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Abstract: Most cellular functions involve proteins’ features based on their physical interactions
with other partner proteins. Sketching a map of protein–protein interactions (PPIs) is therefore
an important inception step towards understanding the basics of cell functions. Several experimental
techniques operating in vivo or in vitro have made significant contributions to screening a large
number of protein interaction partners, especially high-throughput experimental methods. However,
computational approaches for PPI predication supported by rapid accumulation of data generated
from experimental techniques, 3D structure definitions, and genome sequencing have boosted
the map sketching of PPIs. In this review, we shed light on in silico PPI prediction methods that
integrate evidence from multiple sources, including evolutionary relationship, function annotation,
sequence/structure features, network topology and text mining. These methods are developed for
integration of multi-dimensional evidence, for designing the strategies to predict novel interactions,
and for making the results consistent with the increase of prediction coverage and accuracy.
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1. Introduction

Proteins perform their complicated functions by physically interacting with other proteins.
Sketching a map of protein–protein interactions (PPI) is a significant topic of system biology and
an important step towards understanding protein functions and cellular behaviors [1]. Different
experimental techniques (in vivo or in vitro) have made significant efforts to study the constant nature
of protein interaction sites and screen a large number of protein interaction partners (Figure 1),
such as two-hybrid (Y2H) screens, Tandem affinity purification mass spectroscopy (TAP-MS), protein
microarrays, mating-based split-ubiquitin system (mbSUS), pulldown assays, dual polarization
interferometry (DPI), NMR-based method for mapping the structural interactions (STINT-NMR),
bioluminescence resonance energy transfer (BRET), fluorescence resonance energy transfer (FRET),
atomic force microscopy (AFM), surface plasmon resonance (SPR), protein complex immune
precipitation (Co-IP) [2–5], and so on. Among these experimental techniques, some high-throughput
methods such as Y2H, TAP-MS, protein chips, etc. have been comprehensively applied to detect
a protein’s binary interactions and to generate many genome-scale protein interaction networks in
model organisms such as Homo sapiens [6], Drosophila melanogaster [7], Saccharomyces cerevisiae [8],
and Caenorhabditis elegans [9]. However, genome-scale experiments are costly and labor-intensive,
and have inherent biases and limited coverage. Limitations of equipment resolution and environmental
disturbances during operations (such as purification, capture, equilibrium, signal label and imaging)
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could inevitably lead to errors and biases in experimental techniques [5,10]. Moreover, the potential
of protein interactions within an organism is enormous; for example, total interactions of human
PPIs are estimated to be over 650,000 [11]. As far as we know, experimental findings are often
incomplete even for well-studied model organisms, not to mention other species. Therefore,
the verification of a universal PPI network is a great challenge to laboratory work and necessitates
more revolutionary technologies.
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Bioinformatics techniques of PPI prediction strengthen and flourish the study of protein
interactions (Figure 1). Bioinformatics approaches consider the term of “protein–protein interactions”
as the associations between proteins that include relationship aspects of evolution, function and
structure. These techniques overcome the limitations of experimental techniques, are beneficial to
complete the missing pieces of experimental PPI data and help in discovering the clues of PPI
mechanisms in silico. Up until now, several computational methods have been successfully applied to
predict protein interactions in multiple perspectives: phylogenetic profile [12], protein sequence [13],
domain–domain interaction (DDI) [14], coexpression [15], ortholog [16], etc. These methods are mainly
focused on individual (or homogeneous) evidence for prediction and have certain specificities as
well as biases [1,17]. An alternative strategy is the integration of evidence sources in a statistical
learning framework. Combining evidence exhibits the strength of machine learning and data mining
to overcome the limitations of independent predictions and make the results consistent with the
increase of prediction coverage and accuracy [1,18–23]. Such methods of PPI prediction are referred as
“prediction of protein–protein interactions by evidence-combining methods”.

In this review, the workflows for prediction pair-wise PPIs by combined evidence from studies
building PPI networks on the genome scale level are presented and discussed. The presented
workflows mainly consist of three basic steps: (1) Defining gold standard datasets/training datasets of
interacting and non-interacting protein pairs; (2) Characterizing the interactions by annotating gold
standard datasets with diverse and carefully chosen evidence; this is an encoding process to turn
protein interaction features into machine-readable rules; (3) Determining the probability of particular
interactions by individual evidence, and thus combining the probabilities (or encoded vector) of all
evidences to uncover the novel subset of the interactome.
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2. Defining Gold Standard Datasets

Units of gold standard datasets are usually constructed for training or testing of PPI prediction.
Datasets for training and testing units are generally independent. The quality and reliability of gold
standard datasets for training affect the performance of different machine learning methods [17].

