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Summary

Several needs in the context of the water-energy—
food nexus will become more prominent in the next
decades. It is crucial to delineate these challenges
and to find opportunities for innovative microbial
technologies in the framework of sustainability and
climate change. Here, we focus on four key issues,
that is the imbalance in the nitrogen cycle, the dif-
fuse emission of methane, the necessity for carbon
capture and the deterioration of freshwater reserves.
We suggest a set of microbial technologies to deal
with each of these issues, such as (i) the production
of microbial protein as food and feed, (ii) the control
of methanogenic archaea and better use of methan-
otrophic consortia, (iii) the avoidance of nitrification
and (iv) the upgrading of CO, to microbial bioprod-
ucts. The central message is that instead of using
crude methods to exploit microorganisms for degra-
dations, the potentials of the microbiomes should be
used to create processes and products that fit the
demands of the cyclic market economy.

Introduction

In our current society, we must deal with numerous
issues to sustain or even improve the general quality of
life of the 7 billion people that currently inhabit the earth.
The water—energy—food nexus can be considered one of
these key issues for the coming decades (Walker et al.,
2014). The lingering anticipated climate change adds a
fourth factor to this nexus (Beck and Walker, 2013),
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which makes it more complicated to find suitable solu-
tions that cover multiple aspects.

The development and optimization of environmental
microbial technologies over the last century led to multi-
ple applications in this framework. To decrease the pol-
lution from municipalities and industries, the activated
sludge process was developed over a century ago
(Ardern and Lockett, 1914). Continuous innovation has
allowed this process to shift from a mere wastewater
clean-up technology to a provider of renewable energy
(Verstraete and Vlaeminck, 2011; De Vrieze et al,
2016). Anaerobic digestion of the collected organics
hosts a central position in the current wastewater treat-
ment approach, as it serves as the provider of renew-
able energy. Depending on the process conditions, it
also enables the recovery of nutrients and/or organics
(Holm-Nielsen et al., 2009; Batstone and Virdis, 2014).
Of crucial importance in this context is the evolution of
the world energy prices. Currently, energy prices are
low, amongst others due to the breakthroughs in the
fracking technology, although the long-term sustainability
of this process is highly questionable (Inman, 2014; IEA,
2016). Future energy prices are predicted with a high
degree of uncertainty, amongst others due to the major
advances in photovoltaic and wind technologies (Cabr-
era-Tobar et al., 2016).

It appears that for the future wastewater treatment, the
production of biogas should no longer be directed to
energy recovery, rather biogas and the nutrients present
in wastewater must be tuned for reuse by upgrading
them into valuable molecules (Cagnetta et al., 2016).
The recent advances in single cell protein production,
which is the production of protein-rich feed and food,
using recovered nutrients and organics, open possibili-
ties for new microbial technological applications to
short-circuit nutrient and energy cycles into more efficient
processes (Matassa et al., 2015). The combination of
wastewater treatment and single cell protein production
technologies possesses the potential to substantially
influence the water—energy—food—climate nexus of the
coming decades.

The application of microbial potentialities highlights the
emergence of other issues that are directly or indirectly
related. We focused on the major challenges of the com-
ing decade, in relation to climate change and sustainabil-
ity, and the microbial technologies that can be applied to
tackle them (Fig. 1).
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Fig. 1. Schematic overview of specific global threats of the coming decades and concomitant potential microbial solutions.

The urgent needs

The planetary boundary conditions: nitrogen is also an
issue

The discovery of the Haber—Bosch process for nitrogen
fixation in the beginning of the 20th century has been
one of the main drivers behind the global population
expansion since 1950 (Erisman et al., 2008). An impor-
tant fraction of this reactive nitrogen ends up in the sur-
face waters, which leads to the reactive nitrogen flow
strongly surpassing the planetary boundaries, with a high
risk of destabilization of the earth ecosystem (Steffen
et al., 2015). The nitrification process leads to massive
losses of reactive nitrogen in various natural and man-
made ecosystems, caused by both washout from the soil
and denitrification to N, (Subbarao et al., 2006). Time
has come to focus on controlling nitrification, for instance
by implementing a new generation of slow-release fertil-
izers and, if possible, plant-generated nitrification inhibi-
tors (O’Sullivan et al., 2016). A similar approach should
be applied in wastewater treatment in which nitrogen
recovery, rather than dissipation via the nitrification/deni-
trification process should be targeted. Nitrification should
be labelled as an environmentally undesirable process,
and major efforts should be undertaken to avoid it. The
need to recover/reuse the nitrogen present in our sec-
ondary resources does not originate from a source defi-
ciency, unlike certain rare earth elements (Hennebel
et al., 2015), but from a sink overload. Dealing in a dras-
tically different way with nitrogen relates with the optimal
use of fossil energy and preservation of the environmen-
tal quality.

