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Abstract. The pathogenesis of inf lammatory bowel 
disease (IBD) is believed to be associated with the abnormal 
expression of inflammatory factors. The aryl hydrocarbon 
receptor (AhR) is a ligand‑dependent transcription factor, 
which can suppress the inflammatory response and attenuate 
experimental colitis. However, the detailed mechanism under-
lying the effects of AhR remains unclear. The present study 
investigated the role of AhR in the pathogenesis of IBD. Colitis 
was induced in mice by administration of 3% dextran sulphate 
sodium (DSS) for 7 days. The mice were also administered 
injections of the AhR agonist, 6‑formylindolo(3,2‑b)carba-
zole (FICZ), starting 2 days after the first administration of DSS. 
Furthermore, LoVo cells were treated with lipopolysaccharide 
(LPS) in the presence or absence of FICZ for 8 h. The protein 
expression levels of AhR, cytochrome P450 1A1 (CYP1A1) 
and tristetraprolin (TTP) were assessed by western blotting 
and immunofluorescence, whereas mRNA expression levels 
were assessed by reverse transcription‑quantitative poly-
merase chain reaction. The results indicated that injection of 
mice with FICZ significantly attenuated DSS‑induced colitis; 
in addition, the expression levels of inflammatory cytokines 
were markedly downregulated. Conversely, the expression 
levels of AhR and TTP were upregulated. In addition, mice in 
the AhR‑knockout + DSS group exhibited elevated inflamma-
tory cytokine production and developed more severe colitis. 
In LoVo cells, incubation with FICZ decreased the expression 
levels of inflammatory cytokines, whereas AhR and TTP 
expression was increased. In addition, the levels of phosphor-
ylated‑mitogen‑activated protein kinase‑activated protein 
kinase 2 (p‑MK2) were decreased. These results suggested 
that AhR deficiency resulted in increased susceptibility to 
colitis, whereas activation of AhR by FICZ could ameliorate 
DSS‑induced colitis via the MK2/p‑MK2/TTP pathway.

Introduction

The pathogenesis of inflammatory bowel disease (IBD) in 
humans remains incompletely understood; however, consider-
able evidence indicates that IBD results from an interaction 
between genetic, immune and environmental factors  (1,2). 
IBD, including ulcerative colitis (UC) and Crohn's disease 
(CD), is a prominent intestinal disease. The pathogenesis of 
IBD is predominantly associated with intestinal immunodefi-
ciency; this dysregulated immune response results in chronic 
gut inflammation and the presence of activated immune cells, 
which produce copious amounts of interferon (IFN)‑γ, tumor 
necrosis factor (TNF)‑α, interleukin (IL)‑2 and IL‑17, thereby 
promoting the production of large amounts of inflammatory 
cytokines, and reactive oxygen and nitrogen metabolites, which 
ultimately lead to organ damage (3‑5). Consistent with these 
findings, restoration of the balance between inflammatory and 
anti‑inflammatory factors has reported as a useful treatment 
strategy, which has been successfully tested in patients with 
IBD and in experimental animal models of colitis (6‑9).