The gold standard positive (GSP) datasets are basically PPIs with high experimental confidence
or reference evidence. Some of the datasets are available in public databases, such as: the Biological
General Repository for Interaction Datasets (BioGRID) [24], the IntAct molecular interaction database
(IntAct) [25], Search Tool for the Retrieval of Interacting Genes (STRING) [26], Agile Protein
Interactomes DataServer (APID) [27], the Database of Interacting Proteins (DIP) [28], HitPredict [29],
the Molecular INTeraction database (MINT) [30], the Arabidopsis Information Resource (TAIR) [31],
the Human Protein Reference Database (HPRD) [32], Protein Interaction Network Analysis (PINA)
platform [33] and the High-quality INTeractomes database (HINT) [34]. These repositories of protein
complexes and interactions are varied in size and species-specificity, and they contain information from
experimental and computational sources with or without manual validation (Table 1). For these reasons,
it is advised to choose high-quality positive datasets from multiple (times or methods) independent
assays (usually high-throughput methods that consider the coverage and biases of different assays) [1]
or from text mining of published literature with careful evaluation [2]. The gold standard datasets
are always focused on reference datasets that source from model organisms (Figure 2) with advanced
accuracy and coverage. This repository is very helpful for seeking out general clues of PPI mechanisms
in silico, and supporting studies which lack the existing data of a targeted organism [1,16,35]. However,
it is also a double-edged sword that inevitably leads to errors and biases by over-fitting of specific data
in the minority organisms.
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Table 1. Interaction databases for construction of gold standard (until September 2016).

Name Description Points/Edges C E L O Last Update Ref. I Ref. II

BioGrid 3.4 An interaction repository with data compiled
through comprehensive curation efforts. 65,099/836,212 N P P 61 September 2016 http://thebiogrid.org/ [24]

IntAct 4.2.5
Provides a strong, freely available, open source
database system and analysis tools for molecular
interaction data.

93,856/653,104 N P P 8 September 2016 http://www.ebi.ac.uk/intact/ [25]

PDB A database containing experimentally determined
three-dimensional structures of proteins. 126,079/NA N P P NA September 2016 http://www.wwpdb.org/ [36]

STRING A database including protein interactions containing
both physical and functional associations.

9.6 million/
184 million P P P 2031 September 2016 http://string-db.org/ [26]

APID

Based on known experimentally validated PPIs and
integrated interactomes with a methodological
approach to report quality levels and coverage over
the proteomes.

90,379/678,441 N P P 25 June 2016 http://bioinfow.dep.usal.es/apid/ [27]

DIP A database combining experimental PPI information
from a variety of sources. 28,764/81,627 N P P 826 Febrary 2014 http://dip.doe-mbi.ucla.edu/dip/ [28]

HitPredict 4 A resource of experimentally determined PPI with
reliability scores. 70,808/398,696 N P N 105 September 2015 http://hintdb.hgc.jp/htp/ [29]

MINT
Focuses on experimentally verified protein−protein
interactions mined from the scientific literature by
expert curators.

25,530/125,464 N P P 611 September 2013 http://mint.bio.uniroma2.it/mint/ [30]

TAIR-nbrowse Provide Arabidopsis PPI data curated from the
literature by TAIR curators. 2452/8626 N P P 1 September 2011 http://www.arabidopsis.org/tools/

nbrowse.jsp [31]

HPRD Release 9 A centralized platform to integrate interaction
networks of human protein. 30,047/41,327 N P N 1 April 2010 http://hprd.org/ [32]

PINA2.0
An integrated platform for protein interaction
network construction, filtering, analysis,
visualization and management.

12,969/365,930 N P N 7 May 2014 http://cbg.garvan.unsw.edu.au/pina/ [33]

Negatome 2.0 *
A collection containing experimentally supported
non-interacting protein pairs and domain pairs which
are unlikely engaged in direct physical interactions.

3376/6532 N P P NA 2014 http://mips.helmholtz-muenchen.de/
proj/ppi/negatome/ [37]

Points/Edges, number of interactors (proteins)/number of interactions; C, computationally supported; E, experimentally supported; L, Literature curated; O, number of organisms;
Ref., reference resources; N, negative PPIs contained; P, positive PPIs contained; *, negative datasets of PPIs; NA, Not Available.

http://thebiogrid.org/
http://www.ebi.ac.uk/intact/
http://www.wwpdb.org/
http://string-db.org/
http://bioinfow.dep.usal.es/apid/
http://dip.doe-mbi.ucla.edu/dip/
http://hintdb.hgc.jp/htp/
http://mint.bio.uniroma2.it/mint/
http://www.arabidopsis.org/tools/nbrowse.jsp
http://www.arabidopsis.org/tools/nbrowse.jsp
http://hprd.org/
http://cbg.garvan.unsw.edu.au/pina/
http://mips.helmholtz-muenchen.de/proj/ppi/negatome/
http://mips.helmholtz-muenchen.de/proj/ppi/negatome/