At present, 1-2% of the energy consumption on earth
is used to fuel the Haber—Bosch process for nitrogen

fixation. Yet, depending on the human diet (vegetarian or
carnivorous), only 4—16% of this nitrogen is consumed
(Galloway and Cowling, 2002; Matassa et al., 2015). To
sustain the food (nitrogen) supply to the growing world
population, soy production has boomed over the last two
decades (Dalin et al., 2012), with an increase from 17 mil-
lion tons in 1960 to 230 million tons in 2008 (Hartman
et al., 2011). The growing risk of irreversible deforestation
and the fact that the production of soya bean coincides
with 0.3-0.6 kg CO, equivalents per kg of fresh weight
do not support a sustainable expansion of this potential
and imply the need for alternative nitrogen sources to be
used as feed or food (Dalin et al., 2012; Castanheira and
Freire, 2013). An alternative solution lies in the production
of single cell proteins, also called microbial proteins.
These do not compete for land usage with other crops,
and much higher nitrogen efficiencies can be obtained,
especially when used directly as food source (Matassa
et al., 2015; Pikaar et al., 2017). The key aspect of micro-
bial protein production for feed and food lies in the ability
to use recovered nitrogen from different sources, such as
source-separated urine (Maurer et al., 2003; Luther et al.,
2015) and the liquid fraction of digestate (Desloover
et al., 2012). This has multiple advantages, as it (i) avoids
additional costs for reactive nitrogen conversion to nitro-
gen gas, (ii) decreases the amount of nitrogen to be fixed
by Haber-Bosch and (iii) prevents excessive accumula-
tion of reactive nitrogen in the biosphere.

Climate change: the diffuse methane emissions and their
abatement

Anaerobic digestion provides the possibility to stabilize
organic waste streams, which results in the controlled
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production of CHy-rich biogas. This biogas can be (i)
used for flexible electricity and heat production (Szarka
et al., 2013), (ii) upgraded to biomethane for injection on
the smart gas grid (Lund etal, 2012; Junne and
Kabisch, 2017) or (iii) used as carbon source for micro-
bial feed and food production (Strong et al., 2015). Part
of the methane, however, remains dissolved in the efflu-
ent or digestate (Cakir and Stenstrom, 2005; Liebetrau
et al, 2010). For low-strength wastewaters, this can
easily exceed 25% (Hartley and Lant, 2006), which
reflects a simultaneous high loss in energy recovery
potential and emission of a potent greenhouse gas to
the atmosphere, as it has a global warming potential of
28 CO, equivalents (Saunois et al., 2016). Other engi-
neered or natural anaerobic microbial ecosystems, such
as septic tanks, manure pits, landfills, sewers, activated
sludge, rice paddies, wetlands and particularly the
methanogens active in ruminants also contribute to the
diffuse release of methane (Johnson et al., 2007; Perez-
Barberia, 2017). The diversity of sources of diffuse
methane emissions implies the need for case-specific
solutions.

The dissolved methane, often at supersaturation (Hartley
and Lant, 2006), in the liquid effluent of anaerobic diges-
ters can be mitigated, for example, via the methalgae
approach (van der Ha et al., 2011). Methanogenesis in
the rumen can be inhibited by adding, for example,
3-nitrooxypropanol to the feed (Romero-Perez et al.,
2014; Duin et al., 2016) or by applying antibodies to pre-
vent adhesion of Methanobrevibacter (Ng et al., 2016).
However, methanogenesis might be essential for cellu-
lose digestion in the rumen (Mason and Stuckey, 2016),
which accentuates the need to look for other routes than
ruminants to supply high-quality proteinaceous foods.
Methane emission from wetlands or rice paddies can be
decreased by short-term drainage or temporary oxygen
supply (Ratering and Conrad, 1998; Arends et al., 2014).
Methane emissions from lakes can be controlled by
steering aquatic trophic interactions to minimize grazing
of methanotrophs by zooplankton (Devlin et al., 2015).
This demonstrates that there is huge potential of chal-
lenging microbial engineering systems to deal with dif-
fuse methane emissions and their impact on climate
change.

