminate at 75% of the expiratory flow
peak, Thigh at 3–4 s, and I:E > 6:1.

STATISTICAL ANALYSES

Given the small sample size, all results are expressed as median
and interquartile range (IQR). Baseline and T0 measurements
were compared by using the non-parametric Friedman test for
analysis of variance by ranks. Respiratory and hemodynamics
values between the two groups at T0, T15, and T60 were compared
by using mixed effects regression models for evaluating the
association of variables of interest (fixed effects) with the
dependent variable, using the animal number as random effect
to account for the repetition of regional measurements in each
animal, and the lung level as a random slope. Multicollinearity
and interactions were systematically evaluated in multivariate
models; in the case of a significant interaction, a post-hoc
analysis using pairwise comparison adjusted for the repetition of
statistical tests was performed using the Tukey method. In the
case of post-hoc multiple comparisons to a single reference level,
we used the Dunnett adjustment method. All statistical analyses
were with a significance level of 0.05 and performed using R
version 4.0.1 for MacOS R© (https://www.r-project.org/, accessed
March 2020).

RESULTS

Effect of Experimental ARDS on
Respiratory Mechanics and
Hemodynamics
Thirteen pigs were involved in the experiment. Ten pigs
were included into the final analyses. Two pigs developed an
early hemorrhagic shock, and one pig developed a refractory
ventricular fibrillation at the time of the left ventricular catheter
insertion before randomization.
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TABLE 1 | Hemodynamic characteristics.

TCAV (n = 5) Conventional protective

ventilation (n = 5)

Effect of group Effect of time Group × time

Heart rate (bpm) p = 0.3 p = 0.2 p = 0.4

T0 122 (121 to 134) 136 (135 to 137)

T15 135 (134 to 136) 132 (129 to 141)

T60 133 (130 to 139) 135 (134 to 138)

Mean aortic blood pressure (mmHg) p = 0.9 p = 0.7 p = 0.7

T0 104 (92 to 104) 85 (83 to 102)

T15 100 (95 to 105) 90 (85 to 110)

T60 104 (90 to 109) 90 (76 to 95)

Mean pulmonary blood pressure (mmHg) p = 0.4 p = 0.3 p = 0.3

T0 39 (35 to 40) 40 (34 to 42)

T15 38 (33 to 40) 32 (27 to 42)

T60 37 (36 to 38) 40 (30 to 46)

Pulmonary vascular resistance (U Woods) p = 0.3 p = 0.1 p = 0.3

T0 2.6 (2.3 to 3.5) 2.8 (2.4 to 3.0)

T15 2.7 (2.8 to 3.1) 2.5 (2.3 to 3.2)

T60 3.1 (3.0 to 3.5) 2.6 (2.2 to 3.8)

Right atrial pressure (mmHg) p = 0.4 p = 0.7 p = 0.3

T0 9 (9 to 10) 10 (9 to 11)

T15 11(10 to 11) 11 (10 to 13)

T60 9 (9 to 10) 9 (8 to 11)

PAWP (mmHg) p = 0.3 p = 0.1 p = 0.08

T0 13 (13 to 14) 14 (13 to 17)

T15 14 (13 to 16) 13 (12 to 14)

T60 12 (10 to 14) 11 (10 to 12)

Cardiac output (L.min−1) p = 0.3 p = 0.1 p = 0.06

T0 8.7 (6.8 to 9.9) 6.5 (6.0 to 9.3)

T15 8.1 (8.0 to 9.7) 8.7 (8.0 to 9.7)

T60 7.6 (5.5 to 8.6) 7.6 (6.9 to 11.5)

LV Tau 1/e (ms) p < 0.05 p = 0.1 p = 0.3

T0 20.6 (18.0 to 22.0) 13.5 (10.1 to 15.8)

T15 16.0 (15.8 to 21.3) 13.6 (9.7 to 15.4)

T60 20.1(16.0 to 20.9) 15.6 (14.1 to 17.9)

LV –dP/dtmax (mmHg.s-1) p = 0.3 p = 0.5 p = 0.8

T0 −1,719 (−2,397 to −1,545) −2,987 (−3,000 to −1,984)

T15 −1,972 (−2,060 to −1,785) −2,100 (−2,527 to −1,115)

T60 −2,048 (−2,150 to −1,695) −2,489 (−2,878 to −1,855)

LV +dP/dtmax (mmHg.s−1) p < 0.05 p = 0.4 p = 0.3

T0 1,738 (1,661 to 4,772) 3,969 (3,460 to 4,179)