Int. J. Mol. Sci. 2016, 17, 1946 5 of 18

Gold standard negative (GSN) datasets generally cannot be obtained by direct experimental
measures. There is a Negatome database (2.0) [37] which provides a collection of protein and domain
pairs unlikely to be engaged in direct physical interactions (supported by text mining and 3D structure
of protein complexes) (Table 1). Unfortunately, due to the limited data (about 6000 pairs at present),
this non-interacting dataset could not satisfy the diverse GSP datasets of different users. There are
some reported methods for extracting negative datasets, such as: (1) Negative datasets are constructed
by using random pairs which exclude the experimentally detected interactions [1], and as there
are discordant numbers between high-confidence interactions and random pairs, the scale and
structure of networks should be balanced between negative and positive datasets. This method may
include undetected PPIs; (2) Negative examples are chosen based on the categories of their distinct
functions, such as sub-cellular localization (can be accessed by tools such as LOCATE [38], PSORTdb
3.0 [39], LocDB [40]) and annotations (such as KEGG pathways, gene ontology (GO), and Enzyme
Commission (EC)) [22,41]. However, these methods can also lead to biases due to varying definitions
of categories [42]; (3) Another alternative approach is based on topological policy: choose pairs of
separated proteins in existing PPI networks to represent non-interactions: defining negative samples as
the protein pairs with the shortest path lengths exceed the median shortest paths in a GSP network [43],
or further construct a GSN network based on the principle of keeping the composition and degree of
a node identical to the GSP network [20]. The negative samples, however, still contain biases if the
referential networks are partial [17].

3. Annotate Protein Pairs with Diverse Evidence

The characterization of existing interactions is usually processed to explore the crucial role of
protein interactions. Interactions can convert proteins/polypeptides into transient or permanent
complexes and the binding is determined by different elements such as cell physiology (function
switches, regulation status, etc.), biochemistry environment (ions, dipoles, Van der Waals forces,
etc.) and shape of the binding surface (3D structure, folding elements, amino acid composition, etc.),
which are further involved in the fields of functional genomes, dynamics, kinetics, mechanics etc. [3,4,44].
Experiments for detecting PPIs in vivo and in vitro are aimed at capturing and displaying the specific
nature of protein interactions under a certain condition. However, the strategies of prediction of
PPIs in silico are devoted to extracting machine-learned PPI rules (usually unintelligible to humans)
from interaction-related features and are used to predict unexploited PPIs. Evidence for machine
learning includes physical features (such as calculated statistics of hydrophobicity, hydrophilicity,
polarizability, etc.) and non-physical features (such as gene coexpression, sequence similarity, function
annotation enrichment, etc.). Each feature provides a different angle to view protein interactions and
has the potential for uncovering a novel subset of the whole interactome. For this reason, during the
workflow of PPI prediction, protein pairs are generally annotated by different parameters (individual
or co-occurring parameters) taken from diverse sources of evidence, such as evolutionary relationship,
functional annotation, sequence/structure features, network topology and text mining (Table 2).

Table 2. Annotated protein pairs with diverse evidence.

Categories Feature Abbreviation Ref.

EVO

Gene Fusion Event FE [21,22,45–48]
Gene Cluster GCL [21]

Gene Neighborhood GN [21,22,45,47]
Pylogenetic Profile PP [16,21,22,45–47,49,50]

FF

GO Cellular Component COM [1,16,22,45,46,50–52]
Coessentiality ESS [45,50]

Gene/Protein Coexpression Exp [1,16,18,22,45–47,50,52–54]
GO Molecular Function FUN [1,16,22,45,46,48,50,52]

Colocalization Loc [47,53,54]
Ortholog/ Sequence Similar ORT [1,18,22,35,45,50–56]
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Table 2. Cont.

Categories Feature Abbreviation Ref.

FF
GO Biological Process PRO [1,16,18,22,45–48,50–52]

Coregulation/Transcriptional Regulation Reg [45]

TOP
Graphical Invariants GI [57]

Probabilistic Graphical Model PGM [57]
Small-World Clustering Coefficients SCC [20,58]

SEQ

Conjoint Triad COT [35,58,59]
N-grams NGR [60,61]

ORF Codon Usage ORF [62]
Position-Specific Scoring Matrix PSSM [63–65]

2D Structure 2DS [20]

STR

3D Structure 3DS [46,66,67]
Average of the Cumulative Hydropathy Indices ACH [63,65]

Domain–Domain Interaction DDI [1,16,18,22,35,45–48,54]
DSSP Structure in PDB DSSP [20]

Electrostatics ELE [68]
Protein Fold Fold [47]

Generalized Born GB [68]
High Quality AA Indices HQI [20]

Predicted Accessibility pA [64]
Physico-Chemical Properties PHC [20,57,66,67]

PSIPRED Structure PSIP [1,20]
Posttranslational Modifications PTM [1,54,68]
Relative Solvent Accessibility RSA [56,63,65]

Surface Area SA [68]
Van Der Waals Forces VDW [68]

TM Literature-Curated LC [69]

Categories: Evolutionary relationship (EVO), Functional features (FF), Network topological (TOP), Sequence-based
signatures (SEQ), Structure-based signatures (STR), Text mining (TM). The definitions of abbreviations are based
on references and customizations.

