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Abstract: Automated emotion recognition (AEE) is an important issue in various fields of activities
which use human emotional reactions as a signal for marketing, technical equipment, or human–robot
interaction. This paper analyzes scientific research and technical papers for sensor use analysis,
among various methods implemented or researched. This paper covers a few classes of sensors, using
contactless methods as well as contact and skin-penetrating electrodes for human emotion detection
and the measurement of their intensity. The results of the analysis performed in this paper present
applicable methods for each type of emotion and their intensity and propose their classification.
The classification of emotion sensors is presented to reveal area of application and expected outcomes
from each method, as well as their limitations. This paper should be relevant for researchers using
human emotion evaluation and analysis, when there is a need to choose a proper method for their
purposes or to find alternative decisions. Based on the analyzed human emotion recognition sensors
and methods, we developed some practical applications for humanizing the Internet of Things (IoT)
and affective computing systems.
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1. Introduction

With the rapid increase in the use of smart technologies in society and the development of the
industry, the need for technologies capable to assess the needs of a potential customer and choose
the most appropriate solution for them is increasing dramatically. Automated emotion evaluation
(AEE) is particularly important in areas such as: robotics [1], marketing [2], education [3], and the
entertainment industry [4]. The application of AEE is used to achieve various goals:

(i) in robotics: to design smart collaborative or service robots which can interact with humans [5–7];
(ii) in marketing: to create specialized adverts, based on the emotional state of the potential

customer [8–10];
(iii) in education: used for improving learning processes, knowledge transfer, and perception

methodologies [11–13];
(iv) in entertainment industries: to propose the most appropriate entertainment for the target

audience [14–17].

In the scientific literature are presented numerous attempts to classify the emotions and set
boundaries between emotions, affect, and mood [18–21]. From the prospective of automated emotion
recognition and evaluation, the most convenient classification is presented in [3,22]. According to the
latter classification, main terms defined as follows:
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(i) “emotion” is a response of the organism to a particular stimulus (person, situation or event).
Usually it is an intense, short duration experience and the person is typically well aware of it;

(ii) “affect” is a result of the effect caused by emotion and includes their dynamic interaction;
(iii) “feeling” is always experienced in relation to a particular object of which the person is aware; its

duration depends on the length of time that the representation of the object remains active in the
person’s mind;

(iv) “mood” tends to be subtler, longer lasting, less intensive, more in the background, but it can affect
affective state of a person to positive or negative direction.

According to the research performed by Feidakis, Daradoumis and Cabella [21] where the
classification of emotions based on fundamental models is presented, exist 66 emotions which can be
divided into two groups: ten basic emotions (anger, anticipation, distrust, fear, happiness, joy, love,
sadness, surprise, trust) and 56 secondary emotions. To evaluate such a huge amount of emotions, it is
extremely difficult, especially if automated recognition and evaluation is required. Moreover, similar
emotions can have overlapping parameters, which are measured. To handle this issue, the majority
of studies of emotion evaluation focuses on other classifications [3,21], which include dimensions
of emotions, in most cases valence (activation—negative/positive) and arousal (high/low) [23,24],
and analyses only basic emotions which can be defined more easily. A majority of researches use
variations of Russel’s circumplex model of emotions (Figure 1) which provides a distribution of basic
emotions in two-dimensional space in respect of valence and arousal. Such an approach allows for the
definition of a desired emotion and evaluating its intensity just analyzing two dimensions.
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Figure 1. Russel’s circumplex model of emotions. 

Using the above-described model, the classification and evaluation of emotions becomes clear, 
but still there are many issues related to the assessment of emotions, especially the selection of 
measurement and results evaluation methods, the selection of measurement hardware and software. 
Moreover, the issue of emotion recognition and evaluation remains complicated by its 
interdisciplinary nature: emotion recognition and strength evaluation are the object of psychology 
sciences, while the measurement and evaluation of human body parameters are related with medical 
sciences and measurement engineering, and sensor data analysis and solution is the object of 
mechatronics.  

This review focuses on the hardware and methods used for automated emotion recognition, 
which are applicable for machine learning procedures using obtained experimental data analysis and 
automated solutions based on the results of these analyses. This study also analyzes the idea of 
humanizing the Internet of Things and affective computing systems, which has been validated by 
systems developed by the authors of this research [25–28]. 

Intelligent machines with empathy for humans are sure to make the world a better place. The 
IoT field is definitely progressing on human emotion understanding thanks to achievements in 
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Using the above-described model, the classification and evaluation of emotions becomes clear,
but still there are many issues related to the assessment of emotions, especially the selection of
measurement and results evaluation methods, the selection of measurement hardware and software.
Moreover, the issue of emotion recognition and evaluation remains complicated by its interdisciplinary
nature: emotion recognition and strength evaluation are the object of psychology sciences, while
the measurement and evaluation of human body parameters are related with medical sciences and
measurement engineering, and sensor data analysis and solution is the object of mechatronics.

This review focuses on the hardware and methods used for automated emotion recognition,
which are applicable for machine learning procedures using obtained experimental data analysis
and automated solutions based on the results of these analyses. This study also analyzes the idea of
humanizing the Internet of Things and affective computing systems, which has been validated by
systems developed by the authors of this research [25–28].

Intelligent machines with empathy for humans are sure to make the world a better place. The IoT
field is definitely progressing on human emotion understanding thanks to achievements in human
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emotion recognition (sensors and methods), computer vision, speech recognition, deep learning,
and related technologies [29].

2. Emotions Evaluation Methods

Emotion evaluations methods which are presented in the literature can be classified into two
main groups according to the basic techniques used for emotions recognition: self-repot techniques
based on emotions self-assessment by filing various questionnaires [30–32]; machine assessment
techniques based on measurements of various parameters of human body [33–35]. In addition, there
are frequent cases of simultaneous use of several methods in order to increase reliability of obtained
results. According to [36,37], each emotion can be evaluated by analyzing five main components of
emotion (Behavioral tendencies, physiological reactions, motor expressions cognitive appraisals and
subjective feelings) but only the first four can be evaluated automatically and can give indications
about the emotional state of an user during an interaction, without interrupting it. Subjective feelings
usually evaluated only using self-assessment techniques.

Automated emotion recognition is typically performed by measuring various human body
parameters or electric impulses in the nervous system and analyzing their changes. The most popular
techniques are electroencephalography, skin resistance measurements, blood pressure, heart rate, eye
activity, and motion analysis.

2.1. Electroencephalography (EEG)

The EEG is an electrophysiological noninvasive technique for the recording of electrical activity
arising from the human brain [38]. The first report on the application of this technique presented by
Hans Berger, a German psychiatrist, pioneered the EEG in humans in 1924 [38]. EEG signals usually
are collected using a special device called an electroencephalogram. The main parts of this device
are special metal plate electrodes which should be placed on the human scalp, while in special cases,
alternative needle electrodes can be inserted directly into the scalp [39]. In most cases, 8, 16 or 32 pairs
of electrodes are located on four standard positions on the head: the nasion, inion, and right and left
preauricular points (Figure 2a) [39]
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Electrodes can be attached to the human scalp using adhesive-conducting gel or special
headsets [41] (Figure 2b) with installed electrodes. The EEG signal is a fluctuation of voltage
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between two paired electrodes in respect of time [42] (Figure 3a) and signal amplitude is usually
evaluated using peak to peak technique (Figure 3b).Sensors 2020, 20, x FOR PEER REVIEW 4 of 41 
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For the evaluation of human emotions, brains response to various stimuli are usually measured
and analyzed by five frequency ranges from EEG signals, namely: delta, theta, alpha, beta and gamma.
These band waves are omnipresent in different parts of the brain [45,46] and are related to various
emotional states (Table 1).

Table 1. Classification of brain waves [47,48].

Type of Waves Related Emotional State Short Description

Delta (δ) (0.5–4 Hz) Strong sense of empathy
and intuition

The slowest brain waves often associated with sleep. Multiple frequencies
in this range are accompanied by the release of human growth hormone,
which is useful in healing. These waves produced in the waking state show
an opportunity to access the subconscious activity.

Theta (θ) (4–8 Hz) Deep relaxation,
meditation

Mainly adults produce the theta brain waves, when the person is in the
light sleep or in dreams. These waves normally appear with closing the
eyes and disappears with opening of eyes. Frequency of these waves is
mainly associated stress relief and memory recollection. Twilight
conditions can be used to reach deeper meditation resulting in improved
health, as well as increasing creativity and learning capabilities

Alpha (α) (8–16 Hz) Creativity, Relaxation

These waves mostly present during the state of awake relaxation with eyes
closed. Alpha is the resting state for the brain. Activity of alpha waves
decreases in response to all types of motor activities. Alpha waves aid
overall mental coordination, calmness, alertness, mind/body integration,
and learning

Beta (β) (16–32 Hz) Beware, Concentration.

The beta waves are produced when the person is in an alert or anxious state,
and it is a dominant rhythm. Usually, they are generated in the frontal and
central part of the brain. In this state, brains can easily perform: analysis,
preparations of the information, generate solutions and new ideas.

Gamma (γ) (32
Hz-above)

Regional Learning,
Memory and Language
Processing and Ideation.

These waves are emitted when a person is in the abnormal condition or
there will be some mental disorder. Gamma brainwaves are the fastest of
brain waves and relate to simultaneous processing of information from
different brain areas. Numerous theories have proposed that gamma
contributes directly to brain function, but others argue that gamma is better
viewed as a simple byproduct of network activity

Depending on the object of interest, a variety of different methods can be implemented for the
processing and analysis of EEG signals. If the purpose is to evaluate an average level of valence and
arousal or to detect the efficiency of applied stimulus, a fast Fourier transformation [48] or latency test
can be used [49]. If the purpose is to identify a specific emotion and its strength, statistical methods [50]
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or machine learning techniques [51] can be implemented. A review of related works based on only
EEG signals is provided in Table 2.