Microbial biotechnology for CO, capture

The atmospheric CO, concentration has been increasing
since the mid-18th century in response to human activi-
ties (Menon et al., 2007). To reduce global CO, emis-
sions to 80% of the levels of 1990 by 2050, we need to
achieve a 4200 Mt CO, sequestration per year (Mac
Dowell et al., 2017). To deal with this challenge, we rely
on carbon capture and storage (CCS) and carbon

capture and utilization (CCU). The overall perspective of
the chemical conversion of CO, to organic compounds,
such as urea and methanol, is estimated to contribute
only 1% to the necessary CO, reduction requirement
(Mac Dowell et al., 2017). This emphasizes the need to
consider alternative options, amongst which microbial
processes to contribute to CO, sequestration deserve to
be explored. The soil microbial ecosystem, as well as
the ocean ecosystem, has been important sinks for CO,,
which partially mitigated the human impact on the car-
bon cycle (Menon et al., 2007). The importance of the
soil microbial community in the sequestration of carbon
suggests that there is a huge potential to maximize CO,
sequestration through microbial community engineering.

A change in land use from arable land to grassland
entails an average 18% higher carbon sequestration,
which relates with a yearly carbon input of 0.75 tonnes
C ha ' year ' (Kampf et al., 2016). A soil with a limited
degree of manipulation reaches a higher degree of
microbial homoeostasis (Cleveland and Liptzin, 2007),
which allows a more efficient carbon sequestration. This
type of soil management can be of great value in the
context of the anticipated climate change (Fontaine and
Barot, 2005; Manzoni etal, 2012). An alternative
approach lies in the addition of charcoal or biochar to
the soil, which (i) is a direct addition of long-term stable
carbon to the soil, (ii) improves the overall soil quality
and (iii) can adsorb nutrients to increase their plant
bioavailability (Lehmann et al., 2006; Laird, 2008; Prost
et al., 2013).

The concept of carbon sequestration can also be
approached by using concentrated CO, sources. Micro-
bial electrosynthesis allows the generation of valuable
products from electricity, using CO, or other organic
feedstocks as carbon source (Nevin et al., 2010; Rabaey
and Rozendal, 2010; Lovley, 2011). This enables the
production of acetate (Gildemyn et al., 2015), butyrate
(Ganigue et al., 2015) and other commodity chemicals
(Nevin et al., 2011; Arends et al., 2017). These chemi-
cals, when subjected to the process of microbial chain
elongation, can be converted to medium chain fatty
acids with a higher economic value, such as caproate
and caprylate, which serve as bio-based building blocks
for the chemical industry (Agler et al, 2012; Spirito
et al., 2014; Angenent et al., 2016). A key point in this
process remains the energy-efficient harvesting of these
chemicals to obtain a concentrated stream with high pro-
duct quality (Agler et al., 2011; Gildemyn et al., 2015;
Andersen et al., 2016).

The ongoing deterioration of freshwater reserves

The intensive usage of nutrients, mainly N and P, results
in at least a fraction of these nutrients ending up in the
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natural water bodies, which may result in eutrophication
(Conley et al., 2009; Coppens et al., 2016). The antici-
pated increase in the human population is predicted to
result in further eutrophication of terrestrial, freshwater
and nearshore marine ecosystems (Tilman et al., 2001).
Micropollutants are often insufficiently removed and
accumulate in increasing amounts and even more stag-
gering diversity in the surface waters (Margot et al.,
2015). Although through river bank filtration > 90% of
micropollutants can be removed in a period of 4 years,
certain micropollutants show persistent behaviour, which
may have a long-term impact on the surface water bio-
logical quality (Hamann et al., 2016). This also directly
affects our drinking water reserves (ground- and surface
water), although drinking water production technologies
are adequate to remove most micropollutants (Luo et al.,
2014). However, this does not necessary result in a
prompt change in suitable regulations (Sedlak, 2016).
The main issue lies in the extent of removal, implying that
future technologies need to deal with concentrations
down to 1 ug I". These can be a combination of physical
processes, for example increasing the concentrations by
membrane technologies, and the use of the versatile bio-
conversion potential of naturally selected microbiomes.

