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Abstract

One of the main technical challenges of PET/MRI is to achieve an accurate PET attenuation

correction (AC) estimation. In current systems, AC is accomplished by generating an MRI-

based surrogate computed tomography (CT) from which AC-maps are derived. Neverthe-

less, all techniques currently implemented in clinical routine suffer from bias. We present

here a convolutional neural network (CNN) that generated AC-maps from Zero Echo Time

(ZTE) MR images. Seventy patients referred to our institution for 18FDG-PET/MR exam

(SIGNA PET/MR, GE Healthcare) as part of the investigation of suspected dementia, were

included. 23 patients were added to the training set of the manufacturer and 47 were used

for validation. Brain computed tomography (CT) scan, two-point LAVA-flex MRI (for atlas-

based AC) and ZTE-MRI were available in all patients. Three AC methods were evaluated

and compared to CT-based AC (CTAC): one based on a single head-atlas, one based on

ZTE-segmentation and one CNN with a 3D U-net architecture to generate AC maps from

ZTE MR images. Impact on brain metabolism was evaluated combining voxel and regions-

of-interest based analyses with CTAC set as reference. The U-net AC method yielded

the lowest bias, the lowest inter-individual and inter-regional variability compared to PET

images reconstructed with ZTE and Atlas methods. The impact on brain metabolism was

negligible with average errors of -0.2% in most cortical regions. These results suggest that

the U-net AC is more reliable for correcting photon attenuation in brain FDG-PET/MR than

atlas-AC and ZTE-AC methods.
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Introduction

An important technical challenge of integrated PET/MR is achieving an accurate PET attenua-

tion correction (AC) comparable to transmission-based computed tomography (CT). In cur-

rent PET/MR scanners, AC is usually accomplished by generating an MRI-based surrogate

CT from which AC-maps are derived [1]. Commercially available MR-based AC methods

(MRAC) include a 2-point Dixon MR that is segmented into four tissue classes (e.g. lung, air,

fat and soft-tissue) in which predefined attenuation coefficients are assigned [2]. In brain PET

imaging, it is supplemented by the use of a single-atlas generated from an average of normal

CT scans (atlas-based AC), or replaced by an ultrashort or zero echo time (UTE/ZTE) MRI to

capture air and bone information. In the former, the single atlas is warped and co-registered to

each new subject. In the latter, discrete coefficients are assigned to classes of voxels segmented

through image processing or, more recently, through machine learning [3].

Previous studies using atlas-based techniques have reported limitations when applied to

unusual head anatomies and highly dependency on image registration quality of CT templates

to individual MR images. ZTE-based AC has been previously proposed as a good candidate for

accurate and subject-specific AC [4]. Recently, this method was improved with shorter acquisi-

tion time making it compatible with clinical settings, and demonstrated promising perfor-

mances compared to the atlas-AC in a small number of subjects [5].

Deep learning (DL) has witnessed increased interest in medical imaging and was recently

employed to generate pseudo CT from brain MR images to correct PET for photon attenua-

tion. To date, DL-based AC methods have been evaluated in relatively small cohorts, mainly

focusing on the quantitative accuracy of the predicted CT. Liu et al. trained a 2D convolutional

auto encoder from T1 weighted MR images to segment MRI in three-tissue classes (bone,

soft tissue, air) and evaluated the errors on brain PET image reconstruction in 10 patients [3].

Gong et al [6] reported the superiority of a 2D convolutional neural network (CNN) to gener-

ate brain AC maps either using Dixon MRI alone or combined with ZTE MRI as input data,

over Dixon- and segmented-ZTE based techniques in a sample of 14 patients. In the same

vein, Leynes et al. tested a deep CNN with combined ZTE and Dixon MRI for pelvic PET/MRI

attenuation correction and showed that quantitative assessment of lesions was improved com-

pared with the standard Dixon-based method [7]. More recently, Ladegofed et al [8] found

that their UTE based CNN was visually more appropriate and improved quantification accu-

racy compared to UTE in a cohort of pediatric brain tumors regardless of age.