Previous studies have reported that the aryl hydro-
carbon receptor (AhR) is a transcription factor, which 
serves a protective role in IBD (10‑12). AhR is extensively 
expressed in vertebrate cells and is a member of the basic 
helix‑loop‑helix/Per‑Arnt‑Sim homology superfamily  (13). 
In the cytosol, AhR is present in an inactive form that binds 
to numerous co‑chaperones (14). Following ligand binding, 
AhR dissociates from its chaperones and dimerises with AhR 
nuclear translocator (ARNT). The AhR/ARNT complex then 
activates the transcription of target genes, including cyto-
chrome P450 1A1 (CYP1A1) (15). AhR has also been revealed 
to be indirectly activated by endogenous AhR ligands, 
including 6‑formylindolo(3,2‑b)carbazole (FICZ) (16). FICZ 
may activate AhR and significantly inhibit the inflammatory 
response (17). A previous study in AhR‑knockout (KO) mice 
illustrated the role of AhR in the function and development of 
various organs; skin defects and a spectrum of hepatic abnor-
malities, as well as haematopoietic and vascular abnormalities, 
were observed in AhR‑KO mice (18). Therefore, reduced AhR 
expression may lead to immunodeficiency and cause the 
immune system to secrete a mass of inflammatory factors. 
Although numerous studies have demonstrated a role for AhR 
in the inhibition of inflammation, the detailed underlying 
mechanism remains unclear.
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It has previously been reported that treatment of tristetrap-
rolin (TTP)‑KO mice with dextran sulphate sodium (DSS) leads 
to increased susceptibility to colitis, decreased colon length 
and increased production of proinflammatory cytokines (19). 
These findings suggest that TTP deficiency may result in a 
defect in the resolution of intestinal inflammation and in exac-
erbated IBD symptoms. TTP is the prototypic member of the 
TIS11 family of RNA‑binding proteins, which has an important 
role in regulating the expression of adenylate-uridylate‑rich 
element (ARE)‑containing mRNAs  (20). RNA‑binding 
proteins, including TTP and human antigen R (HuR), recog-
nise and bind to AREs in the 3'‑untranslated regions (3'‑UTRs) 
of their target mRNAs (20,21). Binding of TTP to its target 
mRNAs promotes the degradation of numerous inflamma-
tory factors, including TNF‑α, IFN‑γ, IL‑1β, IL‑6, IL‑8 and 
cyclooxygenase (COX)‑2  (22‑24). Furthermore, TTP‑KO 
mice display severe autoimmune dysfunction, inflammatory 
arthritis and ulcerative colitis, thus suggesting that TTP has 
an important role in limiting the inflammatory response (25).

A previous study indicated that the expression of TTP is 
downregulated in AhR-/- cells (26). Furthermore, AhR is able 
to suppress the expression of COX‑2, which is mediated by 
HuR, another RNA‑binding protein from the same family as 
TTP (27). Based on the results of previous studies, the present 
study hypothesised that AhR may exert protective effects against 
experimental colitis through the regulation of TTP expression.

Materials and methods

Materials. FICZ was purchased from Enzo Life Sciences, 
Inc. (Farmingdale, NY, USA). Lipopolysaccharide (LPS) was 
purchased from Sigma‑Aldrich (Merck KGaA, Darmstadt, 
Germany). Foetal bovine serum (FBS) and Dulbecco's 
modified Eagle's medium (DMEM) were purchased from 
HyClone (GE Healthcare Life Sciences, Logan, UT, USA). 
Antibodies against AhR (cat.  no.  ab2770) were purchased 
from Abcam, Inc. (Cambridge, MA, USA). Antibodies against 
CYP1A1 (cat. no. 13241-1-AP) and mitogen‑activated protein 
kinase‑activated protein kinase 2 (MK2; cat. no. 13949‑1‑AP) 
were purchased from Wuhan Sanying Biotechnology (Wuhan, 
China). Antibodies against TTP (cat.  no.  sc-14030) were 
purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX, 
USA). Antibodies against phosphorylated (p)‑MK2 were 
purchased from Cell Signalling Technology, Inc. (Danvers, 
MA, USA). Antibodies against GAPDH (cat. no. 10494-1-AP) 
were purchased from Wuhan Sanying Biotechnology. Goat 
anti-mouse (cat. no. A0216) and goat anti-rabbit (cat. no. A0208) 
horseradish peroxidase (HRP)-conjugated secondary anti-
bodies, Cy3-conjugated goat anti-mouse immunoglobulin (Ig)G 
(cat. no. P0193) and fluorescein isothiocyanate-conjugated goat 
anti-rabbit IgG (cat. no. P0186) were purchased from Beyotime 
Institute of Biotechnology (Shanghai, China). All primers used 
in the present study were synthesised by Invitrogen (Thermo 
Fisher Scientific, Inc., Waltham, MA, USA).

Cell cultures. LoVo human intestinal epithelial cells were 
purchased from the American Type Culture Collection 
(Manassas, VA, USA) and maintained in DMEM supplemented 
with 15% FBS, 100 U/ml streptomycin and 100 U/ml penicillin 
at 37˚C in a 5% CO2 atmosphere. The medium was refreshed 

every 2 days. The cells were subcultured successively when they 
reached ~80% confluence.

Cell treatments. Cells were grown in 6‑well plates and were 
incubated with LPS (10 µg/ml) and/or FICZ (100 nM) for 
8 h at 37˚C. Immunofluorescence and western blotting were 
used to detect target protein expression, and reverse transcrip-
tion‑quantitative polymerase chain reaction (RT‑qPCR) was 
used to determine mRNA expression.