T15 1,609 (1,494 to 4,737) 3,746 (1,848 to 6,044)

T60 1,604 (1,483 to 5,038) 4,404 (4,334 to 6,816)

LV +/–dP ratio p = 0.4 p = 0.1 p = 0.2

T0 1.32 (0.65 to 2.74) 1.91 (1.35 to 2.08)

T15 1.19 (0.75 to 2.65) 2.79 (2.39 to 2.80)

T60 2.13 (0.87 to 2.45) 2.65 (1.32 to 3.26)

Total fluid loading (mL) p = 0.3 p = 0.1 p = 0.3

T0 1,675 (1,650 to 1,825) 1,660 (1,570 to 1,830)

T15 1,710 (1,680 to 1,860) 1,700 (1,610 to 1,860)

T60 1,820 (1,780 to 1,970) 1,810 (1,780 to 1,960)

The analysis used all data collected in both groups at the 3 study time points, using a mixed effects linear regression with study group and study time point as independent variables,
and animal identification number as the random effect. Interaction of time with study group was systematically checked for. If no interaction was identified, the p-value of the effect
of Group and Time are given, respectively. In case of a significant interaction, a pairwise post-hoc multiple comparison was performed to compare groups at each time points on the
one side, and compare T15 and T30 to T0 in each group, on the other. TCAV, Time controlled adaptative ventilation; PAWP, Pulmonary artery wedge pressure; LV +dP/dtmax and LV
-dP/dtmax, minimum and maximum rate of pressure change in the left ventricle; LV dP ratio, represent catecholaminergic impregnation and was calculated as the ratio of -dP/dtmax
and +dP/dtmax; LV Tau, Isovolumic relaxation constant. T0: After ARDS induction; T15: 15min after start of study; T60: 60min after start of study; Data are presented as median
(25th−75th percentile).
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FIGURE 1 | Polygraphic recordings between two groups at T60 of the main hemodynamic and respiratory outcomes. VCV: Conventional protective group with VT

6ml.kg−1, PEEP 10 cmH2O, RR 25 bpm, I:E 1:2. TCAV: Phigh 27 cmH2O, Plow at 0 cmH2O, Tlow 0.4 s, Thigh 4.

Respiratory and hemodynamic parameters at
baseline and after ARDS induction are summarized in
Supplementary Table 1. At T0 (after ARDS induction) both ElL
[32 cmH2O/L (29–33)] and PaO2/FiO2 ratio [99 (88–115)] were
consistent with a severe ARDS.

Effect of Ventilation Strategies on
Hemodynamics
All the results related to hemodynamics are presented in
Table 1 and Supplementary Table 2. There were no significant
between group differences at T0 for the main hemodynamic
parameters: heart rate (HR), cardiac output (CO), ABP,
PBP, RAP, and pulmonary vascular resistance (PVR). The
only significant difference was observed for the left ventricle
(LV) isovolumic relaxation time constant (Tau) and LV

maximal rate of pressure rise (LV + dP/dtmax) values, which

reached higher levels in the conventional protective ventilation
population at T0 but also at T15 and T60 (p < 0.05, no
interaction was detected in multivariate analysis). There was
no between-group difference at T60 for HR, CO, ABP, PBP,
RAP and PVR. There was no between group difference in
lactate values at T60 between the TCAV group [1.1 mmol/L
(1.0–2.1)] vs. 1.5 (1.5–1.7) in the conventional protective
group (p= 0.06).

Polygraphic recordings between two groups at T60 of the
main hemodynamic and respiratory outcomes are presented
in Figure 1.

Effects of the Ventilation Strategies on
Respiratory Mechanics
All the results related to respiratory parameters are presented in
Table 2 and Supplementary Table 3. There were no significant
differences in the respiratory parameters between the TCAV and
conventional protective groups at T0 except for pH (p < 0.05).

Respiratory rate was significantly lower at T60 in the TCAV
group compared to the conventional protective group (p< 0.05).
Levels of total PEEP were significantly higher in the TCAV
group at T60 (p < 0.05). Mean airway pressure was significantly
higher in the TCAV group at T15 and T60 (p < 0.05). The
1Paw was significantly lower in the TCAV group at T15 and
T60 (p < 0.05). VT in the TCAV group significantly differed
from conventional protective group at T60: 7.4 mL/kg (6.4–7.8)
in the TCAV group vs. 6.1 mL/kg (5.8–6.2) in the conventional
protective group (p < 0.05). Elastance of the lung at T15 and
T60 was significantly lower in the TCAV group (p < 0.05).
PaO2/FiO2 increased in both groups at T60 without significant
differences between the two groups. During the study period
PaCO2 did not differ significantly. The regional compliance in
the mid-ventral and mid-dorsal regions (RCROI 2 and RCROI 3)
was significantly higher at T60 in the TCAV group (p < 0.05)
(Supplementary Table 4).