Evolutionary Relationship: Methods based on evolutionary information use genomic context
of organisms to infer functional associations between proteins, including gene neighborhood [70],
gene fusion [71] and phylogenetic profiles [12]. (1) The basic hypothesis of the gene neighborhood
method is that if neighbor associations of multiple genes are conservative across genomes, it infers that
those genes/proteins may have function association which implies interactions; (2) Gene fusion events
are also called the “Rosetta stone” method. It is based on the hypothesis that the homology of two
interactive proteins/domains in one species may fuse into a single protein in another species. Generally,
organisms’ sequences are compared to detect the Rosetta stone (domains) fusion events in selected
organisms. The fusion phenomenon indicates the functional association and possibility of forming
a protein complex; (3) Phylogenetic profile hypothesized that functionally linked proteins tended to
coexist during evolution, and the two proteins with similar profiles (inherited together) in different
species might have interactions or functional linkages. Sequence comparisons between genomes are
used to construct phylogenetic profiles (A protein/domain is represented as an N-dimensional vector:
N, number of genomes; Value = 1 or 0, presence or absence of protein/domain in an organism) and
evaluate protein pairs by measuring distance.

Ortholog: If a pair of proteins has high similarity to the sequences of another pair of genes or
proteins with known interaction in other species (orthologous proteins), they are supposed to have
similar functions which infers the relationship of interactions. This approach usually uses sequence
alignment algorithms to define the similarity of full sequences or residues, which is regarded as
an index to predict interactions between proteins [1,50,51].

Gene Function Annotations: This method is based on the hypothesis that two proteins functioning
in the same biological process should be more likely to interact with each other than those two proteins
not sharing the same biological process. Information of biological function is accessible from some
hierarchically structured annotation systems, such as GO, KEGG, EC and MapMan (usually used for
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plants) [72], which provide information of colocalization and participation in a shared cellular process
implicit to PPIs.

Coexpression: It is generally acknowledged that a pair of interacting proteins has relative gene
expression, although the gene coexpression methods are an indirect way to infer the protein interaction
(some results indicated that there is no straight correlation between gene expression profiles and
PPI associations under some conditions [73]). However, gene co-expression contains information of
transcription and regulation, and can be utilized to validate PPIs by calculating correlation coefficient
of transcriptome data including RNA sequencing, DNA microarrays, expressed sequence tag (EST),
etc. [1]. In addition, by applying the clustering algorithms or analyzing topological structure of
coexpression network [73], cluster modules can help to reveal functional relationships and predict PPIs.

Sequence-Based Code Signatures: Some studies implement the natural language processing
(NLP) technique to encode sequences for perdition of PPIs. The language of protein sequences is
translated into sequence-based signatures and mapped into high-dimensional vectors by using the
occurrence frequencies of each kind of building block [74]. Different signatures are wildly used,
including N-grams, ORF codon, Conjoint Triad, etc. The “N-grams” (natural language processing
term refers to N consecutive symbols) are sets of all possible subsequences of amino acids in protein
sequences (N-grams: N = 3, total number = 8000 (203)) [60,61]. ORF codon uses 64-dimensional vectors
to represent a given open reading frame (ORF) instead of an amino acid [62].

The Conjoint Triad Method (also called Shen’s method) [75] is one of the popular codon usage
methods of sequence-based PPI prediction. It encodes each protein sequence as a feature vector
by observing frequency of amino acid (AA) triads as follows (Figure 3): (1) It encodes/classifies
20 amino acids into seven classes based on their dipoles’ strength and volume of the side chains;
(2) A protein sequence is resolved into a series of AA triads (three continuous AAs as a unit); (3) It
uses 343 (73)-dimensional vectors to represent a given protein, and each element of this vector is the
frequency of an AA triad; (4) The PPI pair is represented by concatenating the individual two vectors
of corresponding proteins. It is noticed that, if we do not process the AA cluster step (in step 1), protein
pairs will be required to get encoded as a 16,000-dimensional vector (203 × 2, as N-grams method),
which is too large for most classifiers. The rule of seven classes for 20 AAs is effective and convenient to
operate, and is developed as a classical method that has been widely applied in interaction prediction
and interaction site prediction based on sequences [58].

Sequence-Based Structure Signatures: Structure and chemical properties of a protein sequence
can be translated into structure signatures to represent characteristics of a residue interface.
These signatures include: (1) Physicochemical properties of amino acids, such as hydrophobicity,
hydrophilicity, polarizability, solvent-accessible surface area (SASA), relative surface accessibilities
(RSA) of residues, side chain net charge index (NCI), charge, isoelectric point, etc.; (2) Signatures of
protein structure, such as 3D structure indexes in PDB, protein fold alpha helices, beta sheets and
coils, posttranslational modifications (PTMs), and domains [1,76]. These signatures are available
from different tools, including NACCESS program [77], DSSP algorithm in PDB [78], PSIPRED [1],
AA index [79], etc.

