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Invasive lobular and ductal breast 
carcinoma differ in immune 
response, protein translation 
efficiency and metabolism
Tian Du1,2, Li Zhu3, Kevin M. Levine1,4, Nilgun Tasdemir1,5, Adrian V. Lee1,5, Dario A. A. Vignali6, 
Bennett Van Houten5, George C. Tseng3,7 & Steffi Oesterreich   1,5

Invasive lobular carcinoma (ILC) is the second most common histological subtype of breast cancer 
following invasive ductal carcinoma (IDC). ILC differs from IDC in a number of histological and clinical 
features, such as single strand growth, difficulty in detection, and frequent late recurrences. To 
understand the molecular pathways involved in the clinical characteristics of ILC, we compared the gene 
expression profiles of luminal A ILC and luminal A IDC using data from TCGA and utilized samples from 
METABRIC as a validation data set. Top pathways that were significantly enriched in ILC were related 
to immune response. ILC exhibited a higher activity of almost all types of immune cells based on cell 
type-specific signatures compared to IDC. Conversely, pathways that were less enriched in ILC were 
related to protein translation and metabolism, which we functionally validated in cell lines. The higher 
immune activity uncovered in our study highlights the currently unexplored potential of a response to 
immunotherapy in a subset of patients with ILC. Furthermore, the lower rates of protein translation 
and metabolism - known features of tumor dormancy - may play a role in the late recurrences of ILC and 
lower detection rate in mammography and PET scanning.

Invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) are the two main histological subtypes of 
breast cancer. ILC accounts for 10–15% of all breast cancers1,2 and is characterized by small, round tumor cells 
growing in stroma in a discohesive single-file pattern3. In comparison with IDC, ILC is more difficult to detect 
by standard imaging techniques like mammography and 18F-FDG-PET3–8. In general, ILC is detected in patients 
at an older age and at a more advanced stage than IDC9. Compared to stage/grade-matched IDC, patients with 
ILC display relative late recurrences and worse long-term survival10–13. We and others have described a unique 
metastatic dissemination of ILC, including decreased metastases to visceral organs, and increased metastases to 
ovary, and the gastrointestinal tract3,14–16. While endocrine therapy and chemotherapy are frequently used to treat 
both ILC and IDC, patients with ILC may have lower response rates to neoadjuvant chemotherapy and slightly 
worse outcomes to tamoxifen compared to patients with IDC17–19. Although other novel therapeutic approaches 
such as immunotherapy are proving to be promising in a subset of breast cancers, especially in the triple negative 
subtype20, less data have been reported on the immune response in ILC, likely due to its generally understudied 
nature as a unique breast cancer subtype.

The main differences between the two histological subtypes is the lack of E-cadherin (CDH1) protein expres-
sion in ~90% of ILC1,2,21. ILC more often expresses estrogen receptor (ER) than IDC, with ~90% of ILC being 
ER positive. ILC also has high rates (50–70%) of progesterone receptor (PR)-positivity, but less than 10% express 
epidermal growth factor receptor 2 (HER2/ERBB2)1,2,13,17,21,22. While ILC generally exhibits lower Ki67 positivity 
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than IDC13,17,21, it has a higher frequency of HER2 and HER3 mutations, PIK3CA mutations, FOXA1 muta-
tions, ESR1 amplifications, and PTEN loss1,2. While there has been recent characterization of the differences 
between ILC and IDC at the genomic level1,2,23, differences in gene expression have not been sufficiently studied. 
Previous studies analyzing the transcriptomic profiles of ILC and IDC have been limited by small sample size24–26. 
Although recent large scale analyses by The Cancer Genome Atlas (TCGA)2 and Rational Therapy for Breast 
Cancer (RATHER)27 groups have identified different molecular subtypes within ILC based on mRNA expression 
data, gene expression differences between ILC and IDC remain largely unexplored2,27. Using in silico analyses and 
follow-up cell culture experiments, we show that ILC is characterized by unique immune signatures, decreased 
protein translation rates, and lower overall metabolism. Importantly, our results may help to explain some of the 
unique clinical features of ILC, and to guide further studies aimed at personalizing the diagnosis and treatment of 
this understudied histological subtype of breast cancer.