The potential impact of persistent micropollutants
implies the need for end-of-pipe treatment technologies
in wastewater treatment plants to safeguard the aquatic
ecosystems. Biological treatment can be a suitable
approach to remove micropollutants from drinking water,
but often requires bioaugmentation of suitable strains to
be effective (Benner et al., 2013). A potential opportunity
is the application of ammonium oxidizing bacteria that
can co-metabolize certain micropollutants down to the
ug I”" level (Kassotaki et al., 2016). Methane-oxidizing
communities can also be used for this purpose (Benner
et al., 2015). Technologies combining physical concen-
tration and advanced microbial physiology to deal with
the enormous diversity of micropollutants still have a
long way to go to safeguard our drinking and process
water quality.

Cooperating with microorganisms

The crucial role of microorganisms in tackling the above-
mentioned challenges of the coming decades is appar-
ent. To engage in more energy-efficient processes with
higher removal rates and efficiencies, we need to be
able to control the microorganisms via an integrated
approach. The way to go is to consider the microbial
community as a structured three-dimensionally organized
entity, as used in the microbial resource management
(MRM) (Marzorati et al., 2008; Read et al., 2011) and
mixed culture biotechnology (Kleerebezem and van
Loosdrecht, 2007) approaches. This also counts for the
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fields of human health and food safety, as total elimina-
tion of evolving microbial communities, rather than col-
laborating with them, leads to multiple side issues, such
as antibiotic resistance (Baquero et al., 2008; Berendonk
et al., 2015). An excellent example to avoid the usage of
antibiotics is the biofloc technology as applied in aqua-
culture (Crab et al., 2012). Overall, a better understand-
ing of the basics of the microbial communities in key
processes will be crucial to tackle a set of important
environmental challenges in the coming decades.

Acknowledgements

Jo De Vrieze is supported as postdoctoral fellow from
the Research Foundation Flanders (FWO-VIaanderen).
The authors would like to thank Jan Arends and Antonin
Prévoteau for their useful suggestions and carefully
reading the manuscript.

Conflict of interest

None declared.

References

Agler, M.T., Wrenn, B.A., Zinder, S.H., and Angenent, L.T.
(2011) Waste to bioproduct conversion with undefined
mixed cultures: the carboxylate platform. Trends Biotech-
nol 29: 70-78.

Agler, M.T., Spirito, C.M., Usack, J.G., Werner, J.J., and
Angenent, L.T. (2012) Chain elongation with reactor
microbiomes: upgrading dilute ethanol to medium-chain
carboxylates. Energy Environ Sci 5: 8189-8192.

Andersen, S.J., Berton, J., Naert, P., Gildemyn, S., Rabaey,
K., and Stevens, C.V. (2016) Extraction and esterification
of low-titer short-chain volatile fatty acids from anaerobic
fermentation with ionic liquids. Chemsuschem 9: 2059—
2063.

Angenent, L.T., Richter, H., Buckel, W., Spirito, C.M.,
Steinbusch, K.J.J., Plugge, C.M., etal. (2016) Chain
elongation with reactor microbiomes: open-culture biotech-
nology to produce biochemicals. Environ Sci Technol 50:
2796-2810.

Ardern, E., and Lockett, W.T. (1914) Experiments on the
oxidation of sewage without the aid of filters. J Soc Chem
Ind 33: 523-539.

Arends, J.B.A., Speeckaert, J., Blondeel, E., De Vrieze, J.,
Boeckx, P., Verstraete, W., et al. (2014) Greenhouse gas
emissions from rice microcosms amended with a plant
microbial fuel cell. Appl Microbiol Biotechnol 98: 3205-
3217.

Arends, J.B.A., Patil, S.A., Roume, H. and Rabaey,
K.(2017) Continuous long-term electricity-driven biopro-
duction of carboxylates and isopropanol from CO, with a
mixed microbial community. J CO2 Util 20: 141-149.