Small interfering (si)RNA transfection. For transient knock-
down of AhR expression, cells were grown in DMEM with no 
antibiotics until they reached 80‑100% confluence. Transient 
transfection was performed using Lipofectamine®  2000 
(Invitrogen; Thermo Fisher Scientific, Inc.) according to the 
manufacturer's protocol. After a 48‑h transfection period, the 
cells were harvested. The sequences of the AhR‑targeting 
siRNA were: Sense, 5'‑GGAACACCUACAUCUAGAAdTdT‑3' 
and antisense, 3'‑dTdT CCUUGUGGAUGUAGAUCUU‑5'. 
The sequences of the negative control siRNA were: Sense, 
5'-GGGCAAAUCCCAAGAGGAAdTdT-3' and antisense, 
3'-dTdT CCCGUUUAGGGUUCUCCUU-5'.

DSS‑induced colitis. The present study was approved by the 
Laboratory Animal Welfare and Ethic Committee of the Third 
Military Medical University (Chongqing, China). Male C57BL/6J 
wild-type mice (n=60; age, 6-8 weeks; weight, 18-22 g) and male 
C57BL/6J AhR‑KO mice (n=15; age, 6‑8 weeks; weight, 18-22 g) 
were purchased from the Experimental Animal Center at Daping 
Hospital of the Third Military Medical University (Chongqing, 
China). Animals were bred and maintained under specific 
pathogen‑free conditions in a temperature‑controlled room 
(20±2˚C) with circadian light‑dark cycles and free access to stan-
dard rodent chow and water. Mice were randomly divided into the 
following three groups: Sham (n=10), DSS (n=10), DSS + FICZ 
(n=10) group. Colitis was induced by administration of 3% DSS 
(Sigma‑Aldrich, Inc.; Merck KGaA) dissolved in distilled water 
for 7 days. Mice in Sham group were administered distilled 
water. In addition, FICZ (1 µg/mouse) was administered daily, by 
intraperitoneal injection, beginning 2 days after the start of DSS 
administration. Changes in body weight were recorded daily. 
Following DSS administration for 7 days, the mice were sacrificed 
and intestinal mucosa samples were collected for histology, and 
the determination of target mRNA and protein expression levels.

Histological examination. Colon segments were washed three 
times in PBS and were fixed in 4% paraformaldehyde over-
night at 4˚C. Ethanol was used to dehydrate the tissues, which 
were embedded in paraffin. The resulting tissue sections (4‑µm 
thick) were stained with haematoxylin for 5 min and eosin 
for 3 min at room temperature. The sections were observed 
using a confocal microscope (LSM 5 PASCAL; Carl Zeiss, 
Oberkochen, Germany). 

Immunofluorescence staining. Cells were fixed with 4% parafor-
maldehyde for 15 min at room temperature, and permeabilized 
with 0.2% Triton X-100 for 10 min at room temperature. Cells were 
then blocked in 5% bovine serum albumin (BSA) (Sigma‑Aldrich, 
Inc.; Merck KGaA) for 2 h at 37˚C and incubated with mouse 
monoclonal anti‑AhR (1:50) and rabbit polyclonal anti‑TTP 
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(1:20) antibodies overnight at 4˚C. Subsequently, Cy3‑conjugated 
goat anti‑mouse immunoglobulin (Ig)G (1:200) and fluorescein 
isothiocyanate‑conjugated goat anti‑rabbit IgG (1:200) were used 
to stain the cells and sections, respectively. Finally, 1 mg/ml DAPI 
(Invitrogen; Thermo Fisher Scientific, Inc.) was used to stain the 
nuclei for total cell counting. The fluorescent signals were anal-
ysed by confocal laser scanning microscopy (Leica LAS AF Lite, 
version 2.8.0; Leica, Wetzlar, Germany), after the recording and 
merging of single‑stained images.