In this work, we propose to test a 3D U-net CNN to compute AC maps from ZTE MR

images for brain FDG-PET/MR attenuation correction in a large cohort of patients referred

for cognitive impairment investigation. Our aim is to compare this approach with the refer-

ence CTAC, and with clinically available MRAC techniques.

Materials and methods

Population

Seventy consecutive patients (68.2 ± 13.7 y/o, 37 men) examined at our institution between

July 2016 and December 2017, and fulfilling the following criteria, were included: 1) brain

FDG-PET/MR scan (SIGNA PET/MR, GE Healthcare, Waukesha, WI, USA) performed in the

context of neurocognitive disorder investigation; 2) available brain CT scan without iodinated

contrast agent injection; 3) no skull, face, neck surgery or injury between CT and PET/MR

examinations. 23 of the 70 patients were added to the training set of the manufacturer which

comprised a total of 50 patients from 4 institutions (all equipped with the Signa PET/MR).

The 47 others were only used in the validation set. All studies were performed on the PET/MR
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scanner at the Pitié Salpèteriêre Hospital, Paris, France, within routine hospital appointments

and data use was approved by the French authority for the protection of privacy and personal

data in clinical research (Commission Nationale de l’Informatique et des Libertés, approval

No. 2111722). This study was performed according to the principles of the Declaration of

Helsinki.

PET/MR acquisition

A dose of 2 MBq/kg of FDG was injected 30 to 45 min prior to PET/MR acquisition. Patients

rested in quiet surroundings with their eyes closed for at least 20 min post-injection. PET

acquisition of the head lasted 20 minutes and was performed while MR images were acquired

using an 8-channel brain coil, including 3D T1-weighted inversion-recovery fast spoiled gradi-

ent echo acquisition, 3D (Fluid Attenuation Inversion Recovery) FLAIR, 3D susceptibility-

weighted MRI and axial diffusion-weighted MRI. A two-point Dixon (Liver Acquisition with

Volume Acceleration: LAVA-Flex in the manufacturer’s nomenclature) T1-weighted MRI was

acquired yielding in-phase and out-phase images, from which water and fat weighted images

were calculated. The following parameters were used: axial acquisition; TR = 4 ms; TE = 1.12

and 2.23 ms; flip angle 5˚; slice thickness 5.2 mm with a 2.6 mm overlap; 120 slices; pixel size

of 1.95x1.95 mm2. Additionally, a proton density weighted ZTE MRI was acquired with the

following parameters: 3D center-out radial acquisition; voxel size 2.4x2.4x2.4 mm3; field of

view (FOV) 26.4x26.4 cm2; flip angle 0.8˚; bandwidth ± 62.5 kHz; TR = 390 ms; TE = 0 ms;

acquisition time 40 s.

ACmaps generation

Four AC maps were generated for each patient with CTAC map set as reference method. First,

an estimation of the Hounsfield’s Units (HU) was performed for each AC method followed by

a post-processing pipeline to include external material (table, coils) and convert HU to linear

attenuation coefficients in cm-1. For CTAC, helical CT scans were collected from previous

brain PET/CT examinations. CTAC maps were created by a a non-rigid registration of the

patient CT to the ZTE MRI using a mutual information maximization algorithm with Statisti-

cal Parametric Mapping (SPM12) software (http://www.fil.ion.ucl.ac.uk/) with 4th degrees B-

spline interpolation. The time interval between CT and ZTE co-registred PET/MR scans was

13.3 ± 18.7 months. Between this time-lapse, no surgery or other interventions affecting brain’s

attenuation were observed.

Next, an atlas-AC map (AC mapAtlas) was created by an elastic registration of an average

CT template on the Dixon in-phase image using the implemented process on the PET/MR

scanner [9]. A third AC map was generated from ZTE MRI segmentation (AC mapZTE). An

offline post-processing pipeline provided by the manufacturer, was used to generate bone

tissue estimates from the acquired ZTE data based on the method proposed by Wiesinger

et al [10] and whose version included sinus-edge correction as described in [11, 12]. In this

approach, voxels classified as bone were assigned density values of 42 + 2400 (1 − IZTE) HU,

where IZTE represents the normalized ZTE intensity. Additionally, using morphological

operations, the paranasal sinuses were detected and masked to avoid misclassification of air to

bone. Finally, an AC map was created by the deep CNN, as described below, and is referred to

as AC mapU-net.