Domain methods aim to establish protein relationships by domain−domain interactions (DDIs),
which are applied widely in sequence-based PPI prediction [35,45–48] As the domains are conserved,
distinct, compact structural units in proteins, the computational insights into detailed knowledge
about a protein pair’s interaction can be typically simplified as domain associations. Information
of protein domains can be accessed at Pfam [80], Conserved Domain Database (CDD) [81], etc.
Large-scale inference of DDIs can be processed by analyzing the domain composition of a protein
pair in a high-quality PPI network and then using specific classifiers to identify domains (or domain
combinations) responsible for protein interactions (Figure 4). Moreover, some prediction work of DDIs
complements other evidence. For example, the DOMINE database [46,82] integrates other evidence
for DDI inferences, such as phylogenetic profile, gene fusion, GO, etc.
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Figure 4. Two methods to predict domain−domain interactions (DDIs) from PPIs. Proteins A and
B are a pair of proteins in a PPI network. Protein A contains domains a and b, whereas protein B
contains domains c, d and e. PPI is interpreted as the result of interactions among multiple domain
pairs. (A) A method that considers a domain pair as basic unit of protein interactions; (B) Another
method that proposes a domain combination pair as a basic unit for the prediction model [83].
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Network Topology: Network topological parameters are generally calculated from positive
datasets. They characterize the topological properties of currently available protein interaction
networks to evaluate target protein pairs. Graph-theoretic invariants include weighted domination
number, average eccentricity number, the eccentricity, circumference, weighted peripheral number,
clustering coefficient of a protein pair, etc. [57].

Text Mining: Protein–protein interactions can also be predicted using text mining (TM).
TM technology could explore protein interactions from full-length papers through titles, abstracts,
paragraphs, diagram texts and find co-occurrence of statistical significance between text corpuses [84].
Some methods present grammatical structures as networks considering properties of semantic notion
and analyses with kernel-based methods (mostly an SVM) [69]. Other studies reassemble text corpus to
integrate PPI-related information such as phosphorylation, domain interactions, and homology [85,86].
Literature curation is managed by many accessible protein databases such as Yeast Proteome Database
(YPD) [87], Database of Interacting Proteins (DIP) [88], BioGRID and HPRD. In addition, there are
some TM-based methods/tools that provide multiple-perspective evidence for PPI extraction, such
as BioRAT (Biological Research Assistant for Text mining) [89], eFIP (Extracting Functional Impact
of Phosphorylation) [85], FACTA (Finding Associated Concepts with Text Analysis) [90] and Hit
Predict [86].

4. Strategy for Integrative Analysis

Studies in this category make use of a classification algorithm to integrate interaction-related
features. With these available physical and non-physical features, classifiers are trained to distinguish
between positive and negative examples. It is a challenge to integrate evidence variants in confidence
and coverage to increase PPI prediction coverage and accuracy. The common process of PPI prediction
by evidence-combining methods includes several steps.

Step 1: Choose appropriate evidence. Evidence must be carefully chosen with content specialized
for each different network. Moreover, the following issue must be taken into consideration: Is this
evidence a discovery of a global PPI in an unexploited species, or is it a meticulous digging of
interaction sites in model species? It should be noted that there is a widespread misconception that
“more evidence yields better results”. In a prediction process, blindly incorporating multiple sources
of evidence could influence the results and yield other biases [42].

Step 2: Encode protein pairs with evidence. The common encoding process transforms individual
or homogeneous evidence into a feature vector representing each pair of proteins. The goal is to
convert them to solve the problem of binary classification. These features may represent a particular
source of information such as correlations of gene expression, phylogenetic profiles, sequence-based
signatures, GO functional annotation and chemical properties. There are many modes to encode
evidence sources into a featured vector, to choose statistical standard and data dimensions, and to
check the normalization affect or the reliability of different computational predictions [22,45].

Step 3: Different strategies are adopted to merge classifiers into integrative datasets. Some studies
use uniform evidence with a similarly encoded rule in one step. Some studies first train datasets with
multiple independent evidence and then cross-validate and integrate multiple independent sets of
training results to reduce potential bias. Others use single training or integrating probability score to
uncover a novel subset of the whole interactome. Many classifiers have been introduced to predict
PPIs including, Artificial Neural Network (ANN), Decision Tree (DT), K-Nearest Neighbor (KNN),
Logistic Regression (LR), Naive Bayes (NB), Random Forest (RF), Support Vector Machine (SVM), etc.
(Table 3).

However, studies of PPIs are diverse in target species, data sources, demand of accuracy and
coverage, which are various in details and processes. In this paper, we are focused on introducing
several independent strategies for integrative analysis. Some related studies are listed in Table 3.
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Table 3. Some studies or online tools of PPI prediction by evidence-combining methods (until September 2016).

Class Description Classifiers Evidence Organisms Ref. (URL) (Last Update) (Points/Edges)

DDI
iPfam: catalogs of protein family interactions,

including domain and ligand interactions,
calculated from known structures

NA PHC, 3DS NA [66] (http://ipfam.org/) (June 2013) (>9500/15,500)

DDI
3did: database of three-dimensional interacting
domains is a collection of DDIs in proteins for
which high-resolution known 3D structures

NA PHC, 3DS NA [67] (http://3did.irbbarcelona.org/)
(June 2016) (648/9952)

DDI DOMINE is a database of known and predicted DDIs POI Exp, PP, FE, FUN, PRO,
COM, DDI, 3DS NA [46,82] (http://domine.utdallas.edu/cgi-bin/Domine)

(September 2010) (5410/26,219)