RNA purification and RT‑qPCR. Total RNA from intestinal 
mucosa and LoVo cells was extracted using TRIzol reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.) according to the 
manufacturer's protocol. Spectrophotometry was used to 
determine the concentration of total RNA. For RT‑qPCR, 1 µg 
total RNA was converted to cDNA using a RT kit (Takara Bio, 
Inc., Otsu, Japan) in a 20 µl volume according to the following 
temperature protocol: 37˚C for 15 min, 85˚C for 5 sec, followed 
by 5 min at 4˚C. Subsequently, SYBR‑Green‑based qPCR was 
used to measure the mRNA expression levels of CYP1A1, TTP, 
IFN‑γ, TNF‑α, IL‑1β, IL‑6, β‑actin and GAPDH. The average 
quantification cycle (Cq) value of triplicate wells with each 
primer set was calculated as the amount of gene product present 
in the sample. The relative mRNA expression levels were deter-
mined according to the ratio between the Cq value of the target 
gene and β‑actin or GAPDH (28). The cycling conditions were as 
following: 94˚C for 10 min, 40 cycles at 94˚C for 30 sec, 60˚C for 
1 min and 68˚C for 30 sec, followed by 7 min at 68˚C. The primer 
sequences were designed using online tools (https://www.ncbi.
nlm.nih.gov/tools/primer-blast/) and are presented in Table I.

Western blot analysis. LoVo cells were washed three 
times with PBS and were lysed in cell lysis buffer (Intron 
Biotechnology, Inc., Seongnam, Korea) for 20 min on ice. The 
lysed cells were then centrifuged at 12,000 x g for 10 min at 4˚C, 
and the supernatant was collected. The proteins were extracted 

from the intestinal mucosa using lysis buffer, followed by 
homogenization through sonication and the extraction mixture 
was centrifuged at 12,000 x g for 15 min at 4˚C. The protein 
concentrations were measured using a bicinchoninic acid assay 
kit (Beyotime Institute of Biotechnology). Protein samples 
(25 µg) were separated by 10% SDS-PAGE and the proteins were 
transferred to polyvinylidene fluoride membranes (Amersham; 
GE Healthcare, Chicago, IL, USA). The membranes were blocked 
in TBS containing 0.05% Tween‑20 (TBS‑T) and 5% bovine 
serum albumin (BSA; Sigma-Aldrich, Inc.; Merck KGaA) for 
2 h at 37˚C and were then incubated with the following primary 
antibodies diluted in TBS‑T containing 5% BSA overnight at 
4˚C: Mouse anti‑AhR (1:500), rabbit anti‑CYP1A1 (1:1,000), 
rabbit anti‑TTP (1:200), rabbit anti‑MK2 (1:1,000), rabbit 
anti‑p‑MK2 (1:1,000) and rabbit anti‑GAPDH (1:1,000). The 
membranes were washed three times in TBS‑T, and were then 
incubated with goat anti‑mouse and goat anti‑rabbit horseradish 
peroxidase (HRP)‑conjugated secondary antibodies (1:5,000), 
after which they were washed a further three times in TBS‑T. 
Enhanced chemiluminescence (Millipore, Billerica, MA, USA) 
was used to detect the binding of HRP‑conjugated antibodies 
according to the manufacturer's protocol.

Statistical analysis. Data are expressed as the mean ± standard 
deviation. Differences among groups were assessed by analysis 
of variance using SPSS statistical software package (version 13.0; 
SPSS Inc., Chicago, IL, USA). The groups were compared using 
one-way analysis of variance (ANOVA) and Q-test. Comparisons 
between groups were conducted using paired t-tests. P≤0.05 was 
considered to indicate a statistically significant difference.

Results

AhR deficiency results in increased colitis severity. Initially, 
the present study observed that administration of DSS produces 
more severe colitis in AhR‑KO mice compared with in C57BL/6J 

Table I. Sequences of primers used in reverse transcription‑quantitative polymerase chain reaction experiments.

Species	G ene name	 Forward (5'-3')	 Reverse (5'-3')

Human
	 IL‑1β	 CTTCGACACATGGGATAACG	 ATATCCTGTCCCTGGAGGTG
	 IL‑6	G ACAGCCACTCACCTCTTCA	 CCTCTTTGCTGCTTTCACAC
	 CYP1A1	 CCATGTCGGCCACGGAGTT	 ACAGTGCCAGGTGCGGCTT   
	 TTP	 TTTAAGGGAGGCAATGAACC	 CAGGAGACACTGGAACCTCA
	 β‑actin	 CCACGAAACTACCTTCAACTCC	 CGTGATCTCCTTCTGCATCCTG
Mouse
	 IL‑1β	G AAATGCCACCTTTTGACAGTG	 TGGATGCTCTCATCAGGACAG
	 IL‑6	 CTTCCAGCCAGTTGCCTTCTTG	GG TCTGTTGTGGGTGGTATCCTC
	 IFN‑γ	G CCACGGCACAGTCATTGA	 TGCTGATGGCCTGATTGTCTT
	 TNF‑α	 CCACCACGCTCTTCTGTCTACTG	GGG CTACGGGCTTGTCACTC
	 CYP1A1	 CAATGAGTTTGGGGAGGTTACTG	 CCCTTCTCAAATGTCCTGTAGTG
	 TTP	 CTCGGAGGACTTTGGAACAT	 TGCAGTAGGCGAAGTAGGTG 
	G APDH	 TGAAGGTCGGTGTGAACGGATTTGG	 ACGACATACTCAGCACCAGCATCAC