CNN design and training. From the ZTE volumes in the training set, normalized from

mean and standard deviation, patches of 64x64x16 were randomly picked and used for train-

ing. A 3D U-net architecture was used [13, 14] and can be seen in S1 Fig. The downward path

consisted of four stages of batch normalized 3D convolutions activated by the exponential
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linear unit function and connected by maxpooling operations with respectively 8,32,32,8 filters

of kernel size 33. The upward path mirrored the first four layers and was connected to the latter

by concatenation. Model weights (130000 parameters) evolved by reducing the mean squared

error between network output and reference CT image via the Adam optimizer. No data

augmentation was performed, the 3D patched provided implicit augmentation for structure

invariance. Model was trained for 50 000 iterations of batch size 100. Algorithm was imple-

mented in Keras on a NVIDIA V100 GPU. Inference time for a whole volume with 75% over-

lap between patches was for one patient about 10s.

Post-processing of AC maps. All Atlas-, ZTE-, Unet-, CT-AC maps were then processed

as follows using an in-house program developed in MATLAB (MathWorks Inc., Natick, MA,

USA). Coils, bed and all surrounding material were added to AC maps. They were then con-

verted from HU to linear attenuation coefficients using a bi-linear transformation taking into

account the difference of attenuation from annihilation’s photons at 511 keV and CT tube

energy at 120kV [15]. All AC maps were smoothed with a Gaussian filter with full-width at

half-maximum of 10 mm, which is the default smoothing applied on the atlas-AC map by the

manufacturer.

PET reconstruction

PET images were reconstructed with every AC-map using projected sinogram PET data with

the following reconstruction parameters: Ordered Subsets Expectation Maximization (OSEM)

algorithm with time of flight (TOF), 8 iterations and 28 subsets and with a transaxial post-

reconstruction Gaussian filter of 3 mm, resolution correction with point spread function

(PSF) modeling, attenuation and scatter corrections, FOV of 300 x 300 mm2, voxel size of

1.17x1.17x2.78 mm3, with 89 slices along z. Finally, a set of 4 corrected PET images (PETAtlas,

PETZTE, PETU-net, and PETCT) was obtained for each patient.

Data analysis

The Dice Similarity Coefficient (DSC) was used to assess the accuracy of bone information

provided by ZTE- and U-net AC maps. For this, bone masks were computed from MRAC

maps and CTAC map, by excluding voxels with intensity lower to 200 HU. DSC was computed

as follows:

Dice Similarity Coefficient ¼
2�MRAC \ CTAC
MRACþ CTAC

; ð1Þ

where MRAC corresponds to the bone mask obtained by thresholding the different MR-based

AC maps and, CTAC is the bone mask obtained by thresholding reference CTAC maps. Statis-

tical difference of DSC between AC methods was assessed using paired t-test. Next, to assess

the impact of AC method on brain PET brain and standard uptake value (SUV) measure-

ments, the relative PET error (ΔSUV in %) was calculated as:

Relative PET error : DSUV ¼
PETMRAC � PETCT

PETCT
� 100; ð2Þ

where PETMRAC is the PET image reconstructed using the different AC maps and PETCTAC

is the reference PET image reconstructed using the ground-truth CT. Relative errors in SUV

and joint histograms between the different PETMRAC and PETCTAC were analyzed after brain

masking in the patient native space. Similarity between PET images was estimated using the

coefficient of determination R2 and Root Mean Square Error (RMSE). Moreover, median and
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interquartile range (IQR = IQ75-IQ25) of ΔSUV were calculated in all voxels and distribution

of the latter was depicted through a histogram.