Table 2. Review of scientific researches focused on emotions recognition and evaluation using only
electroencephalography (EEG) signals.

Aim Emotions Hardware and Software Ref.

Creation of emotion classification
system using EEG signals.

High/low arousal and
valence.

5 channels wireless
headset Emotiv Insight [52]

Creation of new emotions
evaluation technique based on a
three-layer EEG-ER scheme.

High/low arousal and
valence

Electro-cap (Qucik-Cap
64) from NeuroScan
system (Compumedics
Inc., Charlotte, NC, USA)

[53]

Research of Relief-based channel
selection methods for EEG-based
emotion recognition

Joy, fear, sadness,
relaxation − [54]

Creation of an intelligent emotion
recognition system for the
improvement of special students
learning process

Happy, calmness,
sadness, scare

Emotiv-EPOC System.
14 electrodes with two
reference channels were
used

[55]

Automated human emotions
recognition from EEG signal using
higher order statistics methods.

High/low arousal and
valence

The EEG input signals
were provided by the
DEAP database

[56]

Creation of new methodic for
recognition of human emotions

High/low arousal and
valence

Multi-channel EEG
device was used [57]

New EEG-based emotion
recognition approach with a novel
time-frequency feature extraction
technique is presented

High/low arousal and
valence

The EEG signals
provided by the DEAP
dataset

[58]

New deep learning framework
based on a multiband feature matrix
(MFM) and a capsule network
(CapsNet) is proposed.

High/low arousal,
valence and dominance

The DEAP dataset was
used [59]

New cross-subject emotion
recognition model based on the
newly designed multiple
transferable recursive feature
elimination are developed

High/low arousal,
valence and dominance

32 channel data from
DEAP dataset was used
to validate the proposed
method

[60]

Presented novel approach based on
the multiscale information analysis
(MIA) of EEG signals for
distinguishing emotional.

High/low arousal and
valence

The EEG input signals
were provided by the
DEAP dataset

[61]

From information provided in Table 2 it is seen that main part of researches are focused on
the development of more advanced methods for emotion recognition from EEG signals. For this
purpose, it is generally not required to provide a real experiment in order to validate the proposed
method, because free databases are available with recorded EEG signals under known conditions.
One of the most popular databases for EEG signal analysis is DEAP (database for emotion analysis
using physiological signals dataset) [62] which contains EEG and other psychological signals from
32 participants stimulated by 40 different one minute length music videos. EEG and peripheral
physiological signals recorded using a Biosemi ActiveTwo system. All 32 channels were recorded
with sampling frequency 512 Hz. Obtained data relates to results, obtained from self-assessment and
from other emotion recognition techniques in order to form reliable dataset, appropriate for use in the
future researches. A comparison between the DEAP dataset, MAHNOB-HCI (multimodal database
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for affect recognition and implicit tagging) [63], EMDB (emotional movie database) [64] and DECAF
(multimodal dataset for decoding affective physiological responses) [65] is provided in [66].

Information on the scientific research of emotion recognition using EEG is provided in Table 2.
The main focus of activities points to the development of new methods for information extraction from
EEG rather than a measurement procedure and therefore opens broad potential for machine learning
techniques with IoT capabilities. Moreover, in practice, EEG quite often uses sensor data fusion, which
is a basic technique complemented by other sensors and methods. Thus, big data technology with IoT
implementation opens new horizons in automated emotions recognition.

2.2. Electrocardiography (ECG)

The heart is one of the most critical organs in the human body, and electrocardiography (ECG)
is considered to be one of the most powerful diagnostic tools in medicine that is routinely used for
the assessment of the functionality of the heart. ECG being a physiological signal is used as the
conventional method for noninvasive interpretation of the electrical activity of the heart in real time [67].
Since heart activity is related with human central system ECG is useful not only in analyzing the heart’s
activity it can be also used for emotion recognition [68].

The ECG recording procedure is described in in detail as follows [69]. The most commonly used
technique is known as the 12-lead ECG technique. This technique uses nine sensors placed on the
human body (Figure 4a). The positions of the three main sensors are distributed on the left arm (LA),
right arm (RA), and on the left leg (LL). The right leg (RL) is connected only by a wire, which should be
used as ground for the interconnected sensors. By only having these three sensors, physicians can use
a method called 3-lead ECG, which suffers from the lack of information about some parts of the heart
but is useful for some emergency cases requiring quick analysis. To obtain a higher resolution, six
sensors (V1-V6) are added on the chest (Figure 4a). These sensors also measure to ground (G) on the
right leg (RL). Using all the nine sensors and interconnecting them for the 12-lead ECG gives twelve
signals, known in biomedical terms as: Lead I, Lead II, Lead III, aVR, aVL, aVF, V1, V2, V3, V4, V5,
and V6 (Figure 4b).
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The most important points on the ECG signal are the peaks: P, Q, R, S, T, and U [69] (Figure 5b).
Each of these peaks is related to the heart activity [69] and it has its own characteristics (Table 3).
Emotion recognition using physiological signal is a more complex process compared to EEG because
of it’s sensitivity to movement artifacts and the inability to visually perceive emotion from data [70].
In order to eliminate the noises caused by outside factors, such as the movement of the subject during
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measurement procedure [71], ECG is usually performed in spaces protected from environment effects
when the human is in calm state (Figure 5a).
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There are main five parameters, as shown in the Table 3, which are often used to evaluate ECG
signals. Usually, all five parameters are analyzed only for medical purposes, trying to define abnormal
heart activity, and to obtain its deviation parameter. For the recognition of emotions, in most cases,
QRS Complex is used, which defines activation of the heart related with human emotional state and is a
suitable indicator to recognize main emotions, but there are also difficulties in the emotion recognition
due to the fact that this indicator has variant sensitivity to specific emotions. Results of research
provided by Cai, Liu, and Hao [73], shows that sadness can be recognized more easily and precisely
than emotion of joy. The majority of studies related to ECG based emotion recognition focus on the
definition and evaluation of QRS amplitudes and the duration between those waves. Further, there
are set of researches focused on the analysis of QT/QTc dispersion [74] which provides proof that this
interval is related with anxiety level and can be used as a marker to recognize intense anger.

Table 3. Description of main parameters of electrocardiography (ECG) signal [75].

Parameter Duration, s Amplitude, mV Short Description

P ~0.04 ~0.1–0.25
This wave is a result from strial contraction (or
depolarization). P wave that exceeds typical values
might indicate atria hypertrophy.

PR 0.12–0.20 –
The PR interval measured from the start of the P
wave to the start of Q wave. It represents the
duration of atria depolarization (contraction).

QRS Complex 0.08–0.12

The QRS complex measured from the start of Q wave
to the end of S wave. It represents the duration of
ventricle depolarization (contraction). If the duration
is longer, it might indicate the presence of bundle
branch blocks.

QT/QTc ~0.41

It is measured from the start of the Q wave to the end
of T wave. QT interval represents the duration of
contraction and relaxation of the ventricles. Duration
of QT/QTc varies inversely with the heart rate.

Main drawback of the 12-lead ECG is that it produces huge amounts of data, especially when used
for a long number of hours. Physicians use the 12-lead ECG method because it allows them to view
the heart in its three dimensional form, thus enabling the detection of any abnormality that may not
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be apparent in the 3-lead or 6-lead ECG techniques [69]. ECG application in the automated emotion
recognition requires using sophisticated signal processing techniques, which enables detection and
extraction of the required parameters from the raw signal. A majority of QRS complex extraction
techniques based on assumption that, at the beginning, it is enough to define P or R peaks, and other
parameters (Figure 5b) will be estimated using these peaks since the signal shape is stable. There are a
huge number of researches available focused on different types of feature extraction methods. Some of
those methods include heart rate variability (HRV), empirical mode decomposition (EMD) with-in
beat analysis (WIB), FFT analysis, and various methods of wavelet transformations [51]. A detailed
overview of various methods used for emotion recognition from ECG is presented in [76]. Analysis
of related researches shows the suitability of the ECG technique for precise emotion recognition in
the laboratories and predefined stable environments, but fundamental limitations exist that do not
allow application of this method for contactless instantaneous emotion recognition. Such methods of
emotion evaluation will inevitably be required in future applications in the field of neuromarketing,
tutoring, or human–machine interaction.

Due to the complicity of ECG signal analysis in practical applications, quite often, ECG is used
in conjunction with other emotion recognition techniques. A short overview of scientific researches
based on ECG is presented in Table 4.

Table 4. Review of scientific researches focused on emotion recognition and evaluation using ECG.

Aim Emotions Methods Hardware and Software Ref.

Study focuses on emotion
recognition for service robots in
the living space

High/neutral/low
valence. Negative
arousal categorized into:
sadness, anger, disgust,
and fear

ECG Wireless bio sensor RF-ECG [1]

This research suggests an
ensemble learning approach for
developing a machine learning
model that can recognize four
major human emotions

Anger; sadness; joy; and
pleasure ECG Spiker-Shield Heart and

Brain sensor [51]

Creation of new methodology
for the evaluation of interactive
entertainment technologies.

Level of arousal

ECG, galvanic skin
response (GSR),
electromyography of the
face, heart rate

Digital camera, ProComp
Infiniti system and sensors,
BioGraph Software from
Thought Technologies.

[4]

Presentation of new AfC
methodology capable of
recognizing the emotional state
of a subject.