DDI Combine protein interaction datasets from multiple
species to construct DDIs NB, EC FUN, PRO, GF, DDI, etc. 4 (Hs, Dm, Sc, Ce) [48] NA

PPI Predicting PPIs in Arabidopsis thaliana EC ORT, COM, PRO 1 (At) [51] NA

PPI CitrusNet: sweet orange PPI network KNN DDI, ORT, COT 1 (Cs) [35] (http://citrus.hzau.edu.cn/orange/ppi/index.php)
(June 2013) (8,195/124,491)

PPI A predicted interactome for Arabidopsis. EC Exp, ORT, Loc 1 (At) [53] NA

PPI PRIN: a predicted rice interactome network EC FUN, PRO,
COM, Exp, ORT 1 (Os) [52] (http://bis.zju.edu.cn/prin/)

(2010) (5049/76,585)

PPI TSEMA: predicts the interaction between
two families of proteins based on Monte Carlo approach MC PP NA [49] (http://tsema.bioinfo.cnio.es/)

PPI Predicting PPI using graph invariants
and a neural network NN PGM, GI, PHC NA [57] NA

PPI IID: integrated interactions database providing
tissue-specific PPIs for model organisms EC Exp, ORT, etc. 6 (Sc, Ce, Dm, Mm, Hs, Rn) [1] (http://dcv.uhnres.utoronto.ca/iid/)

(March 2016) (NA/1,741,568)

PPI FpClass: interactions and properties
of human proteins

association
analysis

DDI, FUN, PRO, COM,
PTM, Exp, ORT, PSIP 1 (Hs) [1] (http://ophid.utoronto.ca/fpclass/)

(NA) (10,531/250,498)

PPI PAIR: the predicted Arabidopsis interactome resource SVM PP, PRO, FUN,
COM, Exp, DDI 1 (At) [16] (http://www.cls.zju.edu.cn/pair/)

PPI SPPS: sequence-based protein partners search SVM COT 5 (Sc, Ce, Dm, Ec, Hs) [59]

(http://mdl.shsmu.edu.cn/SPPS/)
(November 2011) (Hs = 23,719/39,191;

Mm = 16,542/1225; Ce = 5348/4973;
Dm = 8921/22,482; Sc = 16,506/25,064)

PPI PIPs: human PPI prediction database NB Exp, ORT, DDI, Loc, PTM 5 (Sc, Ce, Dm, Ec, Hs) [54] (http://www.compbio.dundee.ac.uk/www-pips/)
(September 2008) (NA/79441)

http://ipfam.org/
http://3did.irbbarcelona.org/
http://domine.utdallas.edu/cgi-bin/Domine
http://citrus.hzau.edu.cn/orange/ppi/index.php
http://bis.zju.edu.cn/prin/
http://tsema.bioinfo.cnio.es/
http://dcv.uhnres.utoronto.ca/iid/
http://ophid.utoronto.ca/fpclass/
http://www.cls.zju.edu.cn/pair/
http://mdl.shsmu.edu.cn/SPPS/
http://www.compbio.dundee.ac.uk/www-pips/
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Table 3. Cont.

Class Description Classifiers Evidence Organisms Ref. (URL) (Last Update) (Points/Edges)

PPI Six classifiers and different
biological data were used to predict interactions

RF, kRF, NB,
DT, LR, SVM

Exp, FUN, PRO, COM,
ESS, Reg, FE, GN, PP,

ORT, DDI, etc.
NA [45] NA

PPI SSWRF: an ensemble of SVM and SWRF method SVM, SWRF PSSM, ACH, RSA NA [65] NA

PPI Sequence-based approach is developed
by combining MCD and SVM methods MCD, SVM COT, SeqS 1 (Sc) [58] NA

PPI PrePPI: predicts PPI using both structural and
nonstructural information LR ORT, FUN, PRO, COM,

ESS, Exp, PP, etc. 2 (Sc, Hs) [50,91] (http://bhapp.c2b2.columbia.edu/PrePPI/)
(August 2011) (Sc = NA/31,402; Hs = NA/317,813)

PPI MLPPI: multi-level machine learning
prediction of PPI in yeast SVM 2DS&PHC (PSIP, DSSP,

HQI), SEQ, etc. 1(Sc) [20] (http://zubekj.github.io/mlppi/) (NA) (NA)

PPI Probabilistic model of the human PPI network NB PRO, Exp, ORT, DDI 1 (Hs) [18] NA

PPI Characterization and prediction of PPI in the yeast LR DDI, Fold, FE, PP, GN,
Loc, PRO, Exp 1 (Sc) [47] NA

PPI InPrePPI method: an integrated method for
prediction of PPI AC GCL, PP, FE, GN 1 (Ec) [21] (http://inpreppi.biosino.org/InPrePPI/index.jsp)

(NA) (6,429/17,855)

PPI Global genome-scale PPI network in Arabidopsis thaliana. NB ORT, FE, GN, PP, FUN,
PRO, COM, Exp, DDI 1 (At) [22] NA

PPIS LORIS method: sequence-based
L1-logreg classifier proposed to identify PPIS L1-logreg PSSM, ACH, RSA NA [63] NA