Results
Immune signatures are enriched in LumA ILC.  To identify differentially expressed (DE) genes between 
IDC and ILC, we extracted publicly available RNA-Sequencing (RNA-Seq) data from The Cancer Genome Atlas 
(TCGA) (IDC: n = 774; ILC: n = 197) database28 and microarray data from the Molecular Taxonomy of Breast 
Cancer International Consortium (METABRIC) (IDC: n = 1548; ILC: n = 147) dataset29. We first assigned each 
sample to one of five intrinsic subtypes by PAM5029 (Supplementary Tables 1 and 2). The distributions of luminal 
A (LumA), luminal B (LumB), Normal-like, basal-like (basal) and HER2-enriched (HER2) molecular subtypes 
among the ILC samples were 81%, 9%, 7%, 1%, and 3% for TCGA tumors, and 40%, 20%, 26%, 3% and 6% for 
METABRIC tumors, respectively. While we don’t fully understand the reason for the difference in distributions 
of molecular subtypes comparing TCGA and METBARIC, it is likely a result of differences in the patient cohorts. 
For example, there are significant differences in stage distribution of the tumors, and age of the patients. In addi-
tion, there are also significant differences in cellularities of the tumors, which could have also affected PAM50 
classifications. Given the small numbers of ILC samples in the Basal and HER2 groups, we limited our following 
expression analysis to the LumA, LumB, and Normal-like subtypes.

We performed DE gene analysis in the TCGA tumors using the DESeq2 algorithm30, which identified 11,611 
and 7,033 genes based on Benjamini-Hochberge adjusted p-value (FDR) cut-offs of 0.05 and 0.001, respectively, 
for LumA tumors (Table 1). Fewer DE genes were identified in LumB and Normal-like tumors. Similar analysis 
of the METABRIC data failed to identify any DE genes in the LumB subtype, and relatively few in Normal-like 
tumors (Table 1), likely due to the small number of samples, and the lower dynamic range of microarray data as 
compared to RNA-Seq31. We therefore restricted our subsequent analyses to LumA tumors.

Upon overlapping DE genes between LumA ILC and LumA IDC (FDR < 0.05) from both datasets (TCGA and 
METABRIC), we identified 853 up-regulated and 602 down-regulated genes (Fig. 1a, Supplementary Table 3). 
Confirming prior studies1,21 and work from the recent TCGA ILC working group2, CDH1 was the strongest 
downregulated gene in ILC as compared to IDC. Additionally, genes involved in extracellular matrix organiza-
tion such as MMP11 and COL11A1 were also expressed at significantly lower levels in ILC. Conversely, GDF9 - a 
TGF-β family member- and genes involved in fatty acid transport (CD36, FABP4) were up-regulated in LumA 
ILC. There was no significant association between the “top fold-change” genes (absolute log2 FC >2 in TCGA, or 
>1 in METABRIC) and survival in patients bearing LumA ILC (Supplementary Table 4).

To identify biological pathways that were significantly activated in LumA ILC compared to LumA IDC, 
we queried the induced DE genes in the MSigDB database32. Nine of the top 15 induced pathways were 
immune-related, including Response to Wounding, BioCarta IL17 Pathway, and BioCarta TCR Pathway 
(Supplementary Fig. S1, Supplementary Table 5). In order to investigate the immune pathway results further, we 
utilized data from a recent analysis of immune cell-type specific signatures across TCGA and the Genotype-Tissue 
Expression (GTEx) Project33. Briefly, Tamborero et al. used a gene set enrichment analysis method (GSVA)34 to 
identify immune cell populations in tumors and normal tissue samples, and then categorized all TCGA tumors 
with an immune phenotype score on a scale from 1–6, with 1 representing the lowest immune infiltrate, and 
6 representing the highest immune infiltrate. We extracted this immune phenotype score for the LumA ILC 
and LumA IDC (Supplementary Fig. S2), and dichotomized those with immune-phenotype 1–3 as low-immune 

Number of differentially expressed (DE) Genes: ILC vs IDC

TCGA METABRIC

PAM50 FDR < 0.05 FDR < 0.001 PAM50 FDR < 0.05 FDR < 0.001

LumA
ILC: N = 159
IDC: N = 311

11611 7033
LumA
ILC: N = 65
IDC: N = 533

2469 0

LumB
ILC: N = 18
IDC: N = 202

1415 110
LumB
ILC: N = 29
IDC: N = 401

0 0

Normal
ILC: N = 13
IDC: N = 18

1604 53
Normal
ILC: N = 38
IDC: N = 120

621 0

Table 1.  Number of differentially expressed genes between ILC and IDC. Number of differentially expressed 
genes with different cutoffs of p-value (0.05 and 0.001) in TCGA and METABRIC. Tumors within different 
breast cancer intrinsic molecular subtypes (PAM50) were analyzed separately.



www.nature.com/scientificreports/

3SCIentIfIC RepOrTs |  (2018) 8:7205  | DOI:10.1038/s41598-018-25357-0

phenotypes and 4–6 as high-immune phenotypes. LumA ILC had a higher proportion of high-immune pheno-
types (Fig. 1b) as compared to LumA IDC (53% vs 27%, Chi-square test p = 6.2e-7).