For voxel-based analyses, PET images were spatially normalized in the MNI space with

SPM12 using non-linear spatial transformations between their co-registered T1 weighted MR

volume and the T1 MNI template. They were then segmented by applying a grey matter mask

from the tissue probability map (TPM) template available in SPM. ΔSUV maps (%) were com-

puted at the voxel-level from spatially normalized PET images on the 47 patients for each AC

method, with the formula described above. Next, relative PET errors were calculated in 70 vol-

umes of interest (VOIs) extracted from the automated anatomical labeling atlas (AAL, http://

cyceron.fr/freeware). Mean and standard deviation of ΔSUV across patients for each AC

method were computed in those regions. Statistical significance was determined using a

repeated measures analysis of variance (ANOVA) with a post-hoc paired t-test after the homo-

elasticity hypothesis was confirmed using Levine test. All data were processed using python 3.5

with numpy, pandas, matplotlib for data visualization and nilearn for brain masking and plot-

ting [16].

Results

Example of axial slices of ZTE, CT images and AC maps are shown in Fig 1. Visual assessment

reveals no heterotopic calcifications on AC maps generated with U-net method, unlike maps

computed from ZTE segmentation. The mean DSC in the validation set between bone struc-

tures was 0.786 ± 0.05 on ACmapZTE compared with CT, and 0.81 ± 0.03 between ACmapU-net

and CTAC maps (p< 0.05). Thoses results and Jaccard coefficients are summarized in S1 Table.

Joint histograms between PET images corrected with CTAC and MRAC methods are dis-

played in Fig 2. All MRAC techniques yielded a voxel distribution around the identity line.

Goodness of fit, as measured with both the coefficient of determination R2 and RMSE that

reflects how well uptakes were estimated by the different AC methods, was better with the U-

net compared to both ZTE- and Atlas-AC. R2 and RMSE were respectively 0.98 and 534.7 for

PETAtlas vs. PETCTAC, 0.99 and 340.5 for PETZTE vs. PETCTAC, 1.0 and 253.5 for PETU-net vs.

PETCTAC.

U-net AC provided the most accurate PET quantification, the lowest bias on SUV measure-

ments and the lowest inter-individual variability, compared to ZTE-AC. In native space,

median and interquartile ranges (IQ75%-IQ25%) for the bias were -1.3 ± 13.5% for atlas-AC,

-3.0 ± 6.9% for ZTE-AC and -0.2 ± 5.6% for U-net-AC. The distribution of PET errors in the

native space is shown in Fig 3. Mean ΔSUV maps are shown in Fig 4.

The ANOVA results are displayed in Table 1 and revealed that AC methods, metabolism

among cortical regions and their interactions were statistically associated. Post-hoc paired t-

test and results of VOI analysis are displayed in S2 Table and S2 Fig. When applying the atlas

based-AC, the cortical metabolism was significantly overestimated in regions located above

the anterior commissure-posterior commissure (AC-PC) line, reaching a maximum bias in

the superior parietal cortex (4.7 ± 7.1%, p< 0.05), the superior occipital cortex (4.9 ± 6.6%)

and the precuneus (3.7 ± 4.7%), whereas a metabolism underestimation was observed in

areas below this line, mainly in the temporal poles (-6.6 ± 5.7%), the orbito-frontal cortex

(-5.5 ± 5.0%), the inferior temporal cortex (-7.5 ± 5.0%) and the cerebellum (-5.2 ± 7.3%, all

p< 0.05). With ZTE-AC method, a global metabolism underestimation was found, most pro-

nounced in the prefrontal dorsolateral cortex around -3%, except in some subregions of the

cerebellum that were over-estimated, reaching a mean error of 0.07 ± 6.1% in this structure.

This difference was not statistically significant. In contrast, U-net AC slightly overestimated

the metabolism in regions close to the vertex and in the cerebellum. The bias ranged from
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1.7 ± 2.6% in the right parietal superior cortex to -1.8 ± 1.9% in the left amygdala (all

p< 0.05). The lowest interregional variability reflected by the standard deviation of mean

errors among all regions, was found with the U-net AC method reaching 0.79% compared to

3.13% for Atlas-AC and 0.86% for ZTE-AC.