High/low valence and
arousal ECG, EEG

B-Alert X10 sensor
(Advanced Brain
Monitoring, Inc., USA)

[77]

Proposed new method for the
automatic location of P-QRS-T
wave, and automatic feature
extraction

Joy and sadness ECG BIOPAC System MP150 [73]

Despite the above-described drawback, ECG remains a powerful and prospective technique for
emotion recognitions since it allows to measure signals in the human body which are directly related
with emotional states. The fact that many researches focuses on creation of new methods of useful
information extraction allows to state that ECG based emotion recognition is a great medium for the
implementation of various machine-learning techniques. Machine learning allows for automatically
analyzing a huge amount of data and to define relations between measurements performed under
various circumstances: states when a human is relaxed or affected by some stimulus. Moreover, due to
high precision ECG being complemented by machine learning based signal analysis and processing
techniques, it is possible to use for researches of emotion perception mechanisms and for the creation
of predictive models based on the long-term monitoring of human behavior and emotional response.
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2.3. Galvanic Skin Response (GSR)

The galvanic skin response (GSR), also known as electrodermal activity (EDA) or skin conductance
(SC), is a continuous measurement of electrical parameters of human skin. Most often, skin conductions
is used as the main parameter in this technique. Electrical parameters of the skin are not under
conscious human control [78] since, according to the traditional theory, they depend on the variation of
sweat reaction, which reflects changes in the sympathetic nervous system [79]. There is proof that some
output signals from sympathetic nervous bursts are followed by the changes of skin conductance [80].
Emotional changes induce sweat reactions, which are mostly noticeable on the surface of the hands
fingers and the soles. Sweat reaction causes a variation of the amount of salt in the human skin and this
leads to the change of electrical resistance of the skin [81]. When sweat glands becomes more active,
they secrete moisture towards the skin surface. That changes the balance of positive and negative ions
and affects the electrical currents’ flow property on the skin [82].

Skin conductance is mainly related with the level of arousal: if the arousal level is increased, the
conductance of the skin also increases. GSR signal amplitude is associated with stress, excitement,
engagement, frustration, and anger, and the obtained measurement results correlate with the
self-reported evaluation of arousal [83]. Attention-grabbing stimuli and attention-demanding tasks
lead to the simultaneous increase of the frequency and magnitude of GSR. So, GSR allows not only to
recognize emotions, but also to automatically detect decision making process [84].

In the GSR method, the electrical conductance of the skin is measured using one or two sensor(s) [81]
which consist special electrodes containing Ag/AgCl (silver-chloride) contact points with the skin.
There is a variety of possibilities for placing electrodes (Figure 6) [85,86], but usually sensors are
attached to the fingers, wrist, shoulder, or foot (positions 1, 4, 10, and 6 in Figure 6).Sensors 2020, 20, x FOR PEER REVIEW 10 of 41 
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A raw GSR signal contains information about two types of activity: tonic and phasic (Figure 7).
The conductivity level of tonic activity changes slowly and individually for each human, and it mainly
depends on their skin hydration level, dryness, and autonomic regulation in response to environmental
factors such as temperature, for example. Phasic responses are short term peaks in GSR, mostly
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independent of the tonic level and reflecting reactions of the sympathetic nervous system to emotionally
arousing events [87].
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Since a GSR signal contains useful information related with its amplitude and frequency, usually,
it is analyzed in time and frequency domains by applying various techniques and extracting such
statistical parameters as: median, mean, standard deviation, minimum, maximum, as well as ratio
of minimum and maximum [78]. The application of traditional signal analysis methods for GSR
measurements is complicated by the fact that a signal contains low and high frequency components,
and a reaction to the same stimulus is not always identical. Implementing machine learning algorithms,
it is possible to increase the precision of emotion recognition and to recognize specific emotions related
with the level of arousal, e.g., excitement or stress [81].

Compared to ECG and EEG, GSR gives less information about emotional state, but it has a few
important advantages:

(i) it requires fewer measuring electrodes, which allows for the easier use of wearable devices and
definition of emotional states when a person engages in normal activities;

(ii) GSR provides fewer raw data, especially if long term monitoring is performed, this allows to
analyse obtained data more quickly and does not require a lot of computational power;

(iii) equipment required for GSR measurements is much more simple and cheaper, if special electrodes
are available, a measuring device can be assembled using popular and freely available components
(ADC converters, microcontrollers, etc.).

The main drawback of the GSR method it is lack of information related to the valence level. This
issue is usually solved additionally implementing other emotion recognitions methods, and these
complementarily obtained results allows to perform detailed analysis. A short review of researches
where GSR is used for emotion recognition is provided in Table 5.
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Table 5. Review of scientific researches focused on emotions recognition and evaluation using GSR.

Aim Emotions Methods Hardware and Software Ref.

Stress level evaluation in
computer human
interaction.

Stress GSR, eye activity
Mindfield eSense sensor,
Tobii eye-tracker
environment (Tobii Studio)

[34]

Creation of textile
wearable system, which is
able to perform an
exosomatic EDA
measurement using AC
and DC methods.

Level of arousal GSR
Textile electrodes, from
Smartex s.r.l. (Pisa, Italy),
installed into special glove

[89]

Research of proposed
methodologies for
emotions recognition from
physiological signals

Valence and
arousal levels GSR, heart rate Polar-based system,

Armband from Bodymedia [90]

Assessment of human
emotions using peripheral
as well as EEG
physiological signals on
short-time periods

High/neutral/low
valence and arousal

GSR, EEG, blood
pressure

Biosemi Active II system
(http://www.biosemi.com),
plethysmograph to
measure blood pressure

[91]

Assessment of human
emotion from
physiological signals by
means of pattern
recognition and
classification techniques

High/low valence
and arousal

GSR, EEG, blood
pressure, a
respiration,

temperature

Biosemi Active II device
(http://www.biosemi.com),
GSR sensor,
plethysmograph,
respiration belt and a
temperature sensor

[92]

Creation of wearable
system for measuring
emotion-related
physiological parameters

– GSR, heart rate,
skin temperature

Originally designed glove
with installed sensors [93]

Validation of new method
for the emotional
experience evaluation
extracting semantic
information from the
autonomic nervous system

High/low valence
and arousal

GSR, ECG, heart
rate,

Bodymedia Armband,
InnerView Research
Software 4.1 from
Bodymedia

[94]

Development of two state
emotion recognition
engine for mobile phone

Pleasant
unpleasant

GSR,
Photoplethysmogram

(PPG), Skin
temperature

– [95]

From a review of papers, provided in Table 5, several directions of research are noticeable. The first
direction of interest is the development and validation of emotion recognition methods combining
GSR and other techniques. The second direction is the development of various wearable sensors.
The third direction is the implementation of modern signal processing and analysis techniques in
order to create systems, which will be able to define certain emotions with extremely high reliability.
An example of such applications is provided in [96], which proposes a stress detection system wherein
only two physiological signals are required, namely GSR and heart rate. The study comes up with
the conclusions that the best approach combining accuracy and real-time application uses fuzzy logic,
modelling the behavior of individuals under different stressing and non-stressing situations, and using
that proposed system definitely detected stress by means of fuzzy logic with an accuracy of 99.5%.

2.4. Heart Rate Variability (HRV)

HRV is an emotional state evaluation technique based on the measurement of heart rate variability,
which means the beat-to-beat variation in time within a certain period of sinus rhythm (RR interval

http://www.biosemi.com
http://www.biosemi.com
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in Figure 5b). Unlike mean heart rate variance, which is expressed in a period of 60 s, HRV analysis
examines the nuance time variance in each cycle of a heartbeat and its regularity [97]. The variability in
heart rate is regulated by the synergistic action of the two branches of the autonomous nervous system,
namely the sympathetic and parasympathetic nervous system. The heart rate represents the net effect
of the parasympathetic nerves, which slow heartrate, and the sympathetic nerves, which accelerate
it. These changes are influenced by emotions, stress, and physical exercise [98,99]. Moreover, HRV
depends on age and gender, and additional factors include physical and mental stress, smoking, alcohol,
coffee, overweight, and blood pressure, as well as glucose level, infectious agents, and depression.
Inherited genes also significantly affect heart rate variability. A low HRV indicates a state of relaxation,
whereas an increased HRV indicates a potential state of mental stress or frustration [100].

The classical technique for HRV measurements is ECG [97] which measures the primary electro
biological signal related with heart activity and provides the ability to define the time between heart
pulses by extracting information about the RR interval (Figure 5b) variation in respect to time. Variation
of RR interval from ECG signal can be extracted using common peak detection techniques, which
allows for defining the duration between each R peak and forms an HRV signal, which expresses the
variation of interval between R peaks in respect to time.

A common method of HVR analysis usually includes analysis methods in time and frequency
domains [97]. Various studies based on analyses in one or both domains are shortly reviewed in [101].
The application of HVR for emotions recognition is complicated by the fact that HRV affects other
factors, and in order to solve this issue, various signal filtration and feature extraction techniques
are implemented. There exist approximately 14 different parameters, which are able to extracted by
analyzing HRV. A detailed description of these parameters and their relation with main emotions is
presented in [102]. The most common technique used for HRV analyses is the calculation of power
spectral density (PSD) of the signal [101]. The PSD represents the spectral power density of a time
series as a function of frequency. Typical HRV measurements taken from frequency domain analysis
are powers within frequency bands and ratios of powers. The amount of power contained within a
frequency band can be obtained by integrating the PSD within the band frequency limits [103].

The main drawback of HRV based on ECG is related to the features of ECG, mainly the
complexity of sensors and high requirements for the measurement procedure in order to minimize
affects from the environment. An alternative for ECG based HRV is photoplethysmography (PPG).
Photoplethysmography is a technique to detect a change of microvascular blood volume in tissues.
The principle of this technology is very simple and it requires only a light source and a photodetector.
The light source illuminates the tissue and the photodetector measures the small variations in
transmitted or reflected light (Figure 8a,b) associated with changes in perfusion in the tissue [99].
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The PPG signal (Figure 8b) consists of two main components:

(i) the static part of signal depends on the structure of the tissue and the average blood volume
arterial and venous blood, and it varies very slowly depending on respiration;

(ii) the dynamic part represents changes in the blood volume that occurs between the systolic and
diastolic phases of the cardiac cycle [104].

PPG signals, which are analogous voltage values in the time domain, are analyzed using methods
similar to those used for the analysis of ECG based HRV. The main difference of the latter to PPG is the
filtering of its signal using high-pass filters before defining peaks and forming HRV signal.