Analysis of the individual immune cell type signatures (Supplementary Table 6) from Tamborero et al.33, 
Davoli et al.35 and Li et al.36 showed that the majority (9/16, 7/8 and 5/6 respectively) of immune cell types were 
increased in LumA ILC compared with LumA IDC (Supplementary Figs S2, S3). In addition, we observed higher 
expression of CD274 (PD-L1), PDCD1 (PD-1) and CTLA4 (Fig. 1c, Supplementary Table 3), which are the targets 
of FDA approved immune checkpoint inhibitors, and inhibition of these targets are currently being tested in 
breast cancer37,38. Other critical immune checkpoint genes such as BTLA, IDO1, LAG3, TIGIT, HAVCR2 (TIM3) 
and VSIR (VISTA) were also highly expressed in LumA ILC (Supplementary Fig. S4). This was an important 
finding given recent studies showing that the expression levels of such genes are often correlated with the respon-
siveness of tumors to immunotherapies such as checkpoint blockade39–41, a promising line of therapy currently 
unexplored for patients with ILC. Ciriello et al. identified an Immune-related group of LumA ILC with activated 
immune involved pathways as compared to the other two groups (Proliferative, Reactive-like)2. Our data showed 
Immune-related LumA ILC also had the highest proportion of high immune phenotypes (Fig. 1d), which further 
confirmed the existence of a group of high immune tumors within ILC.

Given the unique growth properties of ILC, often growing as single line strands, we reasoned that this finding 
may be a result of the relatively sparse cellularity in ILC21,42. To test this, we compared the tumor purity scores of 
ILC and IDC samples using a Consensus measurement of Purity Estimations (CPE)43 that uses the median value 

Figure 1.  LumA ILC is enriched for immune cell infiltration and high immune-checkpoint gene expression. 
(a) 853 up-regulated genes and 602 down-regulated genes (LumA ILC, n = 159 vs LumA IDC, n = 311, 
FDR < 0.05) in TCGA were validated in METABRIC (marked in red, the direction of the changes for DE genes 
were matched). (b) Proportion of immune phenotypes in LumA ILC (n = 157) and LumA IDC (n = 303). 
Tumors were classified into 6 immune-phenotypes (immune-phenotype 1–6) by Tamborero et al. and those in 
immune-phenotype 1–3 and 4–6 were defined as low immune tumors and high immune tumors, respectively. 
Chi-square test, ***p < 0.0005. (c) Expression of CD274 (PD-L1), PDCD1 (PD-1) and CTLA4 in LumA ILC 
and LumA IDC of different immune phenotypes. High Immune LumA ILC and IDC have similar PDCD1, and 
CTLA4 expression as Basal and HER2 subtypes. Low immune (LumA ILC, n = 77, vs LumA IDC n = 221), high 
immune (LumA ILC, n = 80, vs LumA IDC n = 82), all (LumA ILC, n = 157 vs LumA IDC, n = 303). Two-way 
ANOVA for the effect of histological subtype on immune checkpoint gene expression, *p < 0.05, **p < 0.005, 
***p < 0.0005. The effect of immune phenotype on immune checkpoint gene expression, p < 0.0005 for all 
genes. No significant interaction (p > 0.05) between histology and immune phenotype. (d) Proportion of high 
immune tumors in ILC subtypes (Proliferative n = 18, Reactive-like n = 34, Immune-related n = 40). Chi-square 
test for equality of proportions, ***p < 0.0005.
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of DNA, mRNA, methylation and/or IHC based scores (ESTIMATE, LUMP, ABSOLUTE, IHC). This analysis 
showed that LumA ILC does indeed have lower tumor purity compared to LumA IDC, consistent with previous 
findings21,42 (Fig. 2a). We next compared the immune cell profiles of LumA high immune tumors to normal 
breast tissues to check if the immune gene set differences are due to normal breast contamination. Again using 
the GSVA data for immune cell expression from Tamborero et al.33, we found LumA high immune tumors had 
higher expression of activated dendritic cells (aDC), mast cells, CD56dim natural killer cells (NK dim) and reg-
ulatory T-cells (Treg), and lower expression of effector memory T-cells (Tem) and gamma delta T-cells (Tgd) as 
compared to normal female breast tissues in GTEx (Fig. 2b). The high immune phenotype LumA tumors can be 
well separated from the normal breast tissues based on expression of these 6 immune cell types (Fig. 2c), sug-
gesting the difference between LumA ILC and LumA IDC in immune signatures wasn’t a result of normal breast 
contamination. When comparing immune cell profiles between high immune LumA ILC and IDC, differences in 
CD56bright natural killer cells (NK bright), Tem cells, neutrophils, mast cells, and follicular helper T cells (Tfh) 
remained (Supplementary Figs S2, S3). Thus, ILC have a higher proportion of tumors with a high immune pheno-
type, and in addition, there are some qualitative differences in the types of immune cells that infiltrate the tumors.