Fluid Loading and Vasopressors
The total fluid loading was of 1,675mL (1,650–1,825) in the
TCAV group and of 1,660ml (1,570–1,830) in the VCV group
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TABLE 2 | Respiratory characteristics.

TCAV (n = 5) Conventional protective

ventilation

(n = 5)

Effect of group Effect of time Group × time

VT (mL/kg) - - p < 0.05

T0 5.9 (5.5–6.0) 5.9 (5.9–6.0)

T15 6.9 (6.2–7.2) 5.9 (5.7–6.1)

T60 7.4 (6.4–7.8)a 6.1 (5.8–6.2)bc

RR (.min−1) - -

T0 24 (23–26) 25 (24–26) p < 0.05

T15 20 (18–20)a 27 (26–28)bc

T60 20 (18–20)a 27 (26–28)bc

PEEPt (cmH2O) - - p < 0.05

T0 5 (5–6) 5 (5–6)

T15 11 (10–13)a 11 (11–11) b

T60 14 (14–15)a 11 (11–11)bc

1PAW (cmH2O) - - p < 0.05

T0 19 (18–21) 20 (19–21)

T15 14 (13–15)a 18 (18–19)bc

T60 13 (11–14)a 18 (18–19)bc

1PL (cmH2O) - - p < 0.05

T0 15 (14–16) 17 (15–18)

T15 11 (8–11)a 16 (15–19)c

T60 10 (7–11)a 15 (12–16)c

ElL (cmH2O.L−1) - - p < 0.05

T0 41 (40–41) 40 (37–41)

T15 25 (19–26)a 42 (41–45)c

T60 22 (15–23)a 40 (39–42)c

PaCO2 (mmHg) p = 0.3 p = 0.5 p = 0.4

T0 43 (35–44) 48 (44–49)

T15 44 (38–45) 43 (41–49)

T60 39 (37–45) 46 (38–54)

PaO2/FIO2 (mmHg) p = 0.5 p < 0.05 p = 0.3

T0 88 (44–99) 100 (98–115)

T15 140 (95–200) 101 (80–117)

T60 135 (100–219) 117 (75–180) #

The analysis used all data collected in both groups at the 3 study time points, using a mixed effects linear regression with study group and study time point as independent variables,
and animal identification number as the random effect. Interaction of time with study group was systematically checked for. If no interaction was identified, the p-value of the effect of
Group and Time are given, respectively. In case of a significant interaction, a pairwise post-hoc multiple comparison was performed to compare groups at each time points on the one
side, and compare T15 and T30 to T0 in each group, on the other.
#p < 0.05 compared to T0 at the time point (no interaction with study group).
ap < 0.05 compared to T0 in the TCAV group in multiple comparison.
bp < 0.05 compared to T0 in the conventional protective ventilation group in multiple comparison.
cp < 0.05 compared to the TCAV group at this time point in multiple comparison.
TCAV, Time controlled adaptative ventilation; VT, Tidal volume; RR, Respiratory rate; PEEPtot, Positive End Expiratory Pressure total;1PAW , driving pressure, difference in airway pressure
at end-inspiration (plateau pressure) and end-expiration (total PEEP); 1PL, difference in transpulmonary inspiratory pressure at end-inspiration and end-expiration; ElL, lung elastance;
T0, After ARDS induction; T15, 15min after start of study; T60, 60min after start of study; Data are presented as median (25th−75th percentile).

(p = 0.3) and no norepinephrine was infused during the study
period (Table 2).

DISCUSSION

The main result of the present study is that TCAV did not
significantly impact hemodynamics, despite the increase in

intrathoracic pressures. Additionally, TCAV improved the lung
elastance after only 1 h of ventilation.

ARDS Model
Saline lavages followed by 2 h of injurious mechanical ventilation
is a well-established model for inducing ARDS. It provides
a highly reproducible and significant homogenous alteration
of the PaO2/FiO2, ElL, and the dead space volume. ER was
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0.8 after ARDS induction, indicating specific lung involvement
for ElRS alteration without chest wall participation (16).
This method provided a triple-hit lung injury: saline lavages
leads to surfactant depletion, 100% oxygen delivery can lead
to denitrogenation and injurious ventilation provides both
barotrauma and volotrauma (23).