PPG can be performed using only one sensor attached to the finger, or using multiple sensors
attached to the right and left ear lobes, index finger pads, and great toe pads [105].

There is a variety of studies proving the successful implementation of this technique and
demonstrating its advantages compared to ECG [106,107]. In [105], a comparison between ECG and
PPG signal (Figure 9) is presented which proves strict relations between both signals. Delays of
PPTp and PPTf in a PPG signal represent the transition time until a pulse from the heart reaches
themeasuring point.

Recently, there has been increased interest in remote photoplethysmography (rPPG) whereby it
is possible to recover the cardiovascular pulse wave by measuring variations of back-scattered light
remotely, using only ambient light and low-cost vision systems [99]. Remote measurements allow to
significantly increase human comfort level during the measurement procedure, but this decreases the
signal noise ratio and increases the need for more advanced signal processing and analysis algorithms.
In [108], machine learning algorithms were implemented in order to the increase precision of HVR
measurements performed by smart watches. Results of this research prove that ML is useful tool for
PPG measurements data analysis and the extraction of desired features.
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Compared to EEG or ECG, HRV (especially based on the PPG technique) is a more comfortable,
cheap, and quite universal method. A variety of possible measurement methods in [110] presented a
HRV evaluation approach based on heart sound measurements, proving that heart sound correlates
well with RR interval from ECG. Another HVR measurement approach using Doppler radar presented
by Boris-Lubecke et. al. [111]. In this case, a transceiver transmits a radio wave signal and receives a
motion-modulated signal reflected from a human chest which acts as target. Considering that chest
movement amplitude in the calm state is about 10 mm due to respiratory and about 0.1 mm due to
heart activity, it is possible to extract HRV features from the recorded response signal. A short review
of researches focused on emotion recognition using HRV is presented in Table 6.

Table 6. Review of scientific researches focused on emotions recognition and evaluation using HRV.

Aim Emotions Methods Hardware and Software Ref.

Objective of this study was to
recognize emotions using EEG
and peripheral signals.

High/low valence
and arousal

HRV, EEG, GSR,
blood pressure,
respiration

Biosemi Active II system
(http//www.biosemi.com). GSR
sensor, plethysmograph, respiration
belt

[112]

Creation of new method for the
identification of happiness and
sadness

Happiness and
sadness

HRV, skin
Temperature (SKT), SKT sensor, PPG sensor [113]

Aim of this project was to
design a noninvasive system
which will be capable of
recognizing human emotions
using smart sensors

Happiness
(excitement),
sadness, relaxed
(neutral), and
angry

HRV, skin
temperature SKT,
GSR

Custom made PPG sensor, DS600
temperature sensor by
Maxim—Dallas semiconductor,
Custom made GSR sensor

[114]

This article describes the
development of a wearable
sensor platform to monitor a
mental stress.

Mental stress HRV, GSR,
respiration

Heart rate monitor (HRM) (Polar
WearLink+; Polar Electro Inc.),
Respiration sensor (SA9311M;
Thought Technology Ltd.), GSR
sensor (E243; In Vivo Metric
Systems Corp.). EMG module
(TDE205; Bio-Medical Instruments,
Inc.)

[115]

This paper investigated the
ability of PPG to recognize
emotion

High/low valence
and arousal HRV PPG sensor [116]

The present research proposes a
novel emotion recognition
framework for the computer
prediction of human emotions
using wearable biosensors

Happiness/Joy,
anger, fear, disgust,
sadness

HRV, GSR, SKT,
Activity
recognition

PPG sensor, GSR sensor, SKT,
fingertip temperature; EMG
gyroscopes and accelerometer for
activity recognition, Android
smartphone for data collection

[117]

From Table 6, it is evident that HRV is a quite popular and powerful technique for emotion
recognitions. The results of the performed review shows that, in this field, the situation is in contrast to
the situation with EEG or ECG, where the attention of researches is directed to the full development

http//www.biosemi.com
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of PPG and rPPG techniques, including the development of a novel configuration of wearable PPG
sensors, improvement of signal analysis and measurement methods, and the exploration of new
application fields.

The main advantage of PPG based HRV consists in the absence of the requirement for special
human preparation. Usually, it is enough to touch the active surface of the sensor for a few seconds.
The rPPG method provides the possibility of non-contact measurements. Nevertheless, cheap PPG
equipment and its accessibility to any potential user is so simple that even the touchscreen of common
smartphone can be used as PPG sensor. Mentioned features of this methodology reveal the potential of
its implementation in a wide area of applications, especially in the area of human–machine interaction
and IoT, since sensors of this type can be easily installed into joysticks and other machine control
devices, and can even be hidden for users.

In special cases, when a multitude of emotions or their detection accuracy has requirements
by conditions, the HRV technique needs to be complemented by other techniques, such as ECG,
GSR, and data fusion. Such a situation develops the high potential for the applications of big data
analysis techniques.

2.5. Respiration Rate Analysis (RR)

Respiratory monitoring data contains useful information about emotional states. Respiration
velocity and depth usually vary with human emotion: deep and fast breathing shows excitement that
is accompanied by happy, angry, or afraid emotions; shallow and fast breathing shows tension; relaxed
people often have deep and slow breathing; shallow and slow breathing shows a calm or negative state.
A normal breathing rate in calm states is about 20 times per minute, while in excitement, it can reach
up to 40–50 times per minute [118]. The respiration processes is quite complex, and it affects a major
part of the body, and due to this many techniques for respiration evaluation exist. Main measurement
methods fall into several groups according to measurement principles:

i. manual or semi-automatic breath rate evaluation using simple timers or specialized
software applications;

ii. methods based on measurements of air humidity fluctuation in exhaled air;
iii. methods based on measurements of temperature fluctuation in exhaled air;
iv. measurements based on definition of air pressure variation due to respiration;
v. methods based on measurements of variation of carbon dioxide concentration;
vi. measurements of variation of oxygen concentration;
vii. methods based on measurements of body movements;
viii. methods based on measurements of respiratory sounds.

Moreover, it is possible to extract respiratory rate from ECG, PPG, or even blood pressure
measurements. All above mentioned methods are explained in detail in [119]. Another very detailed
review focused on respiration measurement methods, sensors, and signal processing techniques is
provided in [120].

Despite the numerous methods for respiration rate measurement, the popularity of implementation
of this technique in the field of emotion recognition is lower in comparison with ECG, GSR, or HRV
methods. The main obstacles limiting the application of respiration monitoring are caused by the
nature of the signal. Although breath rate depends on emotional state, it can be affected by a variety of
external factors, such as human body movement or the level of human fatigue, while environmental
conditions, such as air temperature and humidity level also can influence measurement results.
Such complex signal requires to implement advanced signal processing techniques, like machine
learning algorithms [118] or complement research by using additional measuring methods in order to
extract required information from measurement signals. The use of the latter is limited by the fact that
a majority of measurement methods requires the use of contact sensors, thus creating discomfort and
limitations for normal human activity.
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The main advantage of the emotion evaluation technique, based on respiration rate analysis is
it’s possibility to implement non-contact measurements methods unlike in EEG or ECG, for example
measurements of body movement using video or thermal cameras. In the case of using video
camera, signal, which shows respiration rate variation in respect to time, information obtained from
tracking displacement of reference point by comparing sequentially, recorded frames by video analysis
algorithms. The use of thermal cameras defines respiration rate by analyzing temperature fluctuations
near the mouth and nose area caused by exhaled air.

A short review of researches with respiration rate analysis for emotion recognition is provided in
the Table 7.

Table 7. Review of scientific researches focused on emotions recognition and evaluation using
respiration rate measurements.

Aim Emotions Methods Hardware and Software Ref.

This paper investigates
computational emotion
recognition using multimodal
physiological signals

Positive, negative
and neutral arousal

PPG, GSR,
respiration rate
skin temperature

Pulse oximeter (PP-CO12,
TEAC Co.) GSR, (PPS-EDA,
TEAC Co, AP-U030, TEAC
Co.), respiration rate sensor
(AP-C021, TEAC Co.),
temperature sensor clip
(AP-C050, TEAC Co.)

[121]

This paper introduces an
automated approach in
emotion recognition, based on
several bio signals

Stress,
disappointment,
euphoria

Electromyograms
(EMGs), ECG,
respiration rate,
and GSR.

EMG textile fireproof sensors;
the ECG and respiration
sensors on the thorax; the GSR
textile and fireproof sensor
placed special glove

[122]

To compare time, frequency,
and time-frequency features
derived from thermal infrared
data discriminates between
self-reported affective states of
an individual in response to
visual stimuli drawn from the
international affective pictures
system

High/neutral/low
valence and arousal

Facial thermal
infrared data,
blood volume
pulse (BVP), and
respiratory effort

FLIR Systems ThermaCAM
(SC640) long wavelength
infrared (LWIR) camera, piezo
crystal respiratory effort
sensor belt 1370G by Grass
Technologies, BVP sensor
(PPS) by Grass Technologies
Atmospheric temperature
sensor HS-2000D

[123]

Design experimental stand
which is used in monitoring
human-system interaction

High/low arousal

GSR,
Electromyography
(EMGs,)
respiration rate,
EEG, blood-volume
pulse, temperature

SC-Flex/Pro sensor, MyoScan
Pro EMG, Respiration rate
sensor, EEG-Z sensor,
HRV/BVP Flex/Pro sensor
Temperature sensor

[124]

This paper aims at assessing
human emotion recognition by
means of the analysis of HRV
with varying spectral bands
based on respiratory
frequency

High/neutral/low
arousal

ECG, respiration
rate, blood
pressure (BP), skin
temperature (ST)
GSR

EEG, blood pressure, skin
temperature and GSR sensors [125]

The analysis of papers, provided in the Table 7, allows to for the conclusion of emotion recognition
based on respiration rate evaluation used as a complimentary method for enforcing other emotion
recognition and evaluation methods. Despite the fact that this method is not frequent and carries
some functional limitations, it can be successfully applied in cases where the subject takes a fixed
position and does not change it significantly during the monitoring period, for example, in the
control operation of technological machines or automotive driving. In 2005, Healey and Picard [126]
presented methods for collecting and analyzing physiological data during real world driving tasks to
determine a driver’s relative stress level. ECG, electromyogram, GSR, and respiration were recorded
continuously while drivers followed a set route through open roads. Task design analysis recognized
driver stress level with an accuracy of over 97% across multiple drivers and driving days. Provided
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with a successful example of respiration rate method, let us hope that in the future respiration rate
analysis, complemented by other methods can become a big player in emotion analysis within the field
of human–machine interaction.