To minimize a potential effect of different tumor cellularity on the identification of DE genes, we repeated the 
analysis after CPE correction, and identified 1360 genes differentially expressed in both TCGA and METABRIC 
datasets (Supplementary Fig. S5, Supplementary Table 3). Although some immune genes, like IL7R, and CD36, 
were now excluded from the list of DE genes, overall, the CPE correction resulted in changes in less than 10% of 
the DE genes (Supplementary Fig. S5). Furthermore, the immune pathways including Response to Wounding, 
Immunological Synapse, and BioCarta IL17 Pathway remained the dominant ILC-enriched pathways in the 

Figure 2.  Immune signature difference is not a reflection of normal breast contamination. (a) Tumor purity 
score (CPE) of LumA ILC (n = 157) and LumA IDC (n = 307). Mann-Whitney U test, **p < 0.005. (b) LumA 
high immune tumors (n = 162) have different immune cell profile than normal female breast tissue (n = 90). 
Immune cell types with median GSVA difference >0.2 between normal breast tissue and LumA high immune 
tumors are marked in red: CD56dim Natural Killer cells (NK dim), activated dendritic cells (aDC), effector 
memory T-cells (Tem), gamma delta T-cells (Tgd). (c) Tumors and normal breast can be differentiated based 
on immune cell expression. Tumors/normal breast tissues in heatmap were sorted by sum (Treg+mast_
cell + Nkdim + aDC) – sum(Tem, Tgd).
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MSigDB pathway analysis (Supplementary Fig. S5), further indicating that these results were not a result of lower 
tumor purity. Collectively, the above data suggested higher immune infiltration in ILC compared to IDC.

LumA ILC has lower protein translation efficiency than LumA IDC.  Other pathways that were 
significantly increased in ILC compared to IDC included Reactome Peptide Chain Elongation and Ribosome 
(Supplementary Fig. S5, and Supplementary Table 7), prompting us to investigate whether there are differences 
in the rate of protein synthesis between ILC and IDC. To test this, we first compared the ratios of total RNA to 
total protein in LumA ILC vs LumA IDC by extracting the expression levels of 156 proteins from the TCGA 
RPPA data set (excluding phosphoproteins), and determining correlation with their respective mRNA expres-
sion using a linear regression model. LumA ILC samples showed significantly less steep slopes than LumA IDC, 
reflecting a lower protein/mRNA ratio in LumA ILC (Fig. 3a). Next we applied the same methodology to the 
mass spectrometry data from The Clinical Proteomic Tumor Analysis Consortium (9117 selected proteins, LumA 
ILC n = 8, LumA IDC n = 16)44, which confirmed the lower protein/mRNA ratio in LumA ILC (Supplementary 
Fig. S6). Furthermore, analysis of key regulators of protein translation initiation and elongation also revealed 
lower expression in ILC compared to IDC including eIF4G, phospho-4E-BP1 (Ser65), eEF2, ribosome protein 
S6 (S6), phospho-S6 (Ser235/236, Ser240/244), p70-S6K and phospho-mTOR (Ser2448) (Fig. 3b), in agreement 
with the lower protein translation rates in LumA ILC compared to LumA IDC (Fig. 3c). Therefore, we reason that, 
while expression of critical translation initiation factors is decreased, there is a higher expression of ribosomal 

Figure 3.  LumA ILC has lower protein translation efficiency than LumA IDC. (a) Protein/mRNA ratio 
in LumA ILC (n = 115) and LumA IDC (n = 246). Mann-Whitney U test, *p < 0.05. (b) Protein levels of 
translation regulators in LumA ILC vs LumA IDC. Protein expression data were from TCGA RPPA. Limma 
was used to compare the protein expression of LumA ILC to LumA IDC with CPE correction. Significant DE 
proteins (Benjamini-Hochberg method adjusted p-value < 0.05) were marked in red (up-regulated in LumA 
ILC) or blue (down-regulated in LumA ILC). (c) Regulation network of protein translation regulators in 
Fig. 2b. Modified from65. (d) Protein synthesis rate of ILC and IDC cell lines. O-propargyl-puromycin (OPP) 
labeled the newly synthesized proteins. Fluorescence representing the amount of OPP indicated the protein 
synthesis rate of cells. Cells without OPP labeling or pre-treated with cycloheximide (CHX) to inhibit protein 
synthesis served as negative controls. Representative data of two independent experiments were presented. 
Data are mean ± s.d. of 3 replicates. Two-way ANOVA, ***p < 0.001. (e) Dose response and IC50 of translation 
inhibitors in ILC and IDC cell lines. 4EGI-1 to inhibit the binding of eIF4E and eIF4G, cycloheximide to inhibit 
the tRNA translocation, salubrinal to inhibit eIF-2α were used. Representative data of at least two independent 
experiments were presented. Data in dose response curves are mean ± s.d. of 6 replicates. Data in bar graphs of 
IC50 are mean + upper limit of 95% confidence intervals. Two-tailed t-test was performed to compare the IC50s 
between ILC and IDC cell lines. The p-values for cycloheximide, salubrinal and 4EGI-1 are 0.15, 0.17 and 0.42, 
respectively.
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proteins in LumA ILC, likely as a compensatory mechanism, mimicking what has been recently described in 
melanoma samples with low rates of protein translation45.