Baquero, F., Martinez, J.L., and Canton, R. (2008) Antibi-
otics and antibiotic resistance in water environments. Curr
Opin Biotechnol 19: 260-265.

© 2017 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd, Microbial

Biotechnology, 10, 988—-994



992 W. Verstraete and J. De Vrieze

Batstone, D.J., and Virdis, B. (2014) The role of anaerobic
digestion in the emerging energy economy. Curr Opin
Biotechnol 27: 142—-149.

Beck, M.B., and Walker, R.V. (2013) On water security, sus-
tainability, and the water-food-energy-climate nexus. Front
Environ Sci Eng 7: 626-639.

Benner, J., Helbling, D.E., Kohler, H.P.E., Wittebol, J., Kaiser,
E., Prasse, C., et al. (2013) Is biological treatment a viable
alternative for micropollutant removal in drinking water
treatment processes? Water Res 47: 5955-5976.

Benner, J., De Smet, D., Ho, A. Kerckhof, F.M.,
Vanhaecke, L., Heylen, K., and Boon, N. (2015) Exploring
methane-oxidizing communities for the co-metabolic
degradation of organic micropollutants. Appl Microbiol
Biotechnol 99: 3609-3618.

Berendonk, T.U., Manaia, C.M., Merlin, C., Fatta-Kassinos,
D., Cytryn, E., Walsh, F., et al. (2015) Tackling antibiotic
resistance: the environmental framework. Nat Rev Micro-
biol 13: 310-317.

Cabrera-Tobar, A., Bullich-Massague, E., Aragues-Penalba,
M., and Gomis-Bellmunt, O. (2016) Review of advanced
grid requirements for the integration of large scale photo-
voltaic power plants in the transmission system. Renew
Sustain Energy Rev 62: 971-987.

Cagnetta, C., Coma, M., Vlaeminck, S.E., and Rabaey, K.
(2016) Production of carboxylates from high rate activated
sludge through fermentation. Biores Technol 217: 165-
172.

Cakir, F.Y., and Stenstrom, M.K. (2005) Greenhouse gas
production: a comparison between aerobic and anaerobic
wastewater treatment technology. Water Res 39: 4197—
4203.

Castanheira, E.G., and Freire, F. (2013) Greenhouse gas
assessment of soybean production: implications of land
use change and different cultivation systems. J Clean
Prod 54: 49-60.

Cleveland, C.C., and Liptzin, D. (2007) C:N: P stoichiometry
in soil: is there a “Redfield ratio” for the microbial bio-
mass? Biogeochemistry 85: 235-252.

Conley, D.J., Paerl, HW., Howarth, R.W., Boesch, D.F.,
Seitzinger, S.P., Havens, K.E., et al. (2009) ECOLOGY
controlling eutrophication: nitrogen and phosphorus.
Science 323: 1014-1015.

Coppens, J., Meers, E., Boon, N., Buysse, J., and
Vlaeminck, S.E. (2016) Follow the N and P road:
high-resolution nutrient flow analysis of the Flanders
region as precursor for sustainable resource manage-
ment. Resour Conserv Recycl 115: 9-21.

Crab, R., Defoirdt, T., Bossier, P., and Verstraete, W.
(2012) Biofloc technology in aquaculture: beneficial
effects and future challenges. Aquaculture 356: 351-356.

Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A., and
Rodriguez-lturbe, I. (2012) Evolution of the global virtual
water trade network. Proc Natl Acad Sci USA 109: 5989—
5994.

De Vrieze, J., Smet, D., Klok, J., Colsen, J., Angenent, L.T.,
and Vlaeminck, S.E. (2016) Thermophilic sludge digestion
improves energy balance and nutrient recovery potential
in full-scale municipal wastewater treatment plants. Biores
Technol 218: 1237-1245.

Desloover, J., Woldeyohannis, A.A., Verstraete, W., Boon,
N., and Rabaey, K. (2012) Electrochemical resource
recovery from digestate to prevent ammonia toxicity dur-
ing anaerobic digestion. Environ Sci Technol 46: 12209—
12216.