CYP1A1, cytochrome P450 1A1; IFN‑γ, interferon‑γ; IL, interleukin; TNF‑α, tumour necrosis factor‑α; TTP, tristetraprolin.



WANG et al:  Aryl Hydrocarbon Receptor alleviates DSS-induced colitis 871

wild‑type (WT) mice, as evidenced by histological examination 
of colonic tissue (Fig. 1A). Furthermore, mice in the AhR‑KO 
group produced more inflammatory factors compared with those 
in the DSS‑treated WT group. The mRNA expression levels of 
IL‑1β, IL‑6, IFN‑γ and TNF‑α were significantly increased in 
the AhR‑KO + DSS group compared with in the DSS‑treated 
WT group (Fig. 1B). These findings suggested that a deficiency 
in AhR may be associated with DSS‑induced colitis.

AhR activation ameliorates DSS‑induced colitis. To investigate 
whether AhR activation could attenuate experimental colitis, mice 
were administered FICZ for 5 days, beginning 2 days after the 
start of DSS administration (Fig. 2). DSS‑treated mice exhibited 
significant weight loss 3‑4 days after DSS treatment (Fig. 2B). On 
day 8, mortality rate in the DSS group was ~30% (Fig. 2C). In addi-
tion, colon length was decreased in DSS‑treated mice (Fig. 2A). 
Conversely, DSS + FICZ‑treated mice exhibited reduced weight 
loss and mortality (~16.67%), and colon length was increased 
compared with in the DSS‑treated mice (Fig. 2A‑C). In addition, 

histological examination of colonic tissues from mice in the 
various groups revealed that mice treated with FICZ developed 
less severe colitis (Fig. 2E). The expression levels of IL‑1β, IL‑6, 
IFN‑γ and TNF‑α were significantly increased in colon samples 
from mice in the DSS‑induced colitis group compared with in 
the vehicle‑treated group (Fig. 2D). However, in mice treated 
with FICZ the mRNA expression levels of IFN‑γ, IL‑1β, IL‑6 
and TNF‑α were significantly reduced (Fig. 2D). These findings 
suggested that administration of FICZ may attenuate inflamma-
tion associated with DSS‑induced colitis in mice, and that AhR 
has an important role in this attenuation.

FICZ upregulates expression of the RNA‑binding protein TTP 
in mice with DSS‑induced colitis. Recent studies have reported 
that TTP serves an important role in limiting inflammatory 
responses  (29,30). In addition, treatment of TTP‑KO mice 
with DSS results in increased susceptibility to colitis (19). 
Furthermore, it has been demonstrated that TTP expression 
is decreased in AhR-/- cells (26). To explore whether TTP has 

Figure 1. AhR deficiency results in increased colitis severity. AhR‑KO mice and C57BL/6J WT mice were treated with 3% DSS for 7 days. (A) Representative 
haematoxylin and eosin‑stained colonic sections from DSS‑treated C57BL/6J and AhR‑KO mice (magnification, x100). (B) mRNA expression levels of IL‑1β, 
IL‑6, IFN‑γ and TNF‑α in colonic samples from mice treated as indicated in (A). mRNA expression was analysed by quantitative polymerase chain reaction. 
Data are presented as the mean ± standard deviation of three experiments, in which samples from 3 mice/group were analysed. *P<0.05. AhR, aryl hydrocarbon 
receptor; DSS, dextran sulphate sodium; IFN-γ, interferon‑γ; IL, interleukin; KO, knockout; TNF‑α, tumour necrosis factor‑α; WT, wild‑type.
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a role in alleviating DSS‑induced colitis, and to determine 
the association between TTP and AhR in this process, the 
expression levels of TTP were detected. The results indicated 
that the expression levels of AhR, CYP1A1 and TTP were 
downregulated in AhR‑KO mice (Fig. 3A and B). Similarly, 
the expression levels of AhR and TTP were significantly 
decreased in mice with DSS‑induced colitis (Fig. 3C and D).