To more directly assess the differences in protein translation in ILC and IDC, we measured protein synthesis 
rates in three ILC (MDA-MB-134VI, SUM44PE, and MDA-MB-330) and three IDC (MCF7, T47D, and ZR75.1) 
cell lines. With O-propargyl-puromycin (OPP) - a structural analog of aminoacyl-tRNA - labelling the newly 
synthesized protein, this analysis showed significantly lower protein synthesis rates in the ILC as compared to 
IDC cell lines (Fig. 3d), in agreement with the data from the clinical samples. Finally, we tested the effects of the 
protein translation inhibitors cycloheximide, 4EGI-1 and salubrinal, and detected a trend towards resistance 
to protein translation inhibitors in the ILC lines, especially in MDA-MB-134VI and MDA-MB-330 (Fig. 3e). 
Collectively, these data indicate that protein translation rates are lower in LumA ILC compared to LumA IDC.

LumA ILC is more bioenergetically quiescent than LumA IDC.  The third set of pathways that were 
significantly different between LumA ILC and IDC were related to metabolism, including Carboxylic Acid 
Metabolic Process, Amino Acid Metabolic Process, and Oxidative Phosphorylation (Supplementary Fig. S1). 
These pathways remained significantly lower in ILC after CPE correction (Fig. 4a). To assess potential differences 
in metabolism between ILC and IDC, we measured the basal oxygen consumption rate (OCR) and the basal 
extracellular acidification rate (ECAR) as indicators of the oxidative phosphorylation (OXPHOS) and glycolysis, 
respectively, in cell line models. This analysis revealed that all three ILC cell lines (MDA-MB-134VI, SUM44PE, 
MDA-MB-330) had lower OCR and ECAR rates compared to the IDC cell lines (MCF-7, T47D, and ZR-75.1) 
(Fig. 4b). These findings support in-silico analysis of the TCGA data, suggesting that LumA ILC is characterized 
by lower rates of cellular metabolism.

Discussion
ILC is a histological subtype of breast cancer with unique clinical and molecular features that remains largely 
unexplored. Recent sequencing and molecular profiling studies have begun to uncover biologically important 
pathways mediating the progression of this understudied disease2,27,29. While mutation and copy-number data 
have been used to compare ILC and IDC, and gene expression data has been used to classify ILC into distinct 
molecular subtypes, detailed comparison of ILC and IDC at the mRNA and protein levels has not been addressed. 
Such a transcriptional comparison could be highly informative and uncover novel therapeutic targets, given the 
recent finding that cancer dependencies can be best predicted by RNA expression levels as opposed to DNA 
mutation and copy number46. In this study, we addressed this critical need and uncovered several pathways 
enriched and depleted in ILC versus IDC, which might help explain some clinical features of ILC and also hint at 
novel therapeutic options.

Recently, Fu et al. combined gene expression data from six breast cancer cohorts, and built a 46-gene signature 
to classify ILC and IDC using shrunken centroid and elastic net approaches47. However, the relative high mis-
classification rate (~40%) weakened the robustness of their pathway analysis. Furthermore, the effects of breast 
cancer intrinsic subtypes and differences in tumor purity on gene expression were not taken into account47. In 
contrast, in this study, we limited our analyses to LumA ILC and LumA IDC. In addition, we performed tumor 
purity-corrected DE analysis to reduce potential confounding influence of non-tumor cells within tumors. This is 
critical as ILC is known to have lower levels of tumor cellularity. CPE correction uncovered additional pathways 
such as those related to protein translation. The majority of immune signatures persisted after CPE correction 
indicating the robustness of our differential immune activity finding in LumA ILC vs LumA IDC. A limitation of 
our study is our inability to validate the CPE-corrected TCGA DE genes in the METABRIC data, which lack CPE 
score information. Nevertheless, using both datasets for initial analysis enhanced the strength and stringency of 
our DE gene calling, allowing us to focus on biologically important pathways.