PPIS Struct2Net, iWRAP & Coev2Net PGM, LR, etc. ORT 3 (Hs, Sc, Dm) [55] (http://groups.csail.mit.edu/cb/struct2net/webserver)
(2012) (NA)

PPIS PRISM2: protein interactions by structural matching EC RSA, ORT NA [56] (http://cosbi.ku.edu.tr/prism/) (NA) (NA)

PPIS MIEC-SVM: structure-based method for
predicting protein recognition specificity SVM VDW, ELE,

GB, SA, PTM, etc. NA [68] (http://wanglab.ucsd.edu/MIEC-SVM/) (NA) (NA)

PPIS PSIVER method NB, KDE PSSM, pA NA [64] NA

Points/Edges, number of interactors (proteins or domains)/number of interactions; Ref., reference resources; NA, Not Available; URL, Uniform Resource Locator (some sites are
currently under maintenance); DDI, Domain–Domain Interaction; PPI, Protein–Protein Interaction; PPIS, Protein–Protein Interaction Site. Classifiers: AC, Integrated Value of
the Accuracy and Coverage; ANN, Artificial Neural Network; DT, Decision Tree; EC, Evidence Counting; KDE, Kernel Density Estimation; KNN, K-nearest Neighbor; kRF, RF
similarity-based k-Nearest-Neighbor; L1-logreg, L1-regularized Logistic Regression; LR, Logistic Regression; MC, Monte Carlo; MCD, Multi-scale Continuous and Discontinuous
Sequence Representation Approach; NB, Naive Bayes; PGM, Probabilistic Graphical Model; POI, Prediction Overlap Index; RF, Random Forest; SVM, Support Vector Machine; SWRF,
Sample-weighted Random Forest. Organisms: At, Arabidopsis thaliana; Ce, Caenorhabditiselegans; Cs, Citrus sinensis; Dm, Drosophila melanogaster; Ec, Escherichia coli; Hs, Homo sapiens; Mm,
Musmusculus; Os, Oryza sativa; Rn, Rattusnorvegicus; Sc, Saccharomyces cerevisiae.

http://bhapp.c2b2.columbia.edu/PrePPI/
http://zubekj.github.io/mlppi/
http://inpreppi.biosino.org/InPrePPI/index.jsp
http://groups.csail.mit.edu/cb/struct2net/webserver
http://cosbi.ku.edu.tr/prism/
http://wanglab.ucsd.edu/MIEC-SVM/
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4.1. Exploratory PPI Predictions Using Combinated Vector Descriptors

Some studies encode evidence sources with uniform rule and use high-dimensional concatenated
vectors to present information of uniformed evidence.

Case 1: The Multi-Scale Continuous and Discontinuous (MCD) feature method [58] (developed
from the auto-covariance (AC) [76] method) captures the interactions from continuous and
discontinuous binding patterns present within a protein sequence. MCD divides the entire protein
sequence into four strings of equal length. For each string, three types of descriptors (composition,
transition and distribution that have evidence based on amino acid sequences) are used to represent
amino acid properties. Then, a high-dimensional concatenated vector is used to present information
of sector combination (4-bit binary of MCD feature) and encode evidence in a protein pair. At last,
minimum redundancy maximum relevance (mRMR) is applied for the feature selection, and the SVM
classifier finally performs the prediction tasks.

Case 2: Another method is to predict PPIs using graph invariants and a neural network [57].
It considers the primary structure of domains as a numerical sequence that combines even invariants
containing graph invariants derived from graph-theoretic models of individual amino acids (including
weighted domination (g), averaged eccentricity (d), circumference (c) and weighted peripheral number
(p)), hydrophobicity and charge of each amino acid. Then, vectors train with a neural network to
recognize their targets.

4.2. Exploratory PPI Predictions Using Probabilistic Classification Scoring

Some studies construct a PPI network using scoring methods based on probabilistic classification
decision making. These methods evaluate particular potential of protein interactions through the
likelihood of a true positive. Take the following individual cases for example.

Case 1: Naive Bayes strategy is proposed for exploring a model network in specific species which
lack protein structural information [18,22]. Available evidence includes genomic and proteomic
assembled data, ortholog interaction in model organisms, coexpression profiles and enriched
protein−domain pairs, as well as shared functional annotations from Gene Ontology (identified
the smallest shared biological process (SSBP) score). The probability combines the evidence sources
into a naive Bayes model which involves calculating and identifying the max LR of each pair-based
evidence, and then integrating the above results with naive Bayes algorithm and generating final
composite likelihood ratio from multiplicative LR.

Case 2: InPrePPI (an integrated evaluation method based on genomic context for predicting
protein−protein interactions in prokaryotic genomes) [21] uses AC value (an integrated value of the
accuracy and coverage) to integrate data. In this study, each protein pair of three positive datasets
(KEGG, EcoCyc, and DIP) is encoded by four methods of phylogenetic profile (PP), gene cluster (GC),
gene fusion event (FE) and gene neighbor (GN), respectively. The accuracy and coverage is calculated
based on each method. Finally, an integrated score for each protein pair is presented by calculating
weight and normalized AC value.