Devlin, S.P., Saarenheimo, J., Syvaranta, J., and Jones,
R.I. (2015) Top consumer abundance influences lake
methane efflux. Nat Commun 6: 7.

Duin, E.C., Wagner, T., Shima, S., Prakash, D., Cronin, B.,
Yanez-Ruiz, D.R., et al. (2016) Mode of action uncovered
for the specific reduction of methane emissions from rumi-
nants by the small molecule 3-nitrooxypropanol. Proc Natl
Acad Sci USA 113: 6172-6177.

Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z., and
Winiwarter, W. (2008) How a century of ammonia synthe-
sis changed the world. Nat Geosci 1: 636-639.

Fontaine, S., and Barot, S. (2005) Size and functional diver-
sity of microbe populations control plant persistence and
long-term soil carbon accumulation. Ecol Lett 8: 1075-
1087.

Galloway, J.N., and Cowling, E.B. (2002) Reactive nitrogen
and the world: 200 years of change. Ambio 31: 64-71.
Ganigue, R., Puig, S., Batlle-Vilanova, P., Balaguer, M.D.,
and Colprim, J. (2015) Microbial electrosynthesis of buty-
rate from carbon dioxide. Chem Commun 51: 3235-3238.

Gildemyn, S., Verbeeck, K., Slabbinck, R., Andersen, S.J.,
Prevoteau, A., and Rabaey, K. (2015) Integrated produc-
tion, extraction, and concentration of acetic acid from CO,
through microbial electrosynthesis. Environ Sci Technol
Lett 2: 325-328.

van der Ha, D., Bundervoet, B., Verstraete, W., and Boon,
N. (2011) A sustainable, carbon neutral methane oxida-
tion by a partnership of methane oxidizing communities
and microalgae. Water Res 45: 2845-2854.

Hamann, E., Stuyfzand, P.J., Greskowiak, J., Timmer, H.,
and Massmann, G. (2016) The fate of organic micropollu-
tants during long-term/long-distance river bank filtration.
Sci Total Environ 545: 629-640.

Hartley, K., and Lant, P. (2006) Eliminating non-renewable
CO, emissions from sewage treatment: an anaerobic
migrating bed reactor pilot plant study. Biotechnol Bioeng
95: 384-398.

Hartman, G.L., West, E.D., and Herman, T.K. (2011) Crops
that feed the World 2. Soybean—worldwide production,
use, and constraints caused by pathogens and pests.
Food Secur 3: 5-17.

Hennebel, T., Boon, N., Maes, S., and Lenz, M. (2015)
Biotechnologies for critical raw material recovery from pri-
mary and secondary sources: R&D priorities and future
perspectives. New Biotechnol 32: 121-127.

Holm-Nielsen, J.B., Al Seadi, T., and Oleskowicz-Popiel, P.
(2009) The future of anaerobic digestion and biogas uti-
lization. Biores Technol 100: 5478-5484.

IEA (2016) World Energy Outlook. Paris: Cedex 15.

Inman, M. (2014) The fracking fallacy. Nature 516: 28—30.

Johnson, J.M.F., Franzluebbers, A.J., Weyers, S.L., and Rei-
cosky, D.C. (2007) Agricultural opportunities to mitigate
greenhouse gas emissions. Environ Pollut 150: 107—-124.

Junne, S., and Kabisch, J. (2017) Fueling the future with
biomass: processes and pathways for a sustainable

© 2017 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd, Microbial

Biotechnology, 10, 988—994



supply of hydrocarbon fuels and biogas. Eng Life Sci 17:
14-26.

Kampf, 1., Holzel, N., Storrle, M., Broll, G., and Kiehl, K.
(2016) Potential of temperate agricultural soils for carbon
sequestration: a meta-analysis of land-use effects. Sci
Total Environ 566: 428—435.

Kassotaki, E., Buttiglieri G., Ferrando-Climent, L.,
Rodriguez-Roda, I., and Pijuan, M. (2016) Enhanced sul-
famethoxazole degradation through ammonia oxidizing
bacteria co-metabolism and fate of transformation prod-
ucts. Water Res 94: 111-119.

Kleerebezem, R., and van Loosdrecht, M.C.M. (2007) Mixed
culture biotechnology for bioenergy production. Curr Opin
Biotechnol 18: 207-212.