Figure 4.  LumA ILC is more bioenergetically quiescent as compared to LumA IDC. (a) Top 15 inhibited 
pathway in LumA ILC compared to LumA IDC. –log10(0.05) is marked with red line. (b) The basal OXPHOS 
and glycolysis rate of ILC and IDC cell lines. Oxygen consumption rate (OCR) and extracellular acidification 
rate (ECAR), which are indicators of OXPHOS and glycolysis rates respectively were measured with Seahorse 
XFe96 analyzer. Representative data of two independent experiments were presented. Data are mean ± SEM of 3 
repeated measurements. Each measurement measured 6 or 8 biological replicates. Two-way ANOVA, p-values 
for ECAR[p(ECAR)] and OCR[p(OCR)] between ILC and IDC cell lines were calculated independently.
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Immune-related ILC was an ILC subgroup that was identified in the analyses of both the TCGA and RATHER  
consortia. Compared to the two other ILC subtypes (Proliferative, Reactive-like), Immune-related ILC 
in TCGA had higher expression of interleukins, chemokine receptors and ligands, and also increased 
macrophage-associated signaling2. The RATHER consortium showed that chemokines, cytokines and innate 
immune signaling were enriched in their immune-related subtype27. In our analysis, we found that LumA ILC 
had up-regulated immune signatures as compared to LumA IDC. Comparison of immune cell profiles between 
normal breast tissues and LumA ILC/IDC also suggested that the high immune signature in LumA ILC is not 
caused by lower tumor cellularity. However, our analysis of immune signatures is based on the expression of 
immune genes, and caution should be taken when correlating gene expression and actual quantities of immune 
cells. Future studies should apply additional methodologies such as IHC, FACS, or single-cell sequencing to con-
firm and expand our findings, and also to identify which cells are expressing immune-related genes. A recent 
study by Desmedt et al.48,49 showed that on average lymphocytic infiltration was lower in ILC compared to IDC, 
but also supported the idea that there was a subset of ILCs (15%) with high immune infiltration, and that there 
were differences in immune composition.

Immunotherapy and its integration with conventional and novel targeted cancer therapy provide new 
opportunities for breast cancer. The infiltration of lymphocytes has been shown to be a favorable prognostic 
factor and to predict response to neoadjuvant chemotherapy50–52. Currently, studies investigating the associa-
tion between prognosis and lymphocyte infiltration in ILC are very limited. Engels et al. showed that the high 
immune-susceptible group which is characterized by extensive infiltration of CD8+ T cells and NK cells, had 
significantly longer relapse-free period than the low immune-susceptible group in IDC but not in ILC, a result 
that could be attributable to the small sample size of ILC (n = 66) in that study53. Incongruent results were also 
reported for the association between lymphocyte infiltration and survival in ER positive breast cancers54–56. 
Desmedt et al.48 also described limited prognostic value of TIL, but further analyses of spatial distributions of 
immune cells as recently described by Heindl et al.57 is warranted. Furthermore, recent studies indicated that 
cancers with PD-L1 overexpression had better response to anti-PD-1 therapy58. The higher expression of PDCD1 
(PD-1) and CD274 (PD-L1) in LumA ILC suggests that anti-PD-1 therapy may be more effective in LumA ILC 
than LumA IDC. Of note, there is a wide range of expression of many of the checkpoint genes within LumA ILC, 
and further studies are required to understand what differentiates tumors with high vs low PD-1 and PD-L1 
expression.

Gene expression is regulated by transcription, translation, and turnover of protein and mRNA. The lower 
protein/mRNA ratio can be attributed to higher mRNA levels via increased transcription and decreased mRNA 
degradation rates, and/or lower protein levels via decreased translation and increased protein degradation rates. 
Here, we mainly focused on protein translation, as the other processes were not significantly changed based on 
our pathway analysis. It is well known that dysregulation of protein translation is involved in the development and 
progression of various tumor types59–62. In breast cancer, high levels of eIF4E and phosphorylation of 4E-BP1 and 
S6 are correlated with worse survival63–65. Our study demonstrated that LumA ILC has down-regulated protein 
synthesis compared to LumA IDC. In support of this data, ILC cell lines were less responsive to protein synthesis 
inhibitors compared to IDC cell line. These data may prompt retrospective analysis of prior clinical trials using 
inhibitors of protein translation in a histological subtype-dependent manner. In addition, these data support fur-
ther pre-clinical analysis to evaluate whether ILC and IDC differ in response to treatments that target translation 
(e.g. MTOR inhibitors).

Finally, we discovered that multiple metabolism-related pathways including OXPHOS and glycoly-
sis were down-regulated in LumA ILC. Recent studies demonstrated that ILC showed lower uptake of 
18F-Fluorodeoxyglucose than IDC on PET-CT, an indicator of glucose metabolism66–68. Few studies thus far 
have assessed the difference in OXPHOS between ILC and IDC. Kim et al. proposed that many ILCs belonged 
to the mitochondrial metabolic subtype, however, this was based solely on expression of ATP synthase, SDHA 
or SDHB69. Clearly, more studies need to be performed, with an obvious open question being whether the 
observed low bioenergetics is the cause or the result of the lower proliferation rates of ILC7,70. And while a similar 
cause-effect question applies to the observed differences in protein synthesis, it is reasonable to propose that the 
lower overall metabolism, protein synthesis, and cell proliferation are associated with described lower response 
rates to chemotherapy.