Fig 1. Axial sections of ZTE MR image (A), CT that served as reference (B), AC map generated from Atlas (C), AC map generated from segmented-ZTE (D),

U-net method (E) in three different patients. With ACmap ZTE (patient #1, ZTE-based AC yields to a global overestimation of attenuation in the ethmoids or

mastoids cells as shown in D (arrow). In patient #3, ZTE-based AC yields to a global overestimation of attenuation in the ethmoids or mastoids cells as shown in D

(arrows). With ACmapU-net, (E) mastoids cells were often filled with blurry structures. The calcification of a small meningioma of the falx cerebri found in patient

#2 is partly restored with the ACmapU-net (arrow) opposite to ZTE- AC.

https://doi.org/10.1371/journal.pone.0223141.g001

Fig 2. Joint histograms of PETAtlas, (A), PETZTE (B), PETU-net (C), compared to PETCT before spatial normalization, after brain masking.

https://doi.org/10.1371/journal.pone.0223141.g002
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Discussion

In this study, we evaluated the performances of a deep CNN algorithm with a 3D U-net archi-

tecture based on ZTE sequences for AC map estimation in 47 patients explored for cognitive

impairment by FDG PET/MRI and compared them to CT scan. Our results indicate that U-

net-AC yields the lowest error, as well as the lowest inter- and intra-patient variability com-

pared to the Atlas and the ZTE-based AC methods.

We observed a relative PET error distribution with Atlas and ZTE AC similar to the one

previously published in the literature [4, 9, 17]. The Atlas AC overestimates brain metabolism

above the AC-PC line especially in the regions close to the vertex whereas it underestimates it

in the lower regions including the cerebellum. When using the ZTE-based AC, a mild underes-

timation (around 2.5%) was found in the overall cortex excluding the cerebellum. This metab-

olism underestimation can be explained by segmentation errors mainly in regions with air-

bone interfaces (for examples, in mastoids, ethmoid bones or frontal sinus). Another valid

explanation is partial volume effect of the ZTE MR volumes that can lead to incorrect assign-

ments of air or soft tissue into bone [4, 5]. It is nevertheless interesting to see that those errors

were not observed when absolute quantification was performed [18].

Fig 3. Distribution of the relative PET errors generated by the U-net AC (dashed lines), the ZTE-based AC (circles) and the atlas-based AC (stars) before

spatial normalization, after brain masking. Along x-axis: relative PET error (ΔSUV) and along y-axis: frequency.

https://doi.org/10.1371/journal.pone.0223141.g003
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The brain distribution of U-net AC errors reveals a very small error (with mean -0.2% and

ranging from maximum 1.7% close to the vertex to -1.8% in the temporal lobe). VOI analyses

and difference maps generated from the corrected PET images confirmed the superior perfor-

mance of the AC method using a 3D U-net architecture over the other methods as it provided

a very low bias and lower inter individual and inter regional variability compared to ZTE- and

Atlas-based AC techniques. The cerebellum remains the region with the highest variability in

metabolism between individuals probably because of difficulties in correctly estimating density

of mastoid cells.

Our deep CNN revealed similar performance as Gong et al [6] who were the first to evalu-

ate two deep CNN architectures using both ZTE and Dixon MRI for brain AC estimation.

In fact, for the bone segmentation procedure at the same threshold of 200 HU, our U-net

reached a DSC of 0.80, that was statistically significantly improved compared to ZTE and

that was in the same order of magnitude compared to 0.77 for their U-net and 0.80 for their

Grouped U-net. They also found that the U-net architecture with ZTE as input, performed

better than segmentation based ZTE AC or other MRAC approaches, yielding less bias and

variability with a mean whole brain metabolism over-estimation around 2%. However, our

study revealed slight difference in the error distribution that can be explained by multiple

Fig 4. Axial slices of the PET error map for the different AC methods Atlas (A), ZTE (B) and U- net (C) compared to CTAC.

https://doi.org/10.1371/journal.pone.0223141.g004

Table 1. Results of the analysis of variance (ANOVA) before the post-hoc paired t-test analysis.