Laird, D.A. (2008) The charcoal vision: a win-win-win sce-
nario for simultaneously producing bioenergy, perma-
nently sequestering carbon, while improving soil and
water quality. Agron J 100: 178-181.

Lehmann, J., Gaunt, J., and Rondon, M. (2006) Bio-char
sequestration in terrestrial ecosystems — a review. Mitig
Adapt Strat Glob Change 11: 395-419.

Liebetrau, J., Clemens, J., Cuhls, C., Hafermann, C., Friehe,
J., Weiland, P., and Daniel-Gromke, J. (2010) Methane
emissions from biogas-producing facilities within the agri-
cultural sector. Eng Life Sci 10: 595-599.

Lovley, D.R. (2011) Powering microbes with electricity:
direct electron transfer from electrodes to microbes. Envi-
ron Microbiol Rep 3: 27-35.

Lund, H., Andersen, A.N., Ostergaard, P.A., Mathiesen,
B.V., and Connolly, D. (2012) From electricity smart
grids to smart energy systems — A market operation
based approach and understanding. Energy 42: 96—
102.

Luo, Y.L., Guo, W.S., Ngo, H.H., Nghiem, L.D., Hai, F.l,
Zhang, J., et al. (2014) A review on the occurrence of
micropollutants in the aquatic environment and their fate
and removal during wastewater treatment. Sci Total Envi-
ron 473: 619-641.

Luther, A.K., Desloover, J., Fennell, D.E., and Rabaey, K.
(2015) Electrochemically driven extraction and recovery of
ammonia from human urine. Water Res 87: 367-377.

Mac Dowell, N., Fennell, P.S., Shah, N., and Maitland, G.C.
(2017) The role of CO, capture and utilization in mitigat-
ing climate change. Nat Clim Chang 7: 243-249.

Manzoni, S., Taylor, P., Richter, A., Porporato, A., and
Agren, G.I. (2012) Environmental and stoichiometric con-
trols on microbial carbon-use efficiency in soils. New Phy-
tol 196: 79-91.

Margot, J., Rossi, L., Barry, D.A., and Holliger, C. (2015) A
review of the fate of micropollutants in wastewater treat-
ment plants. WIREs Water 2: 457-487.

Marzorati, M., Wittebolle, L., Boon, N., Daffonchio, D., and
Verstraete, W. (2008) How to get more out of molecular
fingerprints: practical tools for microbial ecology. Environ
Microbiol 10: 1571-1581.

Mason, P.M., and Stuckey, D.C. (2016) Biofilms, bubbles
and boundary layers — A new approach to understanding
cellulolysis in anaerobic and ruminant digestion. Water
Res 104: 93-100.

Matassa, S., Batstone, D.J., Hulsen, T., Schnoor, J., and
Verstraete, W. (2015) Can direct conversion of used

Environmental biotechnology 993

nitrogen to new feed and protein help feed the world?
Environ Sci Technol 49: 5247-5254.

Maurer, M., Schwegler, P., and Larsen, T.A. (2003) Nutri-
ents in urine: energetic aspects of removal and recovery.
Water Sci Technol 48: 37—46.

Menon, S., Denman, K.L., Brasseur, G., Chidthaisong, A.,
Ciais, P., Cox, P.M., etal. (2007) Couplings between
Changes in the Climate System and Biogeochemistry.
Berkeley, CA, Medium: ED: Ernest Orlando Lawrence
Berkeley National Laboratory.

Nevin, K.P., Woodard, T.L., Franks, A.E., Summers, Z.M.,
and Lovley, D.R. (2010) Microbial electrosynthesis: feed-
ing microbes electricity to convert carbon dioxide and
water to multicarbon extracellular organic compounds.
MBio 1: 4.

Nevin, K.P., Hensley, S.A., Franks, A.E., Summers, Z.M.,
Ou, J.H., Woodard, T.L., et al. (2011) Electrosynthesis of
organic compounds from carbon dioxide is catalyzed by a
diversity of acetogenic microorganisms. Appl Environ
Microbiol 77: 2882—2886.