The PI3K/AKT/mTOR pathway plays a central role in cell growth, metabolism, and protein translation. 
mTORC1 controls mitochondrial biogenesis and the transcription of genes encoding proteins involved in 
OXPHOS71–73, which is in agreement with our finding of lower mTOR activity and decreased expression of multi-
ple OXPHOS genes in LumA ILC. Another major role of mTOR is to activate translation initiation and elongation 
through the phosphorylation of 4E-BP and S6K160,74, which we also found to be less activated in ILC. The lower 
mTOR activity and signaling is surprising given increased activity of AKT and PI3K in LumA ILC compared to 
LumA IDC2 (Supplementary Table 8), suggesting that ILCs may have distinct mechanisms regulating mTOR 
activity.

ILC exhibits later recurrences than IDC10–13, and has been described to have more micrometastatic disease75. 
While the increased rates of late recurrence may simply be a reflection of the slower proliferation rates, it may 
also be explained by tumor dormancy76, often associated with growth arrest, persistence within the microenvi-
ronment, and therapeutic resistance77. Immune surveillance, microenvironmental milieu including extracellular 
matrix and stromal cells, and angiogenesis are critical for cell to enter and maintain the dormancy state77. The low 
glucose metabolism, and low rates of protein synthesis, coupled with a more active immune response in LumA 
ILC, might create a permissive environment for tumor dormancy, causing late recurrences in some patients.

In conclusion, our analyses revealed that LumA ILC had up-regulated immune response, down-regulated 
protein translation rate, and were more bioenergetically quiescent than LumA IDC. We believe that our findings 
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provide the molecular foundation to further explore several unique clinical characteristics of ILC, ultimately 
leading to improved prevention, diagnosis and treatment of this understudied subtype of breast cancer.

Methods
Cell culture and reagents.  MCF7 and MDA-MB-330 (MM330) (American Type Culture Collection 
[ATCC], Manassas, VA, USA) were cultured in DMEM (11965; Life Technologies, Carlsbad, CA, USA) 
+10%FBS (26140; Life Technologies). T47D (ATCC) and ZR75.1 (ATCC) were cultured in RPMI 1640 (11875; 
Life Technologies) +10%FBS. MDA-MB-134VI (MM134) (ATCC) and SUM44PE (Asterand Bioscience, Detroit, 
MI, USA) were maintained as described previously78. All lines were incubated at 37 °C in 5% CO2.

Cycloheximide (C4859; Sigma-Aldrich, St. Louis, MO, USA), 4EGI-1 (S7369; Selleck Chemicals, Houston, 
TX, USA), and Salubrinal (SC-202332A; Santa Cruz, Dallas, TX, USA) were dissolved in DMSO (4-X; ATCC).

Protein synthesis and cell proliferation assay.  To measure protein synthesis rates, we used a Protein 
Synthesis Assay Kit from Cayman Chemical (Ann Arbor, MI, USA. Cat No. 60110). 50 K/well cells were seeded 
in 96 well plates. Cells were treated with O-propargyl-puromycin (OPP) and cycloheximide following man-
ufacturer’s instructions. Cells were then fixed and stained with 5 FAM-Azide. Fluorescence (excitation/emis-
sion = 485/535 nm) was measured using the VICTOR X4 plate reader (PerkinElmer, Waltham, MA, USA).

Cell proliferation were quantified using the Fluoreporter double-stranded DNA quantification kit (F2692; Life 
Technology) following manufacturer’s instructions.

Analysis of OXPHOS and glycolysis.  Seahorse XF96 Analyzer (Seahorse Bioscience, Billerica, MA, USA) 
was used to analyze the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). 96-well 
Seahorse tissue culturing plates were pre-incubated with Cell-Tak Cell and Tissue Adhesive (354240; Corning, 
Corning, NY, USA). Cells were seeded in unbuffered DMEM media at a density of 80 K per well. Cells were incu-
bated for 1 hour without CO2 at 37 °C. OCR and ECAR rates were measured as previous described by us79,80. The 
basal OCR and ECAR rates were measured 3 times without adding any inhibitors.

Identification of differentially expressed genes.  Gene expression data from The Cancer Genome Atlas 
(TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) were downloaded 
from the Gene expression Omnibus database [GEO: GSE62944] and Synapse software platform (syn1688369; 
Sage Bionetworks, Seattle, WA, USA) respectively.

TCGA tumors were assigned to one of the five intrinsic subtypes based on PAM50 similarly as described in 
Curtis 201229. Briefly, we first created an ER balanced sub-samples by combining all ER- tumors (N = 174) and 
the same number of ER+ tumors randomly drawn from TCGA. Log2 transcripts per million (TPM) of all tumors 
were then median centered by extracting the median calculated from ER balanced sub-samples. Genefu R pack-
age81 was used to assign intrinsic subtypes for all tumors using median centered data. We repeated drawing ER 
balanced samples 100 times, and the most frequently assigned subtypes were use as final subtypes.