2.6. Skin Temperature Measurements (SKT)

The best bio signal for automatic emotion recognition is signals, which represent a reaction of the
autonomic nervous system, which is beyond human control. Skin temperature is one such parameter,
related to the human heart activity and sweat reaction. The thermal radiation of a cutaneous surface
depends on the perfusion controlled by the autonomic nervous system, which controls the vessels
that irrigate the skin. Although the parasympathetic system has an influence through the endothelial
cells (in body places like: palmar and plantar surfaces, tip of the nose, sensitive point on the face),
the vasomotion is principally regulated by sympathetic noradrenergic fibers, whose activation leads
to vasoconstriction and to the decrease of local temperature [127]. In [128], the results prove a good
correlation between skin-surface temperature and fingertip blood flow. In [129] it was defined that
finger temperature varies due to emotional states and an applied stimulus. Emotions like stress with
predominant anxiety, anger, embarrassment, humiliation, joy with anxiety, depression with hostility,
guilt, fear of abandonment or fear of conflict over the use of hands for aggressive and sexual purposes,
causes decrease of finger temperature. In cases when a patient was not involved in action, but only
affected by the speech of another human, experiencing such emotional reactions as anger and anxiety,
there was a fall in finger temperature. In addition, a fall of temperature was detected in situations
which disturb human safety devices. Similar results were also defined in [130] where it was found
that the skin temperature of patients was higher for the expression of low intensity negative emotions
compared to the expression of low intensity positive emotions.

In the literature, the most often used temperature measurements methods include: contact
method based on the implementation of various semiconductors sensors [117] and non-contact method
based on face or full body thermal imaging using infrared cameras [127]. A typical example of skin
temperature changes due to an applied stimulus is provided in Figure 10.
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Advantage of SKT is possibilities of non-contact measurements, which provides high comfort for
the patients and allows eliminating Hawthorne effect (people behave differently, while being observed).
Moreover, SKT can be used evaluate emotions not only for humans, but also for animals. In [131,132],
stress and body temperature dependencies in animals are discussed, these studies assert that, under
stress, animals experience a rise in temperature.
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The main drawback of the SKT technique is quite big latency compared to the previously described
method. This creates some limitation for this method: a stimulus is required which will take some
amount of time and will cause intense emotions, due to this, SKT is well suited to evaluating longer
actions like songs or advertising videos, but is not the best choice for evaluating pictures or situations
which disappear in a short period of time. The inability to recognize an exact emotion is also a
drawback of this method, which can be compensated for by combining SKT with other techniques,
but usually it will be less reliable compared with other methods. In [133] presented research, where
the input signals were electrocardiogram, skin temperature variation, and GSR, all of which were
acquired without much discomfort from the body surface, and can reflect the influence of emotion on
the autonomic nervous system. A support vector machine was adopted as a pattern classifier. Correct
classification ratios for 50 subjects were 78.4% and 61.8%, for the recognition of three (sadness, anger,
stress) and four (sadness, anger, stress, surprise) emotion categories, respectively.

A short summary of researches in which SKT was implemented is provided in Table 8.

Table 8. Review of scientific researches focused on emotions recognition and evaluation using SKT.

Aim Emotions Methods Hardware and Software Ref.

Present App for smartphones
CaptureMyEmotion, which can
improve learning process of
autistic children.

High/low arousal SKT, GSR, motion
analysis

Q sensor from Affectiva
(www.affectiva.com). [134]

Proposed a new method for
evaluating fear, based on
nonintrusive measurements
obtained using multiple
sensors

Fear EEG, SKT, eye
blinking rate

EEG device (Emotiv EPOC),
commercial thermal camera
(ICI 7320 Pro) commercial
web-camera (C600) and a
high-speed camera

[135]

Study infant emotion rely on
the assessment of expressive
behavior and physiological
response

Joyful emotion SKT Thermal imaging system
(TH3104MR, NEC, Sanei) [136]

To demonstrate that the effects
of particular emotional stimuli
depend not only on physical
temperatures but also on
homeostasis/thermoregulation.

Emotionally warm
or emotionally cold
state

- – [137]

Present new methodology
which offers a sensitive and
robust tool to automatically
capture facial physiological
changes

High/low valence
and arousal SKT, ECG, GSR

ECG and GSR National
Instruments (NI) devices,
infrared camera FLIR A615

[138]

Evaluation of possibility of
wireless determination of skin
temperature using iButtons

– –
iButton (type DS1921H;
Maxim/Dallas Semiconductor
Corp., USA)

[139]

Present a new approach how
to analyze the physiological
signals associated with
emotions

Sadness,
amusement, fear,
anger, surprise

SKT, GSR BodyMedia, SenseWear
armband [140]

Present a new StressCam
methodology for the
non-contact evaluation of
stress level

Stress SKT Infrared camera [141]

From the information provided in Table 8, it is seen that SKT is a popular emotion evaluation
method, which fits good with other methods and doesn’t require complicated measurement equipment
in the case of contact measurements. This is well suited for the cases where high recognition precision
is not required. The results of the performed review points to the focus of researches in this field of the
development and evaluation of a new emotion recognition methodology based on SKT measurements,
and to the improvement of non-contact emotion evaluation techniques, which are able to define one or

www.affectiva.com
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a few intense emotions. Such methods have great potential in the future of smart applications and can
be useful in medicine, tutoring, human–machine interaction etc.

2.7. Electromyogram (EMG)

Electromyography is a technique for evaluating and recording the electrical potential generated
by muscle cells [142]. In medicine, this test is used to detect neuromuscular abnormalities, in emotion
recognition field it is used to find the correlation between cognitive emotion and physiological
reactions [142]. A majority of EMG based researches focus on the analysis of facial expressions
due to the hypothesis that facial mimicry contributes to the emotional response to various stimuli.
This hypothesis was first announced by Ekman and Friesen in 1978 [143] who described dependencies
between simple emotions, facial muscles, and their caused actions (Table 9). Depending on the purpose
of analysis, the activity of selected facial muscles (most often: occipitofrontalis, corrugator supercilii,
levator labii superioris, zygomaticus major and orbicularis oculi) can be recorded [144].

Table 9. Relations between emotions and facial expressions [145,146].

Emotion Involved Muscles Actions

Happiness Orbicularis oculi, Zygomaticus
major

Closing eyelids, pulling mouth
corners upward and laterally

Surprise Frontalis, Levator palpebrae
superioris

Raising eyebrows, raising upper
eyelid

Fear Frontalis, Corrugator supercilii,
Levator palpebrae superioris

Raising eyebrows, lowering
eyebrows, raising upper eyelid

Anger
Corrugator supercilii, Levator
palpebrae superioris, Orbicularis
oculi

Lowering eyebrows, raising upper
eyelid, closing eyelids

Sadness Frontalis, Corrugator supercilii,
Depressor angulioris

Raising eyebrows, lowering
eyebrows, depressing lip corners

Disgust Levator labii superioris, Levator
labii superioris alaeque nasi

Raising upper lip, raising upper
lip and wrinkling nasal skin

The EMG procedure is performed by measuring voltages between special electrodes. The EMG is
usually done in two steps: in the first step, a baseline is defined (voltage level then human is in calm
state) [147]. This level is unique for each person and depends on multiple factors. In the second step,
the response to stimulus is measured, and the caused effect evaluated as a ratio between base line and
measured value.

Typical places for electrode location during facial EMG are shown in Figure 11. A huge variety of
electrodes can be classified into a few groups according their properties [148]. There are two main
types of EMG electrode: surface (or skin electrodes) and inserted electrodes. Inserted electrodes are
further classified into two types: needle and fine wire electrodes (Figure 12a,b). Surface electrodes can
also be classified into two types: dry electrodes and gelled electrodes (Figure 12c,d).
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Needle electrodes are most often used in medical applications. They consist of wire, which is
isolated by a special thin tube, and only the end point of the electrode acts as an active contact surface.
The advantages of these electrodes include a good signal noise ratio and the possibility to take a precise
readout from a relatively small area. Wire electrodes can be made from any small diameter, highly
non-oxidizing, stiff wire with insulation. Wire electrodes are extremely fine, they can be implanted
more easily, and they are less painful compared to the needle electrodes.

Gelled surface electrodes contain a gelled electrolytic substance, which allows an electric current
from the muscle to pass across the junction between skin, electrolyte, and electrode. Silver chloride
(Ag-AgCl) gelled electrodes are used most often. Dry EMG electrodes do not require a gel interface
between the skin and the detecting surface. Dry electrodes are usually heavier (>20 g) as compared to
gelled electrodes (<1 g), and due to this, special material for fixation of the electrode on the skin is
required. The main advantages of surfaces electrodes, compared to needle ones, is that they can be
reusable, and they allow non-invasive measurements. Moreover, universal electrodes [150] can be
used for EMG, EEG, and ECG procedures just by changing the electrode location and data acquisition
device. Drawbacks of the use of surface electrodes is the strict requirements for skin preparation
(shaved hair, degreased skin), bigger measurement area, and inefficient signal noise ratio.