Ng, F., Kittelmann, S., Patchett, M.L., Attwood, G.T.,
Janssen, P.H., Rakonjac, J., and Gagic, D. (2016) An
adhesin from hydrogen-utilizing rumen methanogen
Methanobrevibacter ruminantium M1 binds a broad range
of hydrogen-producing microorganisms. Environ Microbiol
18: 3010-3021.

O’Sullivan, C.A., Fillery, 1.R.P., Roper, M.M., and Richards,
R.A. (2016) Identification of several wheat landraces with
biological nitrification inhibition capacity. Plant Soil 404:
61-74.

Perez-Barberia, F.J. (2017) Scaling methane emissions in
ruminants and global estimates in wild populations. Sci
Total Environ 579: 1572—1580.

Pikaar, I., Matassa, S., Rabaey, K., Bodirsky, B.L., Popp,
A., Herrero, M. and Verstraete, W. (2017) Microbes and
the next Nitrogen revolution. Environ Sci Technol 51:
7297-73083.

Prost, K., Borchard, N., Siemens, J., Kautz, T., Sequaris,
J.M., Moller, A., and Amelung, W. (2013) Biochar affected
by composting with farmyard manure. J Environ Qual 42:
164-172.

Rabaey, K., and Rozendal, R.A. (2010) Microbial elec-
trosynthesis - revisiting the electrical route for microbial
production. Nat Rev Microbiol 8: 706—716.

Ratering, S., and Conrad, R. (1998) Effects of short-
term drainage and aeration on the production of
methane in submerged rice soil. Glob Change Biol 4:
397-407.

Read, S., Marzorati, M., Guimaraes, B., and Boon, N.
(2011) Microbial Resource Management revisited: suc-
cessful parameters and new concepts. Appl Microbiol
Biotechnol 90: 861-871.

Romero-Perez, A., Okine, E.K., McGinn, S.M., Guan, L.L.,
Oba, M., Duval, S.M., et al. (2014) The potential of 3-
nitrooxypropanol to lower enteric methane emissions from
beef cattle. J Anim Sci 92: 4682-4693.

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais,
P., Canadell, J.G., et al. (2016) The global methane bud-
get 2000-2012. Earth Syst Sci Data 8: 697-751.

Sedlak, D. (2016) Fool me once. Environ Sci Technol 50:
7937-7938.

© 2017 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd, Microbial

Biotechnology, 10, 988—-994



994 W. Verstraete and J. De Vrieze

Spirito, C.M., Richter, H., Rabaey, K., Stams, A.J.M., and
Angenent, L.T. (2014) Chain elongation in anaerobic
reactor microbiomes to recover resources from waste.
Curr Opin Biotechnol 27: 115-122.

Steffen, W., Richardson, K., Rockstrom, J., Cornell, S.E.,
Fetzer, I., Bennett, E.M., et al. (2015) Planetary bound-
aries: guiding human development on a changing planet.
Science 347: 11.

Strong, P.J., Xie, S., and Clarke, W.P. (2015) Methane as a
resource: can the methanotrophs add value? Environ Sci
Technol 49: 4001-4018.

Subbarao, G.V., lto, O., Sahrawat, K.L., Berry, W.L,
Nakahara, K., Ishikawa, T., et al. (2006) Scope and
strategies for regulation of nitrification in agricultural sys-
tems-challenges and opportunities. Crit Rev Plant Sci
25: 303-335.

Szarka, N., Scholwin, F., Trommler, M., Jacobi, H.F., Eich-
horn, M., Ortwein, A., and Thran, D. (2013) A novel role
for bioenergy: a flexible, demand-oriented power supply.
Energy 61: 18-26.

Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A.,
Howarth, R., etal (2001) Forecasting agriculturally
driven global environmental change. Science 292: 281-
284.

Verstraete, W., and Vlaeminck, S.E. (2011) ZeroWaste-
Water: short-cycling of wastewater resources for sustain-
able cities of the future. Int J Sustain Dev World Ecol 18:
253-264.

Walker, R.V., Beck, M.B., Hall, J.W., Dawson, R.J., and
Heidrich, O. (2014) The energy-water-food nexus: strate-
gic analysis of technologies for transforming the urban
metabolism. J Environ Manage 141: 104—-115.

© 2017 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd, Microbial

Biotechnology, 10, 988—994