Raw gene expression counts from TCGA, and R package DESeq230 was used to analyze differentially expressed 
gene in LumA ILC and LumA IDC. Consensus measurement of Purity Estimations (CPE) developed by Aran et al.43,  
and histology groups were inputted as parameters in the DESeq2 design formula/matrix, called “CPE correction”. 
For CPE uncorrected DE analysis, only histology groups were inputted into DESeq2. In microarray data from 
METABRIC, probes with the highest interquartile range were selected for genes that matched to multiple probes. 
Significance Analysis of Microarrays (SAM) was used to detect the DE genes with METABRIC data. FDR <0.05 
were used to call DE genes, and TCGA DE genes were validated in METABRIC (LumA ILC: n = 65; LumA IDC: 
n = 533) using the same cutoff.

Since the number of TCGA cases decreased slightly (due to unavailability of CPE score for 2 LumA ILC and 
4 LumA IDC), we repeated the DE analysis with altered numbers (LumA ILC: n = 157; LumA IDC: n = 307). 
This analysis confirmed that changes in DE genes and pathways were not caused by change in numbers of tumor 
samples (Supplementary Fig. S5). In figures with the GSVA or immune phenotype data from Tamborero et al. 
(Figs 1b–d, 2b,c, Supplementary Figs S2, S3a, S4), all of their 924 tumors were used (LumA ILC: n = 157; LumA 
IDC: n = 303). All other analyses with TCGA used the complete set of tumors (LumA ILC: n = 159; LumA IDC: 
n = 311).

Reverse phase protein array (RPPA) data of TCGA tumors were downloaded from The Cancer Proteome Atlas 
(Level 4 data, data release version 4.0. MD Anderson Cancer Center, Houston, TX). R package Limma82 was used 
to perform CPE corrected differentially expressed protein analysis with CPE and histology groups (LumA ILC: 
n = 113; LumA IDC: n = 242) as parameters in the design formula/matrix. Full list of differentially expressed 
proteins is available in Supplementary Table 9.

Pathway analysis.  DE genes consistently up- or down-regulated in TCGA and METABRIC were used in 
pathway analyses. 2531 pathways, which were contributed by BioCarta, GO, KEGG, Reactome, containing 5–2000 
genes, were obtained from Molecular Signature Database (MSigDB Version 5.1. Broad Institute, Cambridge, MA, 
USA). Fisher’s exact test was used to determine significantly enriched pathways, using FDR <0.05 as cutoff.

Gene Set Enrichment Analysis (GSEA Version 2.2.2. Broad Institute) was also conducted with full DE gene 
list as a validation. Default settings in GseaPreranked were used except the following parameters: “Enrichment 
statistic” was “Classic”; “Min size: exclude smaller sets” was set to be 0.

Survival analysis in METABRIC.  Survival analysis was performed with METABRIC data on METABRIC 
validated DE genes with absolute log2FoldChange >1 in METABRIC or absolute log2FoldChange >2 in TCGA. 
LumA ILC (n = 65) or LumA IDC (n = 533) tumors were split into two groups by median gene expression of 
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LumA ILC or LumA IDC, respectively. Log-rank test was conducted to compare the survival distribution of the 
two groups. Log-rank p-value was further corrected with Benjamini–Hochberg methods.

Estimation of abundance of immune cell population and classification of immune-phenotypes.  
GSVA scores for each immune cell type signature across TCGA tumors were downloaded from Tamborero et 
al. using their pan-cancer normalization and across GTEx tissues using their pan-site normalization33. Similar 
to their approach, a median GSVA score >0.2 was used as the cutoff for different immune cell abundance 
between two groups. The immune-phenotype classification of LumA tumors was also downloaded directly from 
Tamborero et al.33.

Immune cell signatures defined as recently described in Davoli et al.35 are available in Supplementary Table 6. 
For each gene, the TCGA log2TPM data (without CPE correction) were normalized by mean and standard devi-
ation. The average gene expression of each signature was then calculated in LumA ILC and in LumA IDC.

Protein/mRNA ratio.  Phosphorylated or cleaved proteins representing active but not total protein levels 
were excluded from RPPA, resulting in available expression data for 156 proteins. The mRNA expression levels 
from TCGA (in units of log2TPM) were median centered for each gene, and linear regression was fitted with cor-
responding RPPA protein expression data. Slope of the linear regressions were calculated, representing protein/
mRNA ratios in individual tumors. List of the 156 proteins is available in Supplementary Table 10.

Data availability.  MRNA expression data from TCGA and METABRIC, and RPPA data of TCGA tumors 
are available as indicated above. Other datasets generated and/or analyzed during this study are included in this 
published article and its Supplementary Information files. R codes used in the current study are available from 
the corresponding author on request.
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