4.3. Prediction of Protein–Protein Interaction Sites

Proteins associate with each other through specific binding sites. These protein–protein interaction
sites (PPISs) are believed to be good contributors to the recognition of binding residues under
specific chemical and physical statuses. Since PPISs mark the central position of interactions
and are less efficiently captured by experimental methods, computational approaches have been
developed to model the discrimination between interacting and non-interacting sites for prediction
of PPIS. Many studies proposed PPI site prediction methods by training with structure-based and
sequence-based evidence. Computational approaches for PPI prediction using structural information
have gained more attention due to the rapid growth of structural information (in PDB). In this review,
the following individual studies are taken as examples.
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Case 1: A prediction server of PPIS named PSIVER [64] predicts binding residue protein pairs by
using the naive Bayes (NB) classifier and kernel density estimation (KDE) with two distinct features:
position-specific scoring matrix (PSSM) and predicted accessibility (PA). Individual classifiers are
trained on the basis of PSSM and PA evidence, respectively. Then, results are combined into a score for
classifying GSP and GSN.

Case 2: In a study by Dhole et al. (2014), L1-regularized logistic regression (L1-logreg) was
developed as a classifier by training evidence based on PSSM, averaged cumulative hydropathy (ACH)
and predicted relative solvent accessibility (RSA), which includes evolutionary conservation and
chemical/functional information of amino acids [63].

Case 3: The SSWRF method [65] is introduced in order to assemble the SVM and sample-weighted
random forest (SWRF). A lower-dimensional vector represents the evidence of the PSSM-derived
feature, averaged cumulative hydropathy (ACH) and averaged cumulative relative solvent accessibility
(RSA). It processes some vectors of a given training dataset with SVM. The generated scores to evaluate
samples and to calculate weights are further utilized for training with SWRF. Finally, the ensemble
algorithm of the SVM and SWRF is executed to predict query inputs.

5. Performance Evaluation of PPI Prediction

Generally, cross-validation is employed to evaluate the prediction of performance of the proposed
method. Some studies evaluate the performance of prediction by cross-validating datasets from
different sources (databases, experimental methods or organisms). Some studies randomly divide
testing datasets into several equally sized subsets, and each subset is used as a test set [21,65,76].

The following assessments are taken into account to perform evaluation: Precision, Recall
(Sensitivity), Specificity, Overall Prediction Accuracy, Matthews’s Correlation Coefficient (MCC),
F-measure, Receiver Operating Characteristic (ROC) and Area Under the ROC Curve (AUC).
These assessments compute the accuracy and deviation to evaluate the feasibility and robustness of
a PPI prediction method. Some are defined as follows:

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

Specificity = TN/(FP + TN) (3)

Overall Prediction Accuracy = (TP + TN)/(TP + TN + FP + FN) (4)

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(5)

F-measure = 2 × (Recall × Precision)/(Recall + Precision) = 2TP/(2TP + FP + FN) (6)

TP (true positive) is the number of the predicted PPIs found in the GSP; FP (false positive) is
the number of the predicted PPIs not found in GSP; FN (false negative) is the number of PPIs in the
GSP that failed to be predicted by the method false positive; TN (true negative) is the number of true
non-interacting pairs predicted correctly. MCC, F-measure, ROC and AUC are important assessments.
MCC is a measure of the quality of binary classification, which is a correlation coefficient between the
observed and predicted results (it returns a value between −1 and +1. MCC equal to 0 is regarded as
a completely random prediction, −1 is regarded as a completely wrong prediction and 1 is regarded as
a perfect prediction). F-measure is the harmonic mean of Recall and Precision which combines Recall
and Precision with balanced weights. In addition, ROC curve and AUC value illustrate performance
of a binary classifier system by graphical plot. ROC curve is generated by plotting the TP rate against
the (FP rate at various thresholds, and AUC values are used for comparison between methods.
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6. Conclusions

Biology relies on the concerted actions of proteins organized in networks. The role of computational
biology research in the area of protein–protein interaction prediction methodologies has recently gained
widespread attention. Many tools have been developed to facilitate system biologists, not only in PPI
prediction but also in defining their binding residues involved at interaction interfaces. In this review,
we presented workflows to predict large-scale PPIs through a variety of evidence methods. However,
the result of “interactions” is solely a definition of compatibility between two proteins with respect to
evolution, function and structure, regardless of their relative reactivity.

There is still much space for further improvements to reach realistic interactions. For this purpose,
high quantity and quality datasets are indispensable. The significant increase in the prediction coverage
and accuracy during the past several years is mainly caused by the accumulation of credible data
from genome sequencing, PPI experimental detection and protein 3D structure definition. It can be
anticipated that, with more and more information available in the future, the prediction potential will
be improved and the corresponding combined methods will acquire better performance. On the other
hand, more precise methods are also required in this regard. More time is needed for the development
of even more powerful machine learning methods (like deep neural networks), along with the systemic
understanding of the essential mechanism of PPIs. We hope that the present work will inspire PPI
predictors toward further evaluation and improvements.
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