The present study demonstrated that TTP expression was 
downregulated in AhR‑KO mice. Therefore, in order to explore 
whether activation of AhR could upregulate the expression of 
TTP, mice were intraperitoneally injected with FICZ daily, begin-
ning 2 days after the start of DSS administration. The expression 
levels of AhR, CYP1A1 and TTP were significantly increased 
following administration of FICZ to mice with DSS‑induced 
colitis (Fig. 3C and D). Increased AhR, CYP1A1 and TTP expres-
sion was confirmed by western blotting (Fig. 3D). Furthermore, 

alterations in mRNA expression levels, as quantified by RT‑qPCR, 
correlated with these protein alterations (Fig. 3C).

FICZ upregulates the RNA‑binding protein TTP expression in 
an in vitro model. To further investigate the role of AhR and 
TTP in an in vitro model, LoVo human intestinal epithelial cells 
were treated with LPS (10 µg/ml) in the presence or absence of 
FICZ (100 nM) for 8 h. The results demonstrated that IL‑1β and 
IL‑6 were significantly increased following treatment of the cells 
with LPS. However, the mRNA expression levels of IL‑1β and 
IL‑6 were significantly downregulated in the LPS + FICZ group 
compared with in the LPS group (Fig. 4A). This finding suggested 
that FICZ may inhibit LPS‑induced inflammation in an in vitro 
model. Subsequently, the present study aimed to determine 
whether FICZ modulates the RNA‑binding protein TTP. As illus-
trated in Fig. 4B and C, the protein and mRNA expression levels 

Figure 2. AhR activation ameliorates DSS‑induced colitis. (A) FICZ was intraperitoneally administered to mice for 5 days, beginning 2 days after the start 
of DSS administration. Colon lengths of mice in the sham, DSS and DSS + FICZ groups were measured on day 8. Data are presented as the mean ± standard 
deviation of five experiments in which samples from 10 mice/group were analysed. (B) Changes in body weight were recorded daily. Weight data are presented 
as the cumulative mean ± standard deviation obtained from five separate experiments. In each experiment, each group consisted of ≥10 mice. (C) Percentage 
of mortality in the sham, DSS and DSS + FICZ groups was noted on day 8. Data are presented as the mean ± standard deviation. (D) mRNA expression levels 
of IL‑1β, IL‑6, IFN‑γ and TNF‑α in colonic samples from mice treated as indicated in (A). mRNA expression was analysed by quantitative polymerase chain 
reaction. Data are presented as the mean ± standard deviation of five experiments in which samples from 10 mice/group were analysed. (E) Representative 
haematoxylin and eosin‑stained colonic sections of mice in the sham, DSS and DSS + FICZ groups on day 8 (magnification, x100). *P<0.05 (n=10/group). AhR, 
aryl hydrocarbon receptor; DSS, dextran sulphate sodium; FICZ, 6‑formylindolo(3,2‑b)carbazole; IFN-γ, interferon‑γ; IL, interleukin; KO, knockout; TNF‑α, 
tumour necrosis factor‑α; WT, wild‑type.
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of TTP were significantly increased in the LPS + FICZ group 
compared with in the LPS group. These results are in accor-
dance with those obtained in the animal model. Unexpectedly, 
the protein expression levels of AhR were decreased following 
treatment with FICZ. This may be due to AhR degradation 
following FICZ treatment (31,32). Immunofluorescence staining 
revealed that confluent LoVo cells treated with LPS and FICZ 
displayed an increased intensity of TTP staining compared with 
the LPS‑treated group. In addition, the intensity of AhR staining 
was decreased in the LPS and FICZ‑treated groups compared to 
the LPS-treated groups (Fig. 4D).