Comparing to the latter, procedures of measurement using EMG, EEG, and ECG are similar, but
in scientific research, procedures of EMG are seldom used. The main limitation of EMG it is sensitivity
to the emotion intensity, however it is a very good technique to detect strong emotions. Nevertheless,
small changes of valence and arousal intensity could not be detected, since facial expressions changes
only due to strong emotions [151]. The second limitation is the same as for EEG and ECG: This
procedure requires the use of contact measurement methods, and therefore it affects comfort level
of the persons and creates limitations for their casual activity. In addition, EMG (especially when
surface electrodes are used) similarly to ECG, raises requirements for the room in which the procedure
is performed: it is necessary to protect from direct sunlight and from electromagnetic noise. Direct
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sunlight can cause uncontrolled movement of facial muscles; electromagnetic noise can increase noise
level in the signal and destroy measurement signals. An advantage of EMG compared to EEG and
ECG is the relatively simple analysis of a signal, since various muscles or their groups are affected by
different emotions, and separate emotions can be more easily defined analyzing recorded signals.

Comparing emotion recognition and precision EMG gives better results than SKT. In [122] a
methodology and a wearable system for the evaluation of the emotional states of car-racing drivers
is presented. The proposed approach performs an assessment of the emotional states using facial
electromyograms, electrocardiogram, respiration, and GSR. The emotional classes identified are
high stress, low stress, disappointment, and euphoria. Support vector machines (SVMs) and an
adaptive neuro-fuzzy inference system (ANFIS) have been used for the classification. The overall
classification rates achieved by using tenfold cross validation are 79.3% and 76.7% for the SVM and the
ANFIS, respectively.

A short summary of researches where the EMG methodology is implemented is provided in
Table 10. In a majority of cases, EMG is used in combination with other methods, and researchers
have focused on the development of emotion recognition methods and data classification and
analysis techniques.

Table 10. Review of scientific researches focused on emotions recognition and evaluation using EMG.

Aim Emotions Methods Hardware and Software Ref.

Research of possibility to
reliably recognize emotional
state by relying on
noninvasive low-cost EEG,
EMG, and GSR sensors

High/low valence
and arousal

EEG, GSR, EMG,
HRV

BrainLink headset, Neuroview
acquisition software, Shimmer
GSR+Unit Shimmer EMG
device, a plethysmograph

[152]

Present a new approach for
monitoring and detecting the
emotional state in elderly

High/low arousal
EDA, HRV, EMG,
SKT, activity
tracker

EDA-custom made sensor, a
plethysmograph, SKT
resistance temperature
detector, 3-axis accelerometer

[153]

Present a model that allows to
determine emotion in real time

High/low valence
and arousal EMG, GSR ProComp Infiniti Bio-signal

Encoder, GSR sensor [154]

Present a methodology and a
wearable system for the
evaluation of the emotional
states of car-racing drivers

Anger, fear, disgust,
sadness, enjoyment
and surprise

EMG, GSR, ECG,
respiration rate

EMG textile fireproof sensors;
ECG and respiration sensors
on the thorax of the driver; the
GSR sensor in the glow

[122]

Present fully implemented
emotion recognition system
including data analysis and
classification

Joy, anger, pleasure,
sadness

EMG, ECG, GSR,
respiration rate

Four-channel EMG, ECG, GSR,
respiration rate bio sensor [155]

2.8. Electrooculography (EOG)

Electrooculography is a technique for measuring the corneo-retinal standing potential that exists
between the front and the back of the human eye. Primary applications appear in ophthalmological
diagnosis and in recording eye movements [156]. To measure eye movement, pairs of electrodes are
typically placed either above or below the eye, or to the left and right of the eye (Figure 13a). If the eye
moves from center position toward one of the two electrodes, an electrical potential appears between
those electrodes which corresponds to the eye’s position (Figure 13b) [157]. The idea of implementing
EOG for emotion recognition is based on the same hypothesis as EMG, and EOG is often used as a
complementary technique. EOG in most cases relies on the detection of eye-blinking and is useful to
detect emotions such as stress or surprise [158]. EOG is also useful for assessing fatigue, concentration,
and drowsiness [159]. A comparison between response signals from EMG and EOG provided in
Figure 14.
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EOG can be applied using contact and non-contact measurement techniques. Contact
measurements suitable using EMG electrodes and same equipment. Non-contact measurements
can be performed using video camera videooculographysystems (VOG) or infrared camera infrared
oculography (IROG) [157].

From Figure 14, it is evident that an EOG signal correlates with EMG in time scale, but signal
amplitude is much smaller and some latency between vertical and horizontal EOG is noticeable. The
complexity of EOG signal processing depends on the measurement method and on the information
which can be extracted from the signal. The simplest case is blinking detection, which is represented
by peaks in the time-domain signal recorded from electrodes. The detection of exact eye position
will require recording the baseline and conscious eye movements in order to have a relation between
voltage variation and the position of the eye (Figure 14). The extraction of time-dependent features
will require some analysis in the frequency domain, for example, FFT or Wavelet transformation [163].
In the case of non-contact measurement, this method uses analysis under different vision-based object
detection and tracking algorithms.

Compared to EMG, EOG is less powerful technique (it can recognize less amount of simple
emotions) but it provides the possibility of non-contact measurements. Disadvantages of EOG and
EMG quite similar: if the procedure is performed in a natural office environment, test eye movement
can be caused by some unrelated external effect, like bright sunlight, noise, or influence of other persons.
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A short summary of researches wherein EOG is implemented as a methodology is provided in
Table 11.

Table 11. Review of scientific researches focused on emotions recognition and evaluation using EOG.

Aim Emotions Methods Hardware and Software Ref.

Present a novel strategy
(ASFM) for emotions
recognitions

Positive, neutral,
negative emotions EMG, EOG

Off-line experiment was
performed using SEED
datasets

[164]

Present a novel approach for a
sensor-based E-Healthcare
system,

Positive, neutral,
negative emotions EOG, IROG

Neuroscan system
(Compumedics Neuroscan,
Charlotte, NC, USA), infrared
camera with the resolution of
1280 × 720

[165]

Proposed a new approach
towards to the recognition of
emotions using stimulated
EOG signals

Positive, neutral,
negative emotions EOG

Customized EOG data
acquisition device, Ag/AgCl
electrodes

[166]

The proposed system
introduces an emotion
recognition system, based on
human eye movement

Happy, sad, angry,
afraid, pleasant EOG Video-based eye trackers [167]

Present a novel strategy of eye
movement analysis as a new
modality for recognizing
human activity.

Arousal level EOG
Commercial system Mobi
from Twente Medical Systems
International (TMSI)

[168]

The scientific research presented in the Table 11 embraces EOG technology for emotion recognition
and their intensity evaluation. A majority of techniques separate positive and negative emotion levels
(see [164–166]). The evaluation of emotion intensity level remains uncertain for many cases and not
comprehensibly described. Video-based systems demonstrate great potential for implementation
due to widespread hardware availability as well as the performance of off-line analysis of existing
video material.

2.9. Facial Expresions (FE) Body Posture (BP) and Gesture Analysis (GA)

In the past decade, there has been a noticeable increase of interest in emotions recognition methods
based on the analysis of facial expressions, body posture and gestures. This increase of interest is
possibly explained by recent advances in computer vision systems. Emotion recognition methods based
on analysis of facial expression, body postures, and gestures are based on the same [143] hypothesis as
EMG, claiming that body postures and gestures are also involved in the response of emotions [169,170]
and suitable for recognizing the same elementary emotions. A common assumption is that body
language is just a different method to express the same basic emotions, e.g., expressed by facial motion.
Moreover, the same muscles are used to express emotions in widely different cultures [171]. A summary
of main relations between body postures and emotions is provided in Table 12.

Advantages and difficulties of these methods stem from the fact that, in the human body, there
are plenty of reference points which should be monitored. One of the most advanced commercially
available system from Imotion, namely the Facial Action Coding System (FACS) [172], uses various
combinations of 64 parameters for emotion recognition. Measurements of facial expressions, body
posture, and gestures are usually performed using computer vision systems and analysis algorithms,
which can track movements of selected reference points. Such a measurement technique also has
preferences in the emotion recognition field, since it allows for the performance of non-contact
measurements and produces quite reliable results. In [173,174] presented research cases where emotion
recognition accuracy in a random scenario was 60–86%.
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Table 12. Relations between emotions and body posture [175,176].

Emotions Gestures and Postures

Happiness Body extended, shoulders up, arms lifted up or away from the body
Interest Lateral hand and arm movement and arm stretched out frontal

Surprise
Right/left hand going to the head, two hands covering the cheeks
self-touch two hands covering the mouth head shaking body
shift–backing

Boredom Raising the chin (moving the head backward), collapsed body posture,
and head bent sideways, covering the face with two hands

Disgust Shoulders forward, head downward and upper body collapsed, and
arms crossed in front of the chest, hands close to the body

Hot anger Lifting the shoulder, opening and closing hand, arms stretched out
frontal, pointing, and shoulders squared

Since the above presented method is based on the same hypothesis as EMG, similar limitations
exist:

(i) it recognizes only strong emotions which last some amount of time, response to weak emotions
or to very short not intense stimulus does not create the noticeable facial movements or change in
body posture;

(ii) the possibility exists that changes in human motion or facial expressions are due to
environmental effects.

Also, there exist a few drawbacks related to the measurement methods:

(i) huge amount of data is created while tracking a lot of reference points;
(ii) track of body posture: it is difficult to define the exact position of a reference point, which is

covered by clothes, and in this case, special marks for vision systems should be implemented.

Despite the mentioned drawback, facial expressions, body posture, and gesture tracking remain
promising techniques in the emotion recognition field, especially taking into account recent advances
in computer vision systems, big data analysis, and machine learning techniques. A short summary of
researches involving the analysis of facial expressions, body posture, and implemented gestures is
provided in Table 13.

From Table 13, it is evident that, in a majority of researches, facial expressions, body posture, and
gestures analysis methods were used together, and were even complemented by other techniques in
order to improve recognition accuracy. Also in the literature, there are presented cases where these
methods were used together with not so common techniques: for example, speech analysis [175,177,178].