Hemodynamic Assessment of TCAV
In our work, TCAV was not associated with a hemodynamic
impairment compared to standard ventilation. Regarding the
right ventricular function, there were no elements suggestive of
right ventricle failure, as right atrial pressure values remained
low in both groups and the cardiac output was stable during
the study period. Even if higher intrathoracic pressures can
impair hemodynamics, changes in lung physiology can have
beneficial consequences on the right ventricle and thus on
hemodynamics. As pulmonary vascular resistance relates to
lung volume, higher intrathoracic pressures could be in fact
associated with an increase in FRC and thus a reduction
in PVR (24). Sharpey-Shafer et al. reported in 1965 that
a “square wave” response of the arterial pressure to the
Valsalva maneuver was observed in the case of inferior
vena cava (IVC) maximal repletion (25). Conversely, under
hypovolemic conditions, increased mean thoracic pressure could
induce the compressive occlusion of the IVC at its distal
portion, at the junction with the right atrium, and lead to
an acute cardiovascular collapse (26). Sympatho-vagal tone
drives tolerance for acute intra thoracic pressure variation as
it provides immediate inotropic, lusitropic and chronotropic
adaptation (27).

Regarding the LV function, LV+ dP/dtmax and shortened LV
relaxation duration were observed in the conventional protective
group, which can be explained by both higher 1PL in relation
to probable overdistention and more marked sympathetic stress
in this group. In line with the above-mentioned literature, our
results suggest that TCAV might be safe assuming the IVC
repletion. Further studies are needed to assess hemodynamic
safety underlying increased mean thoracic pressures during
prolonged periods of ventilation.

These results are in line with data from an existing animal
sepsis model, with a less robust cardiac assessment, in which
TCAV was safe compared with low tidal volume ventilation, in
terms of CO and MAP. Further studies are needed to evaluate
TCAV in other injury models (28).

Respiratory Assessment of TCAV
The higher mean airway pressure and the lower respiratory rate
observed in the TCAV group compared to the conventional
protective group are explained by a longer I/E ratio, which is
one of the fundamental characteristics of TCAV. Total PEEP
was also higher, in relation with the decrease in 1Paw and
improvement in ElL. Tidal volume delivered in the TCAV group
was closely monitored and averaged 7mL/kg as Tlow was adjusted
to terminate at 75% of PEFR, in order to prevent alveolar collapse
(7). PLEr provides indirect information about overdistension in
the non-dependent lung areas and was lower at T60 in the TCAV
group. TCAV significantly improved 1Paw and EIT regional

compliance at T60. This can be explained by a gain in aerated
lung tissue volume. There were no differences between the two
groups regarding both PaCO2 and pH values. Our results are in
line with the literature, suggesting benefits of TCAV in terms of
lung protective ventilation (12, 29).

Study Limitations
One of the limitations of our study lies in the small sample size
of each study group. The study might have been underpowered
in its attempt to assess a clinically relevant effect of TCAV on
hemodynamics. It is worth mentioning that dorsal decubitus is
poorly tolerated in pigs and involves important modifications in
both “West physiology” and hemodynamics that could mitigate
external validation of the present results. Improvement in
pulmonary elastance in the TCAV group can be in relation
with higher levels of total PEEP and mean airway pressure.
Furthermore, it could be suggestive of alveolar recruitment,
but we did not perform any CT scan in order to verify this
hypothesis, especially with the use of an recruitable ARDS (29,
30). In our work, the right ventricular function was assessed only
with measures obtained with a pulmonary arterial catheter, as
placement of the conductance catheter in the right ventricle and
transthoracic echocardiography in pigs was not feasible in our
study setting. The addition of paralysis may not fully encompass
the hemodynamics associated with either ventilator mode as it
does not incorporate the hemodynamic and respiratory effects of
spontaneous breathing (28). To finish, this study was designed
with only a 1-h ventilation period to observe the safety of
initiation of TCAV on heart-lung interactions, limiting the
evaluation of a longer period of TCAV on lung mechanics (31).

CONCLUSION

In conclusion, no hemodynamic adverse events were observed
with TCAV compared to standard protective ventilation in this
swine ARDS model, as TCAV appeared to be beneficial for the
respiratory system.
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