AhR regulates TTP expression through the MK2/p‑MK2 
pathway. In order to explore the mechanism through which 
AhR regulates TTP, AhR expression was silenced in LoVo 
cells, after which the cells were treated with LPS and FICZ 
for 8 h. As expected, the protein expression levels of AhR 
and TTP were decreased in cells in which AhR expression 
was silenced (Fig. 5A). Concurrently, TTP expression in AhR 
siRNA‑transfected cells treated with LPS and FICZ was lower 
than that in normal cells treated with LPS and FICZ (Fig. 5B). 
These findings indicated that FICZ may upregulate TTP via 
AhR. In addition, LoVo cells were treated with LPS and FICZ, 

Figure 3. FICZ upregulates expression of the RNA‑binding protein TTP in mice with DSS‑induced colitis. (A) mRNA expression levels of CYP1A1 and TTP in 
colonic samples of WT and aryl hydrocarbon receptor (AhR) KO mice were determined by RT‑qPCR. (B) Protein expression levels of AhR, CYP1A1 and TTP 
in colonic samples from WT and AhR‑KO mice, as detected by western blotting. (C) FICZ was intraperitoneally administered to mice for 5 days, beginning 
2 days after the start of DSS administration. The mRNA expression levels of CYP1A1 and TTP in colonic samples from the sham, DSS and DSS + FICZ 
groups were determined by RT‑qPCR. (D) Mice were treated as indicated in (C), and the protein expression levels of AhR, CYP1A1 and TTP from colonic 
samples was detected by western blotting. Data are presented as the mean ± standard deviation of five experiments in which samples from 10 mice/group were 
analysed. *P<0.05. AhR, aryl hydrocarbon receptor; CYP1A1, cytochrome P450 1A1; DSS, dextran sulphate sodium; FICZ, 6‑formylindolo(3,2‑b)carbazole; 
KO, knockout; RT‑qPCR, reverse transcription‑quantitative polymerase chain reaction; TTP, tristetraprolin; WT, wild‑type.
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and the expression levels of MK2 and p‑MK2 were measured, 
which are the classical upstream kinases of the TTP pathway, 
in order to determine whether AhR mediates TTP expression 
through the MK2/p‑MK2 pathway. Notably, MK2 expression 
was not significantly altered; however, p‑MK2 expression was 
reduced in the LPS + FICZ‑treated group compared with in 
the LPS‑treated group (Fig. 5C). Consistent with the expected 
results, these findings indicated that AhR may mediate TTP 
expression via the MK2/p‑MK2 pathway. It should be noted that 
after AhR expression was silenced, MK2 expression was still not 
significantly altered; however, FICZ no longer downregulated 
p‑MK2 expression in the LPS + FICZ‑treated group (Fig. 5D). 
These findings suggested that AhR may serve a key role in the 
FICZ‑mediated downregulation of p‑MK2 expression.

Discussion

The present study demonstrated that mice deficient in AhR 
displayed increased susceptibility to colitis, and indicated that 
activation of AhR by FICZ could ameliorate DSS‑induced colitis. 
In addition, AhR could inhibit the inflammation that occurs in 
DSS‑induced colitis via the MK2/p‑MK2/TTP pathway.

It has previously been reported that AhR serves an impor-
tant role in IBD. AhR can inhibit inflammation and colitis in 
mice via the upregulation of IL‑22 (11), and AhR activation 
significantly inhibited the production of IL‑1β, IL‑6 and TNF‑α 
in LPS‑treated dendritic cells (17), and attenuated LPS‑induced 
inflammatory responses in SW480 human colon carcinoma 
cells (10). Furthermore, AhR can be activated by 2,3,7,8‑tetra-
chlorodibenzo‑p‑dioxin and attenuates inflammation associated 
with CD (33). In addition, β‑naphthoflavone, a nontoxic agonist 
of AhR, has been reported to suppress the pathogenesis of 
DSS‑induced colitis and attenuate DSS‑induced colitis (10). 
These findings suggested that AhR expression in intestinal 
epithelial cells is involved in the prevention of colitis.

The present study examined the expression and functional 
role of AhR in a mouse model of DSS‑induced colitis. The 
results indicated that DSS induces more severe colitis in 
AhR‑KO mice compared with in wild‑type mice. This finding 
suggested that a deficiency in AhR may result in a decrease 
in resistance to inflammation. In addition, the present study 
assessed whether activation of AhR by FICZ could attenuate 
DSS‑induced colitis. Treatment of mice with FICZ for 5 days, 
starting 2 days after the initiation of DSS administration, 