Comparing facial expressions, body posture, and gestures analysis methods with previously
described methods, it can be stated that these methods are the most promising in future applications.
Especially in practical cases, which do not require extremely high accuracy and sensitivity due to their
wide applicability, a large number of measurable parameters, as well as advances in video analysis
and large data processing capabilities, allows for the implementation of a multimodal approach.

One of the most promising implementations of facial expression analysis is the Internet of
Things. IoT objects, which respond to users’ emotional states, can be used to create more personalized
user experiences. The IoT covers fields as diverse as medicine, advertising, robotics, virtual reality,
diagnostic software, driverless cars, pervasive computing, affective toys, gaming, education, working
conditions and safety, automotive industry, home appliances, etc., which will significantly benefit from
emotion-sensing technology.
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Table 13. Review of scientific researches focused on emotions recognition and evaluation using analysis
of facial expressions, body posture and gestures.

Aim Emotions Methods Hardware and Software Ref.

Presentation of ASCERTAIN-a
multimodal database for
implicit personality and Affect
recognition using commercial
physiological sensors.

High/low valence
and arousal

GSR, EEG, ECG,
HRV, facial
expressions

GSR sensor, ECG sensor, EEG
sensor, webcam to record
facial activity Lucid Scribe
software

[179]

Creation of personalized tool
for a child to learn and discuss
her feelings

Real time arousal
and stress level

Facial expression
recognition

Smartphone camera,
application
CaptureMyEmotion

[180]

This paper aims to explore the
limitations of the automatic
affect recognition applied in
the usability context as well as
to propose a set of criteria to
select input channels for affect
recognition.

Valence and
arousal, interest,
slight confusion,
joy, sense of control

GSR, facial
expressions,

Infiniti Physiology Suite
software; standard internet
camera and video capture
software from Logitech,
Noldus FaceReader, Morae
GSR recorder

[181]

This study proposes a new
method that involves analysis
of multiple data considering
the symmetrical characteristics
of face and facial feature
points

Fear

Movement of
facial feature
points such as eyes,
nose, and mouth

FLIR Tau2 640 thermal
cameras, NIR filter, Logitech
C600 web-camera

[182]

Present a novel method, for
computerized emotion
perception based on posture to
determine the emotional state
of the user.

Happiness, interest,
boredom, disgust,
hot anger

Body postures
C++ in Ubuntu 14.04. Kinect
for Microsoft Xbox 360 and
OpenNI SDK

[176]

To propose a novel method to
recognize seven basic
emotional states utilizing body
movement

Happiness,
sadness, surprise,
fear, anger, disgust
and neutral state

Gestures and
body movements Kinect v2 sensor [183]

The analysis of facial expression, body movements, and gestures represent a contactless method
applicable for mass and individual emotion recognition. All techniques are simple to collect data but
require sophisticated video frame analysis in dynamics and sculpted surface analysis for static frame
content. Methods for facial recognition and gesture recognition are typically separate, but material for
them is the same. Methods are available in real time systems and in the off-line mode, and therefore
in-depth analysis, the development of reactions in the time progression, and human test progression
easily possible. As video-based systems, these techniques demonstrate the potential to grow in
the future.

All positive features of mentioned methods are limited by a great amount of data, which raises the
requirement for data storing, processing, and cross-analysis time. Cloud computing and IoT represent
some solutions, but then mobile data transmission can be a bottleneck for the recent situation. Another
drawback would be low accuracy in the intensity level definition, as temperament is a key parameter
in gesture and facial expression.

3. Signal Analysis and Features Extraction Methods

Reliability, precision, and speed of emotion evaluation strongly depend not only on the used
measurement method and sensor, but also on the applied signal processing and analysis technique.
In this chapter, we will provide a review of the most commonly used signal analysis and feature
extraction methods (Table 14).
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Table 14. Analysis of previous studies on emotion recognition.

Emotions Measurement
Methods

Data Analysis
Methods Accuracy Ref.

Sadness, anger, stress, surprise ECG, SKT, GSR SVM

Correct-classification ratios
were 78.4% and 61.8%, for the
recognition of three and four
categories, respectively

[133]

Sadness, anger, fear, surprise,
frustration, and amusement GSR, HRV, SKT KNN, DFA, MBP

KNN, DFA, and MBP, could
categorize emotions with
72.3%, 75.0%, and 84.1%
accuracy, respectively

[184]

Three levels of driver stress ECG, EOG, GSR
and respiration

Fisher projection
matrix and a linear
discriminant

Three levels of driver stress
with an accuracy of over 97% [126]

Fear, neutral, joy ECG, SKT, GSR,
respiration

Canonical
correlation analysis

Correct-classification ratio is
85.3%. The classification rates
for fear, neutral, joy were 76%,
94%, 84% respectively

[185]

The emotional classes
identified are high stress, low
stress, disappointment, and
euphoria

Facial EOG, ECG,
GSR, respiration,

SVM and adaptive
neuro-fuzzy
inference system
(ANFIS)

The overall classification rates
achieved by using tenfold
cross validation are 79.3% and
76.7% for the SVM and the
ANFIS, respectively.

[122]

Fatigue caused by driving for
extended hours HRV Neural network The neural network gave an

accuracy of 90% [186]

Boredom, pain, surprise GSR, ECG, HRV,
SKT

Machine learning
algorithms: linear
discriminate
analysis (LDA),
classification and
regression tree
(CART),
self-organizing
map (SOM), and
SVM

Accuracy rate of LDA was
78.6%, 93.3% in CART, and
SOMs provided accuracy of
70.4%. Finally, the result of
emotion classification using
SVM showed accuracy rate of
100.0%.

[187]

The arousal classes were calm,
medium aroused, and
activated and the valence
classes were unpleasant,
neutral, and pleasant

ECG, pupillary
response, gaze
distance

Support vector
machine

The best classification
accuracies of 68.5 percent for
three labels of valence and
76.4 percent for three labels of
arousal

[188]

Sadness, fear, pleasure
ECG, GSR, blood
volume pulse,
pulse.

Support vector
regression Recognition rate up to 89.2% [189]

Frustration, satisfaction,
engagement, challenge EEG, GSR, ECG Fuzzy logic

84.18% for frustration, 76.83%
for satisfaction, 97% for
engagement, 97.99% for
challenge

[190]

Terrible, love, hate,
sentimental, lovely, happy, fun,
shock, cheerful, depressing,
exciting, melancholy, mellow

EEG, GSR, blood
volume pressure,
respiration pattern,
SKT, EMG, EOG

Support Vector
Machine,
Multilayer
Perceptron (MLP),
K-Nearest
Neighbor (KNN)
and
Meta-multiclass
(MMC),

The average accuracies are
81.45%, 74.37%, 57.74% and
75.94% for SVM, MLP, KNN
and MMC classifiers
respectively. The best accuracy
is for ‘Depressing’ with 85.46%
using SVM. Accuracy of 85%
with 13 emotions

[191]

In [184–192] analyzed a number of various emotions using different measurement methods
and feature extraction techniques. For example, in [184] introduced the overall paradigm for their
multimodal system that aims at recognizing its users’ emotions and responding to them accordingly
depending upon the current context or application. They described the design of the emotion elicitation
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experiment they conducted by collecting, via wearable computers, physiological signals from the
autonomic nervous system (GSR, HRV, SKT) and mapping them to certain emotions (sadness, anger,
fear, surprise, frustration, and amusement). They showed the results of three different supervised
learning algorithms that categorize collected signals in terms of emotions, and generalize their learning
to recognize emotions from new collections of signals. Overall, three algorithms, namely the k-nearest
neighbor (KNN), discriminant function analysis (DFA), and Marquardt backpropagation algorithm
(MBP), could categorize emotions with 72.3%, 75.0%, and 84.1% accuracy, respectively.

Li and Chen [185] proposed to recognize emotion using physiological signals obtained from
multiple subjects from the body surface. Four physiological signals, namely ECG, SKT, GSR,
and respiration rate, were selected to extract features for recognition. Canonical correlation analysis
was adopted as a pattern classifier, and the correct classification ratio is 85.3%. The classification rates
for fear, neutral, and joy were 76%, 94%, and 84% respectively.

A new approach to enhance driving safety via multi-media technologies by recognizing and
adapting to drivers’ emotions (neutrality, panic/fear, frustration/anger, boredom/sleepiness) with
multi-modal intelligent car interfaces is presented in [192]. A controlled experiment was designed
and conducted in a virtual reality environment in order to collect physiological data signals (GSR,
HRV, and SKT) from participants who experienced driving-related emotions and states (neutrality,
panic/fear, frustration/anger, and boredom/sleepiness). KNN, MBP, and resilient backpropagation (RBP)
algorithms were implemented to analyze the collected data signals and to find unique physiological
patterns of emotions. RBP was the best classifier of these three emotions with 82.6% accuracy, followed
by MBP with 73.26%, and KNN with 65.33%.

In [186] presented an artificial intelligence based system which could detect the early onset of
fatigue in drivers using HRV as the human physiological measure. The detection performance of the
neural network was tested using a set of ECG data recorded under laboratory conditions. The neural
network gave an accuracy of 90%.

In [187] presented classification of three emotions (boredom, pain, and surprise) by using four
machine learning algorithms (linear discriminate analysis (LDA), classification and regression tree
(CART), self-organizing map (SOM), and support vector machine (SVM)). GSR, ECG, HRV, and SKT as
physiological signals were acquired for one minute before emotional state as a baseline and for 1–1.5 min
during emotional states. For emotion classification, the difference values of each feature-subtracting
baseline from the emotional state were used for machine learning algorithms. The result showed that
an accuracy of emotion classification by SVM was the highest. In the analysis of LDA, the accuracy of
all emotions was 78.6%, and in each emotion, boredom was recognized by LDA with 77.3%, pain 80.0%,
and surprise 78.6%. CART provided accuracy of 93.3% when it classified all emotions. In boredom,
accuracy of 94.3% was achieved with CART, 95.9% in pain, and 90.1% in surprise accuracy rate of LDA
was 78.6%, 93.3% in CART, and SOMs provided accuracy of 70.4%. The result of emotion classification
using SOM showed that, according to orders of boredom, pain and surprise recognition accuracy
of 80.1%, 65.1%, and 66.2% were obtained by SOM correspondingly. Finally, the result of emotion
classification using SVM showed an accuracy rate of 100.0%.