Factors F-score p-value eps

Attenuation Correction Methods 12.72 4.56e-05 0.56

AAL regions 47.87 1.73e-52 0.11

Interaction 43.56 2.38e-38 0.02

https://doi.org/10.1371/journal.pone.0223141.t001
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methodological points. Indeed, our larger population allowed to use a correct validation

cohort and to benefit from the contextual information provided by a 3D deep CNN that

could not be performed in their case. Also we chose to use ZTE only as input whereas they

used both DIXON and ZTE.

Neurodegenerative diseases lead to synaptic losses and neuronal dysfunctions. In Alzhei-

mer disease, cortical hypometabolism [19] usually starts in the precuneus and posterior cin-

gulum areas and later extends to parieto-temporal associative areas, and more occasionally

in the frontal or occipital associative areas [20]. The Atlas AC particularly impacted those

areas where an over-estimation of the regions in parietal, occipital and temporal associative

cortex could result in a loss of sensitivity. Conversely, with the U-net AC method, metabo-

lism in the cingulum posterior or precuneus areas was not statistically different from CTAC.

Therefore brain AC with the U-net method is preferable in the context of neurodegenerative

diseases.

Regarding the input that is fed to the CNN, most studies include MR volumes or slices,

essentially from morphological MRI such as T1 or T2 weighted MR sequences that are rou-

tinely performed for the exploration of neurodegenerative disorders or glial tumors. As the sig-

nal in the bone structures is low, mapping complex functions to predict HU from those inputs

may requires more data for efficient training. This is one of the reasons why some authors

used specialized pulse sequences such as UTE or ZTE that provide additional air and bone

information [6, 7, 21] Nevertheless, we can’t be sure that the CNN is actually using the bone

information contained in ZTE to make its prediction. Main alternatives to MR inputs are the

PET data themselves that can also be fed to the CNN. For example, using the maximum likeli-

hood reconstruction of activity and attenuation (MLAA) augmented by TOF which allows at

the same time simultaneous reconstruction of activity and attenuation using PET emission

data, Hwang et al used the AC map produced by MLAA as an entry of the CNN to predict CT

with good accuracy reaching a DSC of 0.79 [22].

Our study, even if was separated into a training and testing sets and included a relatively

large sample of patients compared to already published studies of patients, remains a pretty

small cohort in the era of big data. One potential limitation was the use of brain CT scans

acquired on different systems. However, spatial normalization in the MNI space and Gauss-

ian smoothing of 10 mm applied to all AC-maps reduced this variability. That Gaussian

filter is nevertheless questionable as it may cancels out subtle differences that the CNN

method was actually trying to model. Another potential limitation was the delay between

PET/MRI and CT. However, a visual examination between CT and MRI was systematically

performed to ensure that no morphological alteration had appeared during this time inter-

val. It is to note that as on no major morphological skull or brain abnormalities were

present in the training nor in the validation datasets, it is difficult to infer how the CNN

will behave in those conditions. Nevertheless, the small falci meningioma visible in Fig 1 is

reassuring. Also, a previous study [8] including abnormal brain MRI with history of surgery

and presence of titanium coils in 33% of patients which resulted to signal voids were well

recovered by their deep learning algorithm. Lastly, similarly to most of the existing deep

neural networks for AC estimation, we tried to predict CT from MRI. Indeed CT was

used both for training and as the reference method [23]. In a recent multi-center study of

several PET/MRI attenuation protocols stated that not comparing to gold standard trans-

mission scans was a limitation [24]. To overcome this limitation, some authors trained a

deep neural network to predict 68Germanium transmission scan instead of CT [25] which

lead to similar accuracy compared to the latter. Furthermore, such studies have limited

clinical use given that no standalone PET scanners are available today from any of the PET

manufacturers.
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Conclusion

We have presented in this work a 3D-U-net architecture to generate the attenuation map to

correct brain PET imaging based on the ZTE MR images. The results show that the U-net AC

method is more suited for the exploration of cognitive disorders than both atlas-AC and ZTE

AC methods as it has the lowest bias as well as the lowest inter and intra patients variability

compared to reference CTAC.
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among patients (n = 47) for Atlas, ZTE and U-net based attenuation correction within the 70

VOIs from AAL template.

(TIFF)
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