Figure 4. FICZ upregulates the RNA‑binding protein TTP expression in an in vitro model. (A‑D) LoVo human intestinal epithelial cells were treated with 
or without LPS (10 µg/ml) and FICZ (100 nM) for 8 h. The mRNA expression levels of (A) IL‑1β, IL‑6, (C) CYP1A1 and TTP were determined by reverse 
transcription‑quantitative polymerase chain reaction. (B) Protein expression levels of AhR, CYP1A1 and TTP were semi‑quantified by western blotting. 
(D) Immunofluorescence was used to detect AhR and TTP expression. Red and green signals represent AhR and TTP, respectively (magnification, x100) 
Data are presented as the mean ± standard deviation. *P<0.05. AhR, aryl hydrocarbon receptor; CYP1A1, cytochrome P450 1A1; FICZ, 6‑formylindolo(3,2‑b)
carbazole; IL, interleukin; TTP, tristetraprolin.
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significantly inhibited the expression of inflammatory factors. 
Based on these findings, it may be suggested that AhR activa-
tion attenuates DSS‑induced colitis.

The main aetiology of IBD is thought to be associated with 
disordered immune function, in which the organism releases a 
mass of inflammatory factors, resulting in an imbalance between 
pro‑ and anti‑inflammatory factors, which in turn disrupts intes-
tinal barrier function. In recent years, the mechanisms through 
which factors that mediate the stability of mRNAs coding 
inflammatory factors exert their anti‑inflammatory effects 
have attracted more attention. RNA‑binding proteins, which 
may bind to AREs located in the 3'‑UTRs of target mRNAs 
and direct them to exosomes for rapid degradation (34,35), 
can reduce the expression of various inflammatory factors. 
RNA‑binding proteins, including TTP and HuR, are found 
in numerous protein families. It has previously been reported 
that TTP‑KO mice display more severe autoimmune dysfunc-
tion, inflammatory arthritis and UC compared with their WT 
counterparts (20). Furthermore, in AhR-/- cells, the expression of 
TTP is downregulated (26). AhR also inhibits inflammation via 
the downregulation of another RNA‑binding protein, HuR (27). 
These findings suggested that AhR activation may regulate 
activity of the RNA‑binding protein TTP.

The present study assessed whether AhR could regulate 
TTP expression in the gut and investigated the role of TTP 
in IBD. Initially, the results demonstrated that TTP expres-
sion was decreased in DSS‑treated mice compared with in 
vehicle‑treated animals. In addition, consistent with results 
reported in the literature (26), the expression levels of AhR and 
TTP were downregulated in AhR‑KO mice. When DSS‑treated 
mice were treated with FICZ, TTP expression was upregulated. 
These findings suggested that TTP expression may be associ-
ated with IBD and that FICZ, which activates the AhR pathway, 
may exert its anti‑inflammatory effects by upregulating the 
RNA‑binding protein TTP.

Although AhR mediates the expression of TTP, the 
mechanism underlying this effect remains unknown. It has 
been suggested that phosphorylation of MK2, which occurs 
upstream of TTP, modulates the activity and expression of 
TTP. MK2 can phosphorylate the TTP protein (36.37). In addi-
tion, the stability, expression and function of TTP are reported 
to be regulated by the MK2/p‑MK2 pathway  (36,38,39). 
Activation of the MK2/p‑MK2 pathway has been reported to 
abolish TTP‑mediated suppression of IL‑6 3'‑UTR reporter 
activity (40). In addition, it has been demonstrated that the 
MK2/p‑MK2 cascade is involved in regulating the stability 
of ARE‑containing mRNAs (41). Recent studies have clearly 
indicated that the MK2/p‑MK2 signalling cascade can regu-
late TTP‑mediated mRNA stability of IL‑6 and TNF‑α (42).

In the present study, following treatment with FICZ, MK2 
expression was not significantly altered; however, the expres-
sion of p‑MK2 was downregulated. Conversely, when AhR 
expression was silenced, FICZ no longer downregulated p‑MK2 
expression. These findings suggested that FICZ upregulates the 
expression of TTP by downregulating p‑MK2 expression.

In conclusion, the present study demonstrated that AhR 
serves an important role in attenuating DSS‑induced colitis. 
AhR‑mediated protection operates in part by inducing TTP 
via the MK2/p‑MK2 pathway. The present study is the first, 
to the best of our knowledge, to demonstrate a dependence 
on TTP for AhR‑mediated protection against DSS‑induced 
colitis. Since AhR may serve important roles in protection 
against DSS‑induced colitis, the AhR‑TTP pathway may be 
considered an attractive candidate for the treatment of UC.
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