User-independent emotion recognition method with the goal of recovering affective tags for videos
using electroencephalogram, pupillary response and gaze distance presented in [188]. Initially, 20 video
clips were selected with extrinsic emotional content from movies and online resources. Ground truth
was defined based on the median arousal and valence scores given to clips in a preliminary study using
an online questionnaire. Based on the participants’ responses, three classes for each dimension were
defined. The arousal classes were calm, medium aroused, and activated and the valence classes were
unpleasant, neutral, and pleasant. The best classification accuracies of 68.5% for three labels of valence
and 76.4% for three labels of arousal were obtained using a modality fusion strategy and a SVM.

In [189] presented a specific emotion induction experiment to collect five physiological signals of
subjects including ECG, GSR, blood volume pulse, and pulse. The support vector regression (SVR)
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method was used to train the trend curves of three emotions (sadness, fear, and pleasure). Experimental
results show that the proposed method achieves a recognition rate up to 89.2%.

In [190] proposed and investigated a methodology to determine the emotional aspects attributed
to a set of computer aided design (CAD) tasks by analyzing the CAD operators’ psycho-physiological
signals. Psycho-physiological signals of EEG, GSR, and ECG were recorded along with a log of CAD
system user interactions. A fuzzy logic model was established to map the psycho-physiological signals
to a set of key emotions, namely frustration, satisfaction, engagement, and challenge and the results
were analyzed. The correlations between fuzzy model outputs and reported emotions are 84.18%
(frustration), 76.83% (satisfaction), 97% (engagement), and 97.99% (challenge) respectively.

A novel approach for the multimodal fusion of information from a large number of channels
to classify and predict emotions is presented in [191]. The multimodal physiological signals are
32 channels EEG, eight-channel GSR, blood volume pressure, and respiration pattern, SKT, EMG,
and EOG. The experiments are performed to classify different emotions (terrible, love, hate, sentimental,
lovely, happy, fun, shock, cheerful, depressing, exciting, melancholy, mellow) from four classifiers.
The average accuracies are 81.45%, 74.37%, 57.74%, and 75.94% for SVM, MLP, KNN, and MMC
classifiers respectively. The best accuracy is for ‘depressing’ with 85.46% using SVM.

An evaluation of the accuracy of provided methods, presented in Table 14, outlined three
technologies with the best accuracy of emotion recognition, namely ECG, EEG, and GSR. A noticeable
positive influence implementing FUZZY logic for the recognition of emotion intensity level is supported
by respectable research [190]. An increase in the number of recognized emotions sharply decrease
the quality and reliability of recognition, and this proposes a new roadmap for emotion recognition
process planning. Three emotions recognition accuracy can reach even 100%, but their intensity level
is still not defined uniquely. Research confirmed better recognition of negative rather than positive
emotions in a majority of methods.

4. Discussion

The selection of measurement methods and sensors is a complex process in which a huge set
of questions are presented. There are multiple choices for physiological parameters to measure as
well as physical principles of obtaining signals. Technology of measurements in relation to particular
sensors creates a huge set of possibilities to select. Multiple attempts to classify emotions, sensors,
and universal selection algorithms have been made. Some attempts are presented in [193] and we try
to fill this gap with the current proposal. In contrast to physical measurements, obtaining emotions
from human body parameter measurements creates a tough problem. Therefore, basic sensor selection
methods become unclear due to a lack of classification methods and functional relations between
sensors and desired emotions.

We conclude by providing the classification of emotion recognition measurement methods
(Figure 15), which allows to fulfil the selection procedure proposed in [193] as a two-step procedure.
The first step consists of the selection of measurement parameters and methods, while the second step
realizes the selection of sensors.
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We assume that, in the beginning of method selection, it is necessary to define if we are interested
in a conscious or unconscious response, or maybe in both methods simultaneously. Research based on
conscious responses are relatively simple and does not require any special hardware, but it requires a
lot of attention to prepare questionnaires. In contrast, results from self-evaluation are not so reliable,
and there exists a possibility that a person will not recognize their own emotions correctly or will
provide imprecise answers to uncomfortable questions. Methods based on unconscious responses
usually provide more reliable results, but they require multiple attempts for measuring procedures
and raise high requirements for hardware.

Methods based on unconscious responses provide many choices and we propose the selection of
electrical or non-electrical parameter measurement. As all reactions in the human body are controlled
by electric signals generated in the central nervous system, we can state that electric parameters are
primary entities, which gives mostly precise results, and the measurement of non-electrical signals
give reactions of the human body affected by electric signals. On the other hand, electrical signals can
be measured using only contact measurement methods, and of course there is the possibility to send a
signal to an acquisition unit using wireless techniques, but despite this, there remain some limitations
for human activity during measurement procedures.

Measurements of electrical parameters have two features: it is possible to use methods based
on direct (self-generating) sensors, when is measured signal crated by central nervous system (EEG,
ECG, HRV, EMG, EOG), or measurements based on modulating sensors when changes in human
body modulates properties of the sensor (GSR). From theory, it is known that direct sensors are more
precise [193] but they can a little affect the signal (especially signal with small amplitude) since they
take part of the power form it. On the other hand, modulating sensors will have some latency, which
depends on properties of individual sensor.

Measurement methods based on measurements of non-electrical parameters usually suffer from
lack of accuracy and latency but their main advantage is possibility to perform non-contact methods



Sensors 2020, 20, 592 30 of 40

without limiting human activity and they better fits for field applications and for approximate emotional
state evaluation.

Recent researches in the field of emotion recognitions shows that there is no method that is ideal
for one case and the best solution is multimodal analysis, as presented in [194] or in [195] using several
methods they complements each other and allows to achieve a higher reliability of obtained results.

A noticeable methodological problem in all emotion recognition techniques is lack of united
conception of dataset. Researchers choose control group sizes, compositions, experimental time,
and periods arbitrarily or based on possibility. Features in each emotion recognition methodology
are different, but certain description for reliable standards, covering dataset issues begs for definition.
This would release unnecessary resources, used by research with reliable results on the output.

Signal processing and analysis techniques also play important roles in the selection of methods
and sensors. In a majority of cases, the effectiveness of emotion recognition depends on the applied
procedures of signal processing and analysis. For example, from ECG data, it is possible to extract
information about HRV and respiration rate. Recent research shows that the most powerful techniques
applied for emotion recognition are multi-criteria analysis based on statistical methods (ANOVA) or
on machine learning algorithms.

Summing up, we can state that the interest in emotion recognition and practical implementation
of this technique is steadily increasing and finds more areas of application. Detailed research available
in public sources is mostly focused on the physiological side of this object. We found a lack of
research and unified classification focused on the engineering part of this question, for example,
missing rationale related to measurement methods, measurement uncertainties, and clear specification
as to which method, sensor, processing, and analysis techniques are best suited for recognizing a
particular emotion.

The future of such analysis can present a background for future systems with emotion recognition.
The sensors and methods for human emotion recognition along with computer vision, speech
recognition, deep learning, and related technologies have demonstrated tremendous progress in the
IoT field. Due to this, the understanding of human emotions has also experienced distinct progress [29].

The study and development of systems and devices constitutes affective computing. This is a means
for recognizing, interpreting, processing, and simulating the influences on people [196]. Machinery for
recognizing, expressing, modelling, communicating, and responding to information about emotions as
well as certain affective computing instances have been built globally by numerous researchers [197].
Innovative understanding of the self and better, advanced human communications have become
possible by the advances of affective computing technology. This promises new technologies for
reducing stress, rather than increasing it. Management requires measurement, as is popularly said.
The real-time skills provided by computers are complex and challenging. These skills allow them
greater understanding and intelligent responses to human emotions, which are complicated but occur
naturally and, for the same reason, are expressed naturally. The range for their use covers a number of
fields such as those in the fields of human sciences like neuroscience, physiology, and psychology [198].
The state of the art for multi-modal affect analysis frameworks, however, lacks a comprehensive
discussions in surveys of available scholarly literature [199].

The realization of mood sensor technology is expected on an annual basis. Efforts in research and
development will increasingly aim at contactless technology involved in measuring emotions, despite
the on-body devices and/or voice/facial recognition software currently required by most existing human
emotion recognition sensors, methods, and technologies. However, regardless of these efforts, there is
very slow movement towards the humanization of the IoT with human emotion recognition methods
and/or sensors at present [29]. Consequently, this research represents an attempt at introducing the
idea of humanizing the IoT and affective computing systems by applying human emotion recognition
sensors and methods to academic and business communities. The confirmation of such is by the IoT
and affective computing systems, which were developed by the authors of this research [25–28].
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5. Conclusions and Future Trends

Emotion recognitions is a powerful and very useful technique for the evaluation of human
emotional states and predicting their behavior in order to provide the most suitable advertising
material in the field of marketing or education. In addition, emotion recognition and evaluation is very
useful in the development process of various human machine interaction systems.

Relations between particular emotions and human body reactions have long been known, but
there remain many uncertainties in selecting measurement and data analysis methods. There are eight
methods most used in that field, which are based on measurements of various parameters and an
innumerable majority of data analysis methods and attempts for practical applications.

In this review, we observed more than 160 scientific articles and provided the classification of
AEE methods, using a summarized description of common emotion recognition methods and various
attempts to improve the reliability of its results. This paper also provides an engineering view to AEE
methods and their reliability, sensibility, and stability.

In the near future, a combination of those methods and implementation of machine learning for
data analysis seems to be an extremely powerful combination, which will create breakthroughs in
practical application in all fields starting from advertising and marketing and finishing with industrial
engineering